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Why Should You Care?

• Understanding how the solver works 
makes better models.

• Minion already imposes this on you, 
through its low-level input language.

• Sorry!

Why Should You Care?

• Often have to go “under the hood” and add 
new search methods and constraints.

• Don’t repeat old mistakes if you write your 
own constraint solver!

Talk Aims

• These talks will teach you about how 
constraint solvers work.

• In particular, how Minion works.

• There is not one true way, so my biases will 
show through!

Talk Aims

• Will discuss GeCode on occasion, as they 
have nice descriptions of their algorithms.

• Other solvers are interesting, but I don’t 
know what they do.

• Of course mistakes are mine!

Not Talk Aims

• Starting at the Minion Input Language

• Not considering:

• Tailor

• ESSENCE’

• Flattening, Reformulating, ...



Not Talk Aims

• Not going to teach you how to add new:

• Variable / Value orders

• Constraints

• Variable Types

• But after this talk, its mostly C++

• Happy to talk about this in the lab!

An Aside
Everyone’s favourite CSP!
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What Now?
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That’s It!

• Reduce domains by reasoning with 
constraints.

• Branch when stuck.

Stupid Solving

Assume 100,000 nodes per second

Time

~0.5 sec

~4 hours

~1,000 years

Variables Domain

6 6

12 6

12 12

Why is this hard?

• Represent domains.

• Reduce domains with constraints.

• Systematically get all possible reasoning

• Branch and backtrack

• Do it fast!

What is a CSP?

<V, D, C>

What is a CSP Really?

• What is a

• Domain?

• Constraint?

The ‘Good Old Days’

• Men were men.

• Women were women.

• Constraints were a list of tuples.

X Y

1 1

2 3

3 4

3 6



Tuples are Well Studied!

AC 1 2 3 4 5 6 7 3.1 2001 3.2 3.3 

GAC 4 Schema 2001

K-consistency
Strong K-consistency

Path Consistency

Directed Arc Consistency

Forward Checking

Tuples are Well Studied!

AC 1 2 3 4 5 6 7 3.1 2001 3.2 3.3 

GAC 4 Schema 2001

K-consistency
Strong K-consistency

Path Consistency

Directed Arc Consistency

Forward Checking

Propagators

• How constraints are represented inside a 
constraint solver.

• A black box.

• Offers one operation:

• Take list of domains, reduce them.
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Variable Store

• Store a sub-domain for every variable.

• Constraints query and reduce.

• The standard way most CP (and SAT) 
solvers store state during search.

Variable Store

Given a CSP with variables "V1,...,Vn#, 
a search state is a list of sub-domains:

S = "D1,...,Dn#

Where Di is a sub-domain of  Vi

Variable Store

• Define a partial order on search states:

S = "D1,...,Dn#,  S’ = "D1’,...,Dn’#

S ! S’

!
D1 ! D1’ , ... , Dn ! Dn’



Example Variable Stores
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Variable Store

• Set of states form a lattice.

• Lots of nice mathematical results.

• Propagators are a function from states to 
states.

• S, S’ - some states.

• P    - a propagator as a function.

Sensible Requirements

• Do not remove solutions:
    assignment " S " assignment " P(S)

• Hardest part to get right!

Sensible Requirements

• Monotonic (does not add back domain 
values): 
    S ! P(S)

• This is usually maintained by the solver!

Optional Requirements

• GAC

• Every domain value left is part of a 
solution.

• Or: Strongest valid propagator.

• Easy to show this is well-defined!

Bounds Consistency

• BC (Bounds Consistency)

• Only check bounds

• Sortof…

• Every constraint seems to have a 
different definition!



Simplest Algorithm

Apply all Propagators

If Any Domain was reduced,
repeat

Algorithm Properties

• Fixed point will be reached in a finite 
amount of time.

• Assuming finite domains!

• Infinite domains are scary.

• Fixed point may vary depending on order 
constraints are executed in.

Standard Requirements

• Confluent:  S ! S’  "  P(S) ! P(S’)

• Lattice Theorem:  Whatever order 
confluent propagators are applied in, 
same fixed point is reached.

