
Using CP When You Don't
Know CP

Christian Bessiere
LIRMM

(CNRS/U. Montpellier)

An illustrative example
5-rooms flat (bedroom, bath, kitchen, sitting,
dining) on a 6-room pattern

north
-west north north-

east

south-
east

south-
west south

The pattern:
Constraints of the builder:

– Kitchen and dining must be
linked

– Bath and kitchen must have a
common wall

– Bath must be far from sitting

– Sitting and dining form a single
room

Problem

• How to propose all possible plans?
 a constraint network that encodes the

constraints of the builder

Library of constraints

• Constraints :
– X ≠ Y, X = Y
– Next(X,Y) = {

(nw,n),(nw,sw),(n,nw),(n,ne),(n,s),
(ne,n),(ne,se),(sw,nw),(sw,s),(s,sw),
(s,n),(s,se),(se,s),(se,ne) }

– Far(X,Y) = {
(nw,ne),(nw,s),(nw,se),(n,sw),(n,se),
(ne,nw),(ne,sw),(ne,s),(sw,n),(sw,ne),
(so,se),(s,nw),(s,ne),(se,nw),(se,n),(se,sw) }

nw n ne

se sw s

A possible viewpoint
(variables, domains)

• Variables :
– B (bedroom),
– W (washroom),
– K (kitchen),
– S (sitting),
– D (dining)

• Domains : {nw,n,ne,sw,s,se}

nw n ne

se sw s

far

next next

next

A constraint network

Alldiff(K,W,D,S,B)

nw,n,ne,sw,s,se

B

nw,n,ne,sw,s,se S

nw,n,ne,sw,s,se

D

nw,n,ne,sw,s,se
W

nw,n,ne,sw,s,se

K

Bedroom: east
Sitting: southClient wishes:

K W

B S D
a solution

Constraint Programming

Problem Variables

Domains

Constraints Solution

modelling

solving

???

Modelling
(“it’s an art, not a science”)

• In the 80s, it was considered as trivial
– Zebra problem (Lewis Carroll) or random problems

• But on “real” problems:
– Which variables ? Which domains ?
– Which constraints for encoding the problem?

• And efficiency?
– Which constraints for speeding up the solver?

• Global constraints, symmetries…

 All is in the expertise of the user

If you’re not an expert?

1. Choice of variables/domains

2. Constraint acquisition

3. Improve a basic model

Choice of variables/domains
(viewpoints)

• From historical data (former solutions)
• Solutions described in tables (flat data)

D S

C W K S D

S B K W K

S B D

Room Position
Dining nw

Kitchen n

Sitting ne

Bedroom sw

Wash s

Room Position
Sitting nw

Kitchen n

Bedroom ne

SàM

Wash se

Room Position
Wash nw

Kitchen n

Bedroom sw

Dining s

Sitting se

Extract viewpoints

Room, position

Room Position

∅ Room Position
Wash nw

Kitchen n

Bedroom sw

Dining s

Sitting se

XWash ∈ {nw,n,ne,sw,s,se}

XSitting ∈ {nw,n,ne,sw,s,se}

….

Extract viewpoints

• Two viewpoints:
– XB,…,XS ∈ {nw,n,ne,sw,s,se}
– Xnw,…,Xse ∈ {W,B,K,D,S,∇}

• Trivial viewpoints:
– X1,…,X5 ∈ {B-nw,B-n,B-sw,…,

S-s,S-se}
– XB-nw,…,XS-se ∈ {0,1}

Room, position

Room Position

∅

Room Position

wash nw

kitchen n

bedroom sw

dining s

sitting se

Connect viewpoints

• VP1: XB,…,XS ∈ {nw,n,ne,sw,s,se}
• VP2: Xnw,…,Xse ∈ {B,W,K,D,S,∇}

• Channelling constraints:
– XB = nw ↔ Xnw = B

“nw” is taken at most once in VP1

 alldiff(XB,…,XS) is a constraint in VP1
[like in Law,Lee,Smith07]

Application: sudoku

L1 C4 3

L1 C5 1

L2 C1 3

L2 C3 4

L3 C4 2

L3 C9 8

… … …

L C V

XLC=V

XLV=C

XCV=L

Alldiffs learned for free

Connect viewpoints

• We can derive more than just alldiff
• Cardinality constraints can be detected

• Example: a timetabling in which 3 math
courses are given

 one of the viewpoints will contain 3 variables
representing these 3 courses

 In all other viewpoints, we can put a
cardinality constraint forcing value “math” to
be taken 3 times

If you’re not an expert?

