{

ing CP When You Don'’

Us

Know CP

Christian Bessiere

p

An illustrative example

5-rooms flat (bedroom, bath, kitchen, sitting,
dining) on a 6-room pattern

Constraints of the builder:

Kitchen and dining must be
linked

Bath and kitchen must have a
common wall

Bath must be far from sitting

Sitting and dining form a single
room

The pattern:

north north-
-west north east
south-

south | south-
west .

Problem

 How to propose all possible plans?

=» a constraint network that encodes the
constraints of the builder

Library of constraints

 Constraints :

nw

ne

_X#Y,X=Y
— Next(X,Y) = {

SW

Se

(nw,n),(nw,sw),(n,nw),(n,ne),(n,s),
(ne,n),(ne,se),(sw,nw),(sw,s),(s,sw),
(s,n),(s,se),(se,s),(se,ne) }

— Far(X)Y) ={
(nw,ne),(nw,s),(nw,se),(n,sw),(n,se),

(ne,nw),(ne,sw),(ne,s),(sw,n),(sw,ne),

(so,se),(s,nw),(s,ne),(se,nw),(se,n),(se,sw) }

A possible viewpoint
(variables, domains)

* Variables :
— B (bedroom),
— W (washroom),
— K (kitchen),
— S (sitting),
— D (dining)

 Domains : {nw,n,ne,sw,s,se}

nw

ne

SW

Se

A constraint network

A B
w.n.ne,sw,s,se-ext D
w,n,ne,sw.,s,s WIW
next next

e,sw,s,se S
unneswss

—Al11dif£f(K,W,D,S,B)

_ _ - Bedroom: east a solution
Client wishes: Sitting: south > | S | D

o

Constraint Programming

277

Modelling

(“it’s an art, not a science”)

* |n the 80s, it was considered as trivial

— Zebra problem (Lewis Carroll) or random problems
« But on “real” problems:

— Which variables ? Which domains ?

— Which constraints for encoding the problem?
* And efficiency?

— Which constraints for speeding up the solver?
» Global constraints, symmetries...

=>» All is in the expertise of the user

If you're not an expert?

1. Choice of variables/domains
2. Constraint acquisition

3. Improve a basic model

Choice of variables/domains

(viewpoints)

 From historical data (former solutions)
« Solutions described in tables (flat data)

o

Roo RDaocitinn

— Roo RDaocitinn

Dinit—— Room Position
Sittir

Kitcl——— Wash nw
Kitch

Sittir Kitchen n
Bed

Bed Bedroom | sw
SaM|

Was Dining S
Was

Sitting

Se

Extract viewpoints

Rom pos tion

" osmo
Xsiting € {NW,n,ne,sw,s,se}

Room Position

Wash nw

7 Xwash € {nw,n,ne,sw,s,se}

Kitchen n

Bedroorq SW
Dining / S
Sitting se

* Two viewpoints:
— Xg,-.-,.Xg € {nw,n,ne,sw,s,se}
— X s

Extract viewpoints

X, € {W,B,K,D,S,V}

* Trivial viewpoints:

- X4,.., X5 € {B-nw,B-n,B-sw,...,
S-s,S-se}

- X

B-nw: -

Xeee € {0,1}

Rotion

7

2 |

Room Position
wash nw
kitchen n
bedroom | sw
dining S

sitting

se

Connect viewpoints

* VP1: Xg,...,.Xg € {nw,n,ne,sw,s,se}
« VP2: X.,,---: X € {B,W,K,D,S,V}

« Channelling constraints:
—Xg=nw< X =B

=2 “‘nw” is taken at most once in VP1

= alldiff(Xg,...,Xg) IS a constraint in VP1
[like in Law,Lee,Smith(Q7]

Application: sudoku

L1 | C4

L1 | CS

L2 | C1

L2 | C3

L3 | C4

OOI\)-POOAOO<

L3 | C9

Alldiffs learned for free

3 \Wl\
4
2 8
4
/ 14! |9

]

311 7
| :
3 7

Connect viewpoints

* We can derive more than just alldiff
« Cardinality constraints can be detected

« Example: a timetabling in which 3 math
courses are given

=>» one of the viewpoints will contain 3 variables
representing these 3 courses

=>» |n all other viewpoints, we can put a

cardinality constraint forcing value “math” to
be taken 3 times

If you're not an expert?