Propagators in Practice

• Lack of confluence is a pain.

• Reordering propagators can lead to 
different sized searches.

• But it still gets the right solutions!

The ‘Missing Requirement’

• Identifies Solutions:
If only one value is left in the sub-domain of 
each variable, reject if not a solution.

• Without this:

• Need an extra pass at the end of search 
to check every constraint.

• “Do Nothing” is a valid propagator.

Improving Propagation

• Two main areas:

• Reduce how often propagators are run.

• Speed up propagators.



Constraint Queue

A < B B < C C < D

A < C A < D C < E

Constraint Queue

A < B B < C C < D

A < C A < D C < E

Change A

Constraint Queue

A < B B < C C < D

A < C A < D C < E

Propagate A < B

Constraint Queue

A < B B < C C < D

A < C A < D C < E

Change A and D

Propagate A < D

Constraint Queue

A < B B < C C < D

A < C A < D C < E

Change A and D

Should we re-add  A < D to the queue?

Ordering the Queue

• What order should we do things in?

• In theory, it doesn’t matter.

• But in practice it does.

• There is not yet a ‘One True Way’.



FIFO vs LIFO

• ‘First In First Out’ faster than 
‘Last In First Out’

• Can be faster by magnitudes!

• Further tuning offers much smaller gains.

Multiple Queues

• Run the faster things first!

• Gecode has 5 queues.

• Minion has 2 queues.

Who Runs the 
Queues? - GeCode

Fast 
Queue

Slow 
Queue

X
X <  Y
Fast

Alldiff
Slow

X <  Y
Fast

Alldiff
Slow

Who Runs the 
Queues? - GeCode

Fast 
Queue

X <  Y
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Slow 
Queue

Alldiff
Slow

X
Lower 
Bound

X
X <  Y
Fast

Alldiff
Slow

Who Runs the 
Queues? - GeCode

Fast 
Queue

Slow 
Queue

Alldiff
Slow

X
Lower 
Bound

X
X <  Y
Fast

Alldiff
Slow

Who Runs the 
Queues? - Minion

Fast 
Queue

Slow 
Queue

X
Lower 
Bound

X
X <  Y
Fast

Alldiff
SlowX



Minion Queues

• Avoids copying queues.

• Queues are precalculated, allocated and 
compressed before search.

• Faster, but can’t be changed.

• Constraints can put themselves on the 
‘slow queue’.

• AllDiff, gcc, reification

Improving the Queue

• Sometimes we don’t care if a variable has 
changed.

• Allow finer-grained events.
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Don’t Care!
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Only Important Values Optimising Propagation

• Let constraints state they only want to 
know about:

• Lower / Upper Bound.

• Assignment.

• Particular Domain Value.

• Any Change.



Queue

• What exactly goes on the queue?

• Changed Variables?

• Changed Constraints?

• Variable / Constraint pairs?

Other Optimisations

• Merge events.

• Minion does not try.

• The ‘double call problem’.

‘Double Call Problem’

• When a variable changes, all the constraints 
on that variable are added to the queue.

• Including the constraint which just changed 
the variable!

• It is a pain to get rid of these extra events.

• Minion ignores, GeCode doesn’t.

Practical Constraints
Minion’s Implementation of X < Y

X

Y

1 2 3 4 5 6

1 2 3 4 5 6

X < Y

LeqConstraint(Var x, Var y)

setupConstraint()
{

addTrigger(0, x, LowerBound)
addTrigger(1, y, UpperBound)

}

Implementing x!y



LeqConstraint(Var x, Var y)

propagateConstraint(int trigger)
{

if(trigger == 0)
y.setMin(x.setMin() + 1)

else
x.setMax(y.getMax() - 1)

}

Implementing x!y Congratulations!

• Our solver now supports the optimal < 
constraint!

• But, this is not the whole story...

Sum Constraints

• Well researched area.

• We will consider a special case here.

• Only sum variables of domain {0,1}.

• Only sum to a constant.

