Writing a CSP Solver in
3 (or 4) Easy Lessons

Christopher Jefferson
University of Oxford

Why Should You Care!?

® Often have to go “under the hood” and add
new search methods and constraints.

® Don’t repeat old mistakes if you write your
own constraint solver!

Why Should You Care?

® Understanding how the solver works
makes better models.

® Minion already imposes this on you,
through its low-level input language.

® Sorry!

Talk Aims

® Will discuss GeCode on occasion, as they
have nice descriptions of their algorithms.

® Other solvers are interesting, but | don’t
know what they do.

® Of course mistakes are mine!

Talk Aims

® These talks will teach you about how
constraint solvers work.

® |n particular, how Minion works.

® There is not one true way, so my biases will
show through!

Not Talk Aims

® Starting at the Minion Input Language
® Not considering:

® Tailor

® ESSENCFE

® Flattening, Reformulating, ...

Not Talk Aims

® Not going to teach you how to add new:
® Variable /Value orders
e Constraints
® Variable Types

® But after this talk, its mostly C++

® Happy to talk about this in the lab!

2x2 Sudoku

4

An Aside

Everyone’s favourite CSP!

2x2 Sudoku

2x2 Sudoku

2x2 Sudoku

What Now!

Branching

4

Branching

Branching

4

31411])2
413

Branching

Branching

4

31411]2
413

That’s It!

® Reduce domains by reasoning with
constraints.

® Branch when stuck.

Stupid Solving

Variables Domain ‘ Time ‘
6 6 ~0.5 sec
12 6 ~4 hours
12 12 ~1,000 years

Assume 100,000 nodes per second

Why is this hard?

® Represent domains.

® Reduce domains with constraints.

® Systematically get all possible reasoning
® Branch and backtrack

® Do it fast!

What is a CSP?

<V,D, C>

What is a CSP Really?

® Whatis a
® Domain?

® Constraint?

The ‘Good Old Days’

® Men were men. X ‘ 35 ‘

® Women were women. ' '

® Constraints were a list of tuples. 2 |3

3 4

Tuples are Well Studied!

AC 12345673.120013233

GAC 4 Schema 2001

Forward Checking Path Consistency

Directed Arc Consistency

K-consistenc .
4 Strong K-consistency

Tuples are Well Studied!

673.12001 3233

GAC

Forward Checki Consistency

cted Arc Consistency

Strong K-consiste

Propagators

® How constraints are represented inside a
constraint solver.

® A black box.
® Offers one operation:

® Take list of domains, reduce them.

X
N
w
A
19,
o

Variable Store

Given a CSP with variables <Vj,...,Vy),
a search state is a list of sub-domains:

S =<Dy,...,Dn>

Where Di; is a sub-domain of V;

Variable Store

® Store a sub-domain for every variable.
e Constraints query and reduce.

® The standard way most CP (and SAT)
solvers store state during search.

Variable Store

® Define a partial order on search states:

S =«D,,...Dn), § =LD/’,...Dn>

S=<¥¢

0

DicD/,..,Dyc Dy

Example Variable Stores

Variable Store

® Set of states form a lattice.
® |ots of nice mathematical results.

® Propagators are a function from states to
states.

® S, S - some states.

® P - a propagator as a function.

Sensible Requirements

® Do not remove solutions:
assignment € S = assignment € P(S)

® Hardest part to get right!

Sensible Requirements

® Monotonic (does not add back domain

values):
S < P(S)

® This is usually maintained by the solver!

Optional Requirements

o GAC

® Every domain value left is part of a
solution.

® Or: Strongest valid propagator.

® Easy to show this is well-defined!

Bounds Consistency

® BC (Bounds Consistency)
® Only check bounds
® Sortof...

® Every constraint seems to have a
different definition!

Simplest Algorithm

Apply all Propagators

If Any Domain was reduced,
repeat

Algorithm Properties

® Fixed point will be reached in a finite
amount of time.

® Assuming finite domains!
® |nfinite domains are scary.