 Choice of variables/domains

« Constraint Acquisition
— Space of networks
— Redundancy
— Queries

* Improve a basic model

Acquire constraints

* The user doesn’t know how to specify
constraints

e She knows how to discriminate solutions from
non-solutions

— Ex: valid flat vs invalid flat

=» Use of machine learning techniques

— Interaction by examples (positive e+ or negative
e-)

— Acquisition of a network describing the problem

Space of possible networks

« Language :
? — {=, #, next, far}
* Bias :

Xk # Xp; far(Xy,Xp)

Some negative accepted

Compact SAT encoding

« A SAT formula K representing all
possible networks:
— Each constraint c;
— a literal b,
— Models(K) = version space
— Example e- rejected by {c,c;,C,}
— aclause (b; v b; v by)
— Example e+ rejected by c;
— a clauses (-b;)

Some negative accepted

« m & models(K)

= g(m) = {c; | m(b,)=1} accepts all
positive examples and rejects all
negative examples

Some positive rejected

Reduce the space

e’
Coxo) =K -

o
C(Xp,Xs) :

e+
C(Xk:Xs): >

€4

next(Xp,Xg) v far(Xy,Xg)

o=

éw

Redundancy @\

Constraints are not M

independent

“next (X, Xp) A next(Xp,Xs) = far(Xg,Xs)”

See local consistencies

It's different from attribute-value learning

Redundancy

« Redundancy prevents convergence

= a set R of redundancy rules:
alldif£(Xy,...,X,) =X #X, Vi]
next(Xy,Xp) A next(Xy,Xg) = far(Xy,Xg)

* In K we already have:
— next(Xp,Xg) v far(X,,Xg)
— next(X,,Xp)
« So, from K+R we deduce far(X,,X)

« Version space = Models(K+R)
— Good properties when R is complete

Queries
(active learning)

Examples often lead to little new information (eg,
negative plan with kitchen far from dining)

The system will propose examples (queries) to speed
up convergence

Example e rejected by k constraints from the space
— e positive = k constraints discarded from the space
— e negative = a clause of size k

Good query = example which reduces the space as
much as possible whatever the answer

Queries

* Negative example eT:
> cl,, =b,v..vb, € KR
— find m € models(K+7R) such that

a single literal b, in cl,, is false m contains -b,
— find e2 € sol(@p(m)) : ¢
— e2 violates only constraint c;
=> b, or =b, willgoin K ¢(m)
« If sol(¢p(m))=J: any conflict-set is a i
new redundancy rule = quick e2 € sol(¢(m))
convergence ¢

Query: “€2”?

An example of constraint

acquisition in robotics
(by Mathias Paulin)

The goal is to automate the burden of

implementing elementary actions of a
robot

Elementary actions are usually
implemented by hand by engineers
(complex physic laws, kinetic
momentum, derivative equations, etc.)

No need for a user

 |Instead of interacting with a user,
classification of examples will be done by a
run of the robot with given values of its
sensorimotor actuators

* |If the action has correctly performed, this is
positive
* With expensive humanoid robots, a simulator

allows easy classification without actually
running the robot

Elementary actions

» Each action has variables representing
— the observed world before the action,
— the power applied to each actuator
— the world after the action

» Constraint acquisition will learn a

constraint network on these variables
such that its solutions are valid actions

Planning a task

* The overall goal is to build a plan
composed of elementary actions

* The planning problem is solved by a CP
solver

* |t Is convenient to encode actions as
sub-CSPs

Tribot Mindstorms NXT

3 motors

4 sensors

5 elementary actions to combine
Discretization of variables

Experiment

 Modelling by CONACQ

 Conacqg generates a CHOCO model used by CSP-Plan
[Lopez2003]

= Objective : catch the mug!

€ s picuure

If you're not an expert?

* Choice of variables/domains
» Constraint acquisition

* Improve the basic model

Improve the model

m/
- Basic model M1 : G BT-search

SO|V€(|V|1) =~ OO + propagation

). &olving

=>» Experts add implicit —
constraints that increase N
constraint propagation The globalest is

: - : : the best
* An implicit constraint doesn't

change the set of solutions
= We will learn implicit global constraints

Implicit global constraints

A Xyl X

+ Model M1: | sol(M1): T

at most two 1 per solution 3322273

551554

« M1H{card[#1=2](X,..X,)}: 124135
same solutionsas M1 |

e But solve(M1+ card) is
faster than SOIVe(NH) Card[..]tcard[..]+tcard[..]