• Choice of variables/domains

• Constraint Acquisition
– Space of networks
– Redundancy
– Queries

• Improve a basic model

Acquire constraints

• The user doesn’t know how to specify
constraints

• She knows how to discriminate solutions from
non-solutions
– Ex: valid flat vs invalid flat

Use of machine learning techniques
– Interaction by examples (positive e+ or negative

e-)
– Acquisition of a network describing the problem

Space of possible networks
XD

XB

XK

XW XS

?

?
? ?

?
?

?

?

• Language :
 ? → { =, ≠, next, far }
• Bias :
 XS=XW; next(XS,XB);… …;
XK≠XD; far(XK,XD)

Some positive rejected

Some negative accepted

Compact SAT encoding
• A SAT formula K representing all

possible networks:
– Each constraint ci

→ a literal bi

– Models(K) = version space
– Example e- rejected by {ci,cj,ck}

→ a clause (bi ∨ bj ∨ bk)
– Example e+ rejected by ci

→ a clauses (¬bi)

• m ∈ models(K)
⇒ ϕ(m) = {ci | m(bi)=1} accepts all
positive examples and rejects all
negative examples

Some negative accepted

Some positive rejected

Reduce the space
C(XK,XD): ≠, =, far, next B K

W S D

e+
1

C(XD,XS): ≠, =, far, next

C(XK,XS): ≠, =, far, next

e-
2 K W

B S D

K
W S

e+
3 B

D

M

e-
4 K

W
B

D
Snext(XD,XS) ∨ far(XK,XS)

Redundancy

• Constraints are not
independent

• “next(XK,XD) ∧ next(XD,XS) ⇒ far(XK,XS)”

• See local consistencies

• It’s different from attribute-value learning

K

M S

Redundancy
• Redundancy prevents convergence

 a set R of redundancy rules:
alldiff(X1,…,Xn) ⇒Xi≠Xj, ∀i,j
next(XK,XD) ∧ next(XD,XS) ⇒ far(XK,XS)

• In K we already have:
– next(XD,XS) ∨ far(XK,XS)
– next(XK,XD)

• So, from K+R we deduce far(XK,XS)

• Version space = Models(K+R)
– Good properties when R is complete

K

M S

Queries
(active learning)

• Examples often lead to little new information (eg,
negative plan with kitchen far from dining)

• The system will propose examples (queries) to speed
up convergence

• Example e rejected by k constraints from the space
– e positive ⇒ k constraints discarded from the space
– e negative ⇒ a clause of size k

• Good query = example which reduces the space as
much as possible whatever the answer

Queries
• Negative example e1:

 cle1 = b1∨…∨bk ∈ K+R
– find m ∈ models(K+R) such that

a single literal bi in cle1 is false
– find e2 ∈ sol(ϕ(m)) :

→ e2 violates only constraint ci
 bi or ¬bi will go in K

• If sol(ϕ(m))=∅: any conflict-set is a
new redundancy rule quick
convergence

K+R
b1∨…∨bk

m contains ¬bi

ϕ(m)

e2 ∈ sol(ϕ(m))

Query: “e2” ?

An example of constraint
acquisition in robotics

(by Mathias Paulin)
• The goal is to automate the burden of

implementing elementary actions of a
robot

• Elementary actions are usually
implemented by hand by engineers
(complex physic laws, kinetic
momentum, derivative equations, etc.)

No need for a user

• Instead of interacting with a user,
classification of examples will be done by a
run of the robot with given values of its
sensorimotor actuators

• If the action has correctly performed, this is
positive

• With expensive humanoid robots, a simulator
allows easy classification without actually
running the robot

Elementary actions

• Each action has variables representing
– the observed world before the action,
– the power applied to each actuator
– the world after the action

• Constraint acquisition will learn a
constraint network on these variables
such that its solutions are valid actions

Planning a task

• The overall goal is to build a plan
composed of elementary actions

• The planning problem is solved by a CP
solver

• It is convenient to encode actions as
sub-CSPs

• 3 motors
• 4 sensors
• 5 elementary actions to combine
• Discretization of variables

Tribot Mindstorms NXT

ExperimentExperiment

• Modelling by CONACQ
• Conacq generates a CHOCO model used by CSP-Plan

[Lopez2003]

⇒ Objective : catch the mug!

If you’re not an expert?