® Fixed point may vary depending on order
constraints are executed in.

Standard Requirements

e Confluent: S <S' = P(S) < P(S)

® |attice Theorem: Whatever order
confluent propagators are applied in,
same fixed point is reached.

Propagators in Practice

® lack of confluence is a pain.

® Reordering propagators can lead to
different sized searches.

® But it still gets the right solutions!

The ‘Missing Requirement’

® |dentifies Solutions:
If only one value is left in the sub-domain of

each variable, reject if not a solution.

® Without this:

® Need an extra pass at the end of search
to check every constraint.

® “Do Nothing” is a valid propagator.

Improving Propagation

® Two main areas:

® Reduce how often propagators are run.

® Speed up propagators.

Constraint Queue

A<B B<C Cc<D

A<C A<D C<E

Constraint Queue

@B :c co

(A<c) (A<D C<E

Propagate A < B

Constraint Queue

A<B B<C C<D

(A<c) (A<D C<E

Change A

Constraint Queue

A<B B<C C<D

(A<C) @B c-<:

Change A and D

Should we re-add A <D to the queue?!

Constraint Queue

A<B B<C C<D

(A<c) @D c-<t

Propagate A < D
Change A and D

Ordering the Queue

® What order should we do things in?
® In theory, it doesn’t matter.
® But in practice it does.

® There is not yet a ‘One True Way’.

FIFO vs LIFO

® ‘First In First Out’ faster than
‘Last In First Out’

® Can be faster by magnitudes!

® Further tuning offers much smaller gains.

Who Runs the
Queues? - GeCode

X X <Y | Aldiff
Fast Slow

Multiple Queues

® Run the faster things first!
® Gecode has 5 queues.

® Minion has 2 queues.

Fast Slow
Queue Queue

Who Runs the
Queues? - GeCode

X X <Y | Aldiff
Fast Slow

Who Runs the
Queues? - GeCode

X X <Y | Aldiff
Fast Slow

FHa X <Y S Alldiff
@I-I[=| Fast Queue N

Fast S Alldiff
Queue Queue IR

Who Runs the
Queues!? - Minion

X X <Y | Aldiff
Fast Slow

Fast Slow
Queue Queue

Minion Queues

® Avoids copying queues.

® Queues are precalculated, allocated and
compressed before search.

® Faster, but can’t be changed.

® Constraints can put themselves on the
‘slow queue’.

o AIIDiff, gcc, reification

Improving the Queue

® Sometimes we don’t care if a variable has
changed.

® Allow finer-grained events.

Don’t Care!

| |2 415
23 5|6

X<Y

Only Important Values

X<Y

Optimising Propagation

® |et constraints state they only want to
know about:

® Lower / Upper Bound.
® Assignment.
® Particular Domain Value.

® Any Change.

Queue Other Optimisations

® What exactly goes on the queue? ® Merge events.
® Changed Variables? ® Minion does not try.
® Changed Constraints? ® The ‘double call problem’.

® Variable / Constraint pairs?

‘Double Call Problem’

® When a variable changes, all the constraints

on that variable are added to the queue. Practical Constrai nts
® Including the constraint which just changed Minion’s Implementation of X <Y
the variable!

® |t is a pain to get rid of these extra events.

® Minion ignores, GeCode doesn’t.

Implementing x<y

LeqConstraint(Var x,Var y)

setupConstraint()

addTrigger(0, x, LowerBound)
addTrigger(l, y, UpperBound)
}

X<Y

Implementing x<y
LeqConstraint(Var x,Var y)

propagateConstraint(int trigger)

{
if(trigger == 0)
y.setMin(x.setMin() + |)
else

x.setMax(y.getMax() - I)

Sum Constraints

® Well researched area.
® We will consider a special case here.
® Only sum variables of domain {0,1}.

® Only sum to a constant.

Congratulations!

® Our solver now supports the optimal <
constraint!

® But, this is not the whole story...