= gcc[P]

gcc = propagation with a flow

Learn parameters P of
gcc[P](X,..X))
Very hard Very easy

Easy

gcc[P](X;..X;)

Example: Task allocation

* Projects to be assigned to students
while minimising disappointment
 Model M1 designed by some of the
students (2h of courses on CP):

* optimize(M1) > 12h

Task allocation

Launch optimize(M1) during 1 sec.
— Solution s, of cost F,

M2 = M1+(cost<F,)
mandatory(P) < cardinalities(s,); possible(P) < Z

choose P, C possibles(P) \ mandatory(P)
* s < solve(M2 + gcc[P;](X4..X,))
« If s=J thenpossibles(P) < possibles(P) \ P,
» Else mandatory(P) < mandatory(P) + cardinalities(s)

optimize(M1 + gcc[possibles(P)](X,..X.))
=>» optimal solution in 43mn instead of >12h

possible(P)

mandatory(P)

Summary

* There are possible ways to assist a non
expert user in:

— Finding viewpoints
— Specifying constraints
— Improving models

* Once CP modelling is automated, this
opens new fields where to use CP

Perspectives

* Take into account background knowledge
(eg, ontologies in a company)
=>» reduce the size of the learning space

« Robustness to errors from the user

* Vizualization tools for novices

Thanks to

Bibliographie

C. Bessiere, R. Coletta, T. Petit.
"Learning Implied Global Constraints”
Proceedings IJCAI'07, Hyderabad, India, pages 50-55.

C. Bessiere, R. Coletta, B O'Sullivan, M. Paulin.
"Query-driven Constraint Acquisition”
Proceedings IJCAI'07, Hyderabad, India, pages 44-49.

C. Bessiere, R. Coletta, F. Koriche, B. O'Sullivan.
"Acquiring Constraint Networks using a SAT-based
Version Space Algorithm”

Proceedings AAAI'06, Nectar paper, Boston MA, pages
1565-1568.

C. Bessiere, J. Quinqueton, G. Raymond.

"Mining historical data to build constraint viewpoints”
Proceedings CP'06 Workshop on Modelling and
Reformulation, Nantes, France, pages 1-16.

C. Bessiere, R. Coletta, F. Koriche, B. O'Sullivan.

"A SAT-Based Version Space Algorithm for Acquiring
Constraint Satisfaction Problems”

Proceedings ECML'05, Porto, Portugal, pages 23-34.

C. Bessiere, R. Coletta, E. Freuder, B. O'Sullivan.
"Leveraging the Learning Power of Examples in
Automated Constraint Acquisition”

Proceedings CP'04, Toronto, Canada, pages 123-137.

R. Coletta, C. Bessiere, B. O'Sullivan, E. Freuder, S.
O'Connell and J. Quinqueton.

"Constraint Acquisition as Semi-Automatic Modelling”
Proceedings Al-2003, Cambridge, UK, pages 111--124.

Optimistic

e5=(3,3,3)
e5=(3,3,3) violates the two
constraints X=Z and Y=Z
— ed positive — @Y-FZS@
* remove 3/4 of the X=Y?

possible CSPs

— ed negative

* remove 1/4 of the
possible CSPs

Works well when the target E;(
CSP is under-constrained

Optimal

e6=(1,2,3)

« e6=(1,2,3) only violates
the constraint X=Y

— eb positive X+Y+Z7<10
* remove 1/2 of the possible \

CSPs
— €6 negative f

* remove 1/2 of the possible
CSPs Y=Z? X=7?
* Divides the number of
candidate networks by >ﬁ<

half whatever the answer
of the user

Expérimentation : Tribot Mindstorms (2)

* Modélisation automatique par CONACQ
e Implémentation en CHOCO du planificateur CSP-Plan [Lopez2003]
e Commande du robot via le langage URBI

= Objectif : Saisie d'un objet par le robot Tribot!

dl € 1IgEgutu LU ST Lnn piviul .