• Choice of variables/domains

• Constraint acquisition

• Improve the basic model

Improve the model

• Basic model M1 :
solve(M1) ≈ ∞

 Experts add implicit
constraints that increase
constraint propagation

• An implicit constraint doesn’t
change the set of solutions
 We will learn implicit global constraints

The globalest is
the best

Problem Variables

Domains

Constraints Solution

modelling

solving

BT-search
+ propagation

Implicit global constraints

• Model M1:
at most two 1 per solution

• M1+{card[#1≤2](X1..Xn)}:
same solutions as M1

• But solve(M1+ card) is
faster than solve(M1)

X1 … Xn

 112345
332223
551554
124135

…..

sol(M1):

Card[..]+card[..]+card[..]
 = gcc[P]

gcc = propagation with a flow

Learn parameters P of
gcc[P](X1..Xn)

Sol(M1) Sol(M2)

gcc[P](X1..Xn)

gcc[P’](X1..Xn)

M1

Very hard

 M1+
gcc[P’](X1..Xn)

Easy

M2

Very easy
relax

Example: Task allocation

• Projects to be assigned to students
while minimising disappointment

• Model M1 designed by some of the
students (2h of courses on CP) :

• optimize(M1) > 12h

possible(P)

mandatory(P)

Task allocation
• Launch optimize(M1) during 1 sec.

– Solution s0 of cost F0

• M2 = M1+(cost<F0)
• mandatory(P) ← cardinalities(s0); possible(P) ← Z
• choose Pi ⊆ possibles(P) \ mandatory(P)

• s ← solve(M2 + gcc[Pi](X1..Xn))
• If s= ∅ thenpossibles(P) ← possibles(P) \ Pi

• Else mandatory(P) ← mandatory(P) + cardinalities(s)

• optimize(M1 + gcc[possibles(P)](X1..Xn))
• optimal solution in 43mn instead of >12h

Pi

Summary

• There are possible ways to assist a non
expert user in:
– Finding viewpoints
– Specifying constraints
– Improving models

• Once CP modelling is automated, this
opens new fields where to use CP

Perspectives

• Take into account background knowledge
(eg, ontologies in a company)
 reduce the size of the learning space

• Robustness to errors from the user

• Vizualization tools for novices

Thanks to...

Bibliographie
C. Bessiere, R. Coletta, T. Petit.
"Learning Implied Global Constraints”
Proceedings IJCAI'07, Hyderabad, India, pages 50-55.

C. Bessiere, R. Coletta, B O'Sullivan, M. Paulin.
"Query-driven Constraint Acquisition”
Proceedings IJCAI'07, Hyderabad, India, pages 44-49.

C. Bessiere, R. Coletta, F. Koriche, B. O'Sullivan.
"Acquiring Constraint Networks using a SAT-based
Version Space Algorithm”
Proceedings AAAI'06, Nectar paper, Boston MA, pages
1565-1568.

C. Bessiere, J. Quinqueton, G. Raymond.
"Mining historical data to build constraint viewpoints”
Proceedings CP'06 Workshop on Modelling and
Reformulation, Nantes, France, pages 1-16.

C. Bessiere, R. Coletta, F. Koriche, B. O'Sullivan.
"A SAT-Based Version Space Algorithm for Acquiring
Constraint Satisfaction Problems”
Proceedings ECML'05, Porto, Portugal, pages 23-34.

C. Bessiere, R. Coletta, E. Freuder, B. O'Sullivan.
"Leveraging the Learning Power of Examples in
Automated Constraint Acquisition”
Proceedings CP'04, Toronto, Canada, pages 123-137.

R. Coletta, C. Bessiere, B. O'Sullivan, E. Freuder, S.
O'Connell and J. Quinqueton.
"Constraint Acquisition as Semi-Automatic Modelling”
Proceedings AI-2003, Cambridge, UK, pages 111--124.

Optimistic
• e5=(3,3,3) violates the two

constraints X≠Z and Y≠Z
– e5 positive

• remove 3/4 of the
possible CSPs

– e5 negative
• remove 1/4 of the

possible CSPs

• Works well when the target
CSP is under-constrained

e5=(3,3,3)

X=Y?

X≠Z?Y≠Z?

X⋅Y=Z

X+Y+Z≤10

or

Optimal

X=Y?

X≠Z?Y≠Z?

X⋅Y=Z

X+Y+Z≤10

e6=(1,2,3)
• e6=(1,2,3) only violates

the constraint X=Y
– e6 positive

• remove 1/2 of the possible
CSPs

– e6 negative
• remove 1/2 of the possible

CSPs

• Divides the number of
candidate networks by
half whatever the answer
of the user

Expérimentation : Tribot Mindstorms (2)Expérimentation : Tribot Mindstorms (2)

• Modélisation automatique par CONACQ
• Implémentation en CHOCO du planificateur CSP-Plan [Lopez2003]
• Commande du robot via le langage URBI

⇒ Objectif : Saisie d’un objet par le robot Tribot!