Basic Propagator

® Split variables into 3 sets:
® So= {i| Domain(bi) = {0} }
® S, = {i| Domain(bi) ={I}}
® So; = {i | Domain(b) = {0,1} }

® Eventual sum is between |Si| and [Si| + |Soi]

0/l Sum

® b +bhy+...+b,=c
® b have domain {0,1}.
® cis constant.

® This contains most of the ideas of Minion’s
full sum.

Basic Propagator

® Split variables into 3 sets:
® So = {i| Domain(bi) = {0} }
® S; = {i| Domain(bi) ={1}}
® Soi = {i | Domain(b)) = {0,1} }

Basic Propagator Case Split:

® Split variables into 3 sets:
® So= {i| Domain(bi) = {0} }
e S, = {i| Domain(bj) = {I} }
® So; = {i | Domain(b) = {0,1} }

E hing in Soi is O! c=S; + So Everything in Soi is 1!
c=Si verything in So; is 0!

c>S; + Soi Fail

Fail

Everything in S is 0!

Case Split: Not Just Yet...

s SI Fai *

® Some things in Soi must be 1.

c=S Everything in S is 0!

® Some must be 0.

Si+So1>c>S$ m . ,
® We don’t know which, so we can’t

propagate.

c=S; + So Everything in Soj is I!

® We can’t just choose some “by symmetry’

c>S, + So Fail

Constraint State Constraint State

® Allow constraints to store extra state

® So far we would have to read the whole between executions.

array every time a variable changed. ® Ensure this is automatically stored on

® Can’t we just keep a running total which branching and revert on backtrack.

we update? ® Stored just like domains.

® Yes we can! e Constraints do not know that branching
and backtracking occurs!

Query and
Change Domains

Minion

Variables

Add
Constraints
® Reversible<int> to Queue AFtach
Triggers

® Acts just like an int in every way.

® Write constraints as if branching never

happens, everything “just works”.

=g Constraints
Trigger Constraints

Search Control

Start
Queue

Failure &
Heuristics VariableS

The unsung heroes of constraint solvers.

Branch

Backtrackable
Memory

Constraints

Requirements of :
: Requirements
Variables

® Good on small domains: ® Would like it to be fast to:

® Boolean ® Check and remove values

® |ess than ten. ® Check and remove ranges.
® Good on huge domains: ® Check and change bounds.

® Thousands or even millions. ® Fast both in ‘O()’ and real sense.

It Can’t Be Done!

® Minion takes a different route to previous
solvers.

® Provides different implementations of
variables, and lets users (or tools) make
the choice.

® Minion doesn’t provide the best variable
for every situation!

Boolean Variables

® The very simplest kind of variable.

® But problems instances can contain
hundreds of thousands.

® So a well-tuned version is worth putting
some work into.

Clever Booleans

® Three sub-domains:

e {0,1},{1},{0}
® Can be done easily with 2 bits.
® Can we do it with ‘|.5’ bits?

® Yes, but it’s a real pain!

Boolean Variables

® We can do even better than this!

Represent with two bits:

Is Assigned Value Assigned

9%

Boolean Variables
Assigned True Assigned False

o/ 10|0

Boolean Unassigned
95

Boolean Variables

® The “assignment” bit is not

backtracked! Is Assigned Value Assigned

® |f variable still assigned, has
same value.

® |f unassigned, value unused.

96

Booleans in Search

@ m e Start of search.

Value ® “Value” is set to a

Assigned random value.

® “Assigned” =0

Booleans in Search

m ® Search branches.

The variable is

Value
/ assigned ‘I’

Value and Assigned
m bits both set.

Booleans in Search

m ® Search branches.
Value @ ® The variable is
/ assigned ‘I’.
® Value and Assigned
m bits both set.
o Under this node,

search leaves variable
the same.

Booleans in Search

|I| ® Search branches.

® The variable is

Value
/ assigned ‘I’

® Value and Assigned
bits both set.

o Under this node,
search leaves variable

the same.

Booleans in Search

m ® Search branches.
Value @ ® The variable is
/ assigned ‘I’.
® Value and Assigned
m bits both set.

o Under this node,
search leaves variable

m the same.

Booleans in Search

m ® Search branches.

Value ® The variable is
/ assigned ‘I’
® Value and Assigned
bits both set.

o Under this node,
search leaves variable

m lI| the same.

Booleans in Search
m ® On backtrack

here,““Assigned”
Value set to 0.

® “Value” will be
ignored until
m Boolean is next

assigned.

o [

Booleans in Search

@ ® Variable assigned 0.

Value ® “Assigned” set to I.
/ \ ® “Value” set to 0.

/

0] e

Booleans in Search

(1]

Value @
/N
RN)

] [

Non-Backtracked
Data Structures

® The ‘assigned’ value can change on
backtrack, but the value is still correct.

® Many such data structures in SAT.

® Becoming increasingly popular in CP (or at
least in Minion!)

® Proofs of correctness (and bugs in them)
can be very subtle.

Booleans in Search

@ @ ® “Assigned” reset

on backtrack

Value
/ \ ® “Value” left alone.

® Search
m continues...

Inside a Boolean

Variable
e A Boolean Variable is: Int" assignPtr
int* valPtr
int mask

® Makes checking / assigning very quick

® checkAssigned:
return *assignPtr & mask

® assignTrue:
*assignPtr |= mask; *valPtr |= mask

Discrete Variables

® Use a Boolean array for domain values.

® Store upper and lower bounds for
optimisation reasons.

Discrete Variables

e Domain {1,2,3,45,6} D[]

| I

Lower Upper
Discrete Variables
® Remove 3 from Domain. ’ | ‘ | m | ‘ | ‘ | ‘
Lower Upper
Discrete Variables
® Update Lower to 3 ’I ‘IMI ‘I‘I‘
e Optimisation:
Boolean array only valid ‘ I

between Lower and
Upper. Lower Upper

® Gives fast bounds
update.

Lower Upper
Discrete Variables
® Update Lower to 3 ’I‘Im I‘I‘I‘
Lower Upper
Discrete Variables
i che e e L[fef []r]
Domain is found. [‘

Lower Upper

Discrete Variables

® Tweaks can make big differences.

® Add ‘cache bounds’ to Choco provided a 4
times speed-up on n-queens.

List of Ranges

Heavy Duty Variables

® The one model Minion doesn’t have is the
model most other solvers use!

Constants Matter!

® Don’t use bit arrays for huge domains.

® Minion does not handle backtrackable
variable-sized allocations. ®

Comparison

® For variables of domain < 256
® Bit array:

® (2 + length/8) bytes - 34 bytes for biggest
® |ist of ranges

® Starts with 12 bytes (4 * 4 pointers)

® Worst case ~ 170 bytes

Large Variables

® Variable of domain {/..n}.
® There are 2" subsets of domain.

® Need n bits to represent in the worst case.

Bound Variables

® Store only the upper and lower bounds.
® |oss of information
e {135} — [I.5] — {1,234,5}

® |n Minion, we simply forbid constraints from
“poking holes” in the domain.

Bound Variables

Very small memory usage!

All operations are very quick!
® Bigger searches.
® Some constraints need special propagators.

® But not all.

Binary Representation

® We could turn an integer into an array of
booleans, under binary representation.

e 7=10I
® Takes O(log n) space!

® |s incredibly terrible in almost every case!

Set Variables

® |'m not going to discuss this here.
® Similar basic ideas.
® Can break down into integer variables.

® |an Miguel’s talk.

Variable Mappers

The Implementer's Secret Code Reduction Trick.

Variable Mappers

X=-Y

Domain of X:
{-3,-1,1,2,10}

Domain of Y:
{3,1,-1,-2,-10}

Variable Mappers Variable Mappers

® Consider you want X = -Y. ® Only store domain once, have other

® Given X’s internal state,Y’s is redundant. viewpoints to it.
® Provide “Variable Mappers” ® Also need a way of mapping triggers.
® Don't storeY’s state, just refer to X’s ® UpperBound = LowerBound

Mappers in Constraints Mapper Advantages

2X+3Y-7Z2=0 ® Can often remove many variables.
® Makes constraints easier to implement.
X’=2X, Y’=3Y, Z’=7Z, ® Weighted sum = normal sum + mappers.
X+Y’'+Z7’=0 ® Imperially as fast as special

implementation.

® But mappers are not completely free

(division).
Minion Future Implementation
® Implementing multiple)
variable types for one Constraint
® At the moment, mappers are not user- constraint:
visible. ® Abstract interface with
variables chosen at run- Interface
® Except Booleans: X

time.

“Ib” means “not b”.
® Slow. o o :
® Problems with compile time (more later). Variable | | Variable 2 | Variable 3

e No inlining.

Inside a Boolean
Variable

int* assignPtr
int* valPtr
int mask

® A Boolean Variable is:

® Makes checking / assigning very quick

® checkAssigned:
return *assignPtr & mask

® assignTrue:
*assignPtr |= mask; *valPtr |= mask

Implementation

® Implementing multiple i
variable types for one Constraint
constraint:

® Abstract interface with [f

variables chosen at run-

x

time.
® Slow. Variable | |l Variable 2 | Variable 3

® No inlining.

Different Variable Types

® |mplementing multiple
variable types for one

constraint:

. Imol h | Constraint | | Constraint
mplement each constraint for fOl'

for each type of variable.
P Variablel | | Variable2

® Fast.

® Have to write too much.

Compile-time
Interfaces

® Define a minimal interface and compile
each constraint with each variable type.

® Compiler optimisation removes the
interface.

® Allows most constraints to have a single
implementation.

® |ooking at assembler, often identical to
specialised implementations.

Memory Management

Backtracking

® Need to:

® Store state

® Revert to an old state when backtracking.
® Encapsulate as much as possible.

® Constraints should not know about
backtracking.

Backtracking

® Trailing
® Copying

® Recomputation

Boolean Variables

Trailing

® Keep a log of changes made.

® On backtrack, use log to put things back
how they were.

||| | 1 0

Assigned True Assigned False

o/ 10]0

Boolean Unassigned

141

Monotonic Booleans

® Values which only change once during
search.

® |n this case, only need to know the object
changed, we know what it changed to!

® Everything can only change once.

Trailing Domains

® |n Booleans, only ever go from 0 to |.
® For domain values, only ever remove.

® So only ever go from | to 0.

Copying

® Just copy the entire state and restore on
backtrack.

® Good for problems with a small state.

® Many problems do!

Memory Allocation

Constraint Constraint

Variable Variable Variable

Memory Allocation

Constraint Constraint

Variable Variable Variable

Memory Allocation

Constraint Constraint

Variable Variable

Memory Management

® Choco / GeCode

® Store a CSP as a tree of objects, explore
it to copy.
® Minion

® Stick everything in fixed memory block at
the start, do a “stupid” copy of the
memory.

Static vs Dynamic

® Static memory allocation:
® Does not allow objects to change size.
® |s much faster to copy at each node.

® Computers are VERY fast at coping blocks
of memory.

Memory Copying

Memory Copying

Memory Copying

Two Choices

® Have a “Master Place” for state to live, and
“saved” copies.

® Requires more copies.
® Allow “active state” to move around.
® Extra redirection is expensive.

® Depends on the problem.

Recomputation

® Regardless of your method, for large
problems memory problems get painful.

® Only store state occasionally, and
recompute to get back to where you want
to be.

Recomputation
Example
Search State Saved States

@

Recomputation
Example
Search State Saved States

Recomputation
Example

Search State Saved States

@

Recomputation
Example
Search State Saved States

Recomputation
Example
Search State Saved States

@

Recomputation

® Need to do extra work when recomputing.
® But save memory!

® Trade-off is not too hard to measure on
the fly.

® You can do some other clever things in a
recomputation framework - see GeCode

Recomputation
Example
Search State Saved States

@

THE END