0/1 Sum

• b1 + b2 + … + bn = c

• bi have domain {0,1}.

• c is constant.

• This contains most of the ideas of Minion’s 
full sum.

Basic Propagator

• Split variables into 3 sets:

• S0 =   {i | Domain(bi) = {0} }

• S1 =   {i | Domain(bi) = {1} }

• S01 =  {i | Domain(bi) = {0,1} }

• Eventual sum is between |S1| and |S1| + |S01|

Basic Propagator

• Split variables into 3 sets:

• S0 =   {i | Domain(bi) = {0} }

• S1 =   {i | Domain(bi) = {1} }

• S01 =  {i | Domain(bi) = {0,1} }

• c < S1 Fail



Basic Propagator

• Split variables into 3 sets:

• S0 =   {i | Domain(bi) = {0} }

• S1 =   {i | Domain(bi) = {1} }

• S01 =  {i | Domain(bi) = {0,1} }

• c = S1 Everything in S01 is 0!

Case Split:

c < S1

c = S1

c = S1 + S01

 c > S1 + S01

Fail

Everything in S01 is 0!

Everything in S01 is 1!

Fail

Case Split:

c < S1

c = S1

S1 + S01 > c > S1

c = S1 + S01

 c > S1 + S01

Fail

Everything in S01 is 0!

???

Everything in S01 is 1!

Fail

Not Just Yet...

• Some things in S01 must be 1.

• Some must be 0.

• We don’t know which, so we can’t 
propagate.

• We can’t just choose some “by symmetry”

S1 + S01 < c < S1 ???

Constraint State

• So far we would have to read the whole 
array every time a variable changed.

• Can’t we just keep a running total which 
we update?

• Yes we can!

Constraint State

• Allow constraints to store extra state 
between executions.

• Ensure this is automatically stored on 
branching and revert on backtrack.

• Stored just like domains.

• Constraints do not know that branching 
and backtracking occurs!



Minion

• Reversible<int>

• Acts just like an int in every way.

• Write constraints as if branching never 
happens, everything “just works”.

Variables

Queue

Attach
Triggers

Query and 
Change Domains

Constraints

Add 
Constraints
to Queue

Trigger Constraints

Variables

Queue Constraints

Backtrackable
Memory

Search ControlStart
Queue

Failure &
Heuristics

Branch

Variables
The unsung heroes of constraint solvers.

Requirements of 
Variables

• Good on small domains:

• Boolean

• Less than ten.

• Good on huge domains:

• Thousands or even millions.

Requirements

• Would like it to be fast to:

• Check and remove values

• Check and remove ranges.

• Check and change bounds.

• Fast both in ‘O()’ and real sense.



It Can’t Be Done!

• Minion takes a different route to previous 
solvers.

• Provides different implementations of 
variables, and lets users (or tools) make 
the choice.

• Minion doesn’t provide the best variable 
for every situation!

Boolean Variables

• The very simplest kind of variable.

• But problems instances can contain 
hundreds of thousands.

• So a well-tuned version is worth putting 
some work into.

Clever Booleans

• Three sub-domains:

• {0,1}, {1}, {0}

• Can be done easily with 2 bits.

• Can we do it with ‘1.5’ bits?

• Yes, but it’s a real pain!

Boolean Variables

• We can do even better than this!

94

Represent with two bits:

Is Assigned Value Assigned

Boolean Variables

Assigned True

1 1 1 0
Assigned False

0 00 1
Boolean Unassigned

95

Boolean Variables

• The “assignment” bit is not 
backtracked!

• If variable still assigned, has 
same value.

• If unassigned, value unused.

96

Is Assigned Value Assigned



Booleans in Search

0

Value
0

• Start of search.

• “Value” is set to a 
random value.

• “Assigned” = 0

Assigned

Booleans in Search

1

Value
0

• Search branches.

• The variable is 
assigned ‘1’.

• Value and Assigned 
bits both set.1

Booleans in Search

1

Value
0

• Search branches.

• The variable is 
assigned ‘1’.

• Value and Assigned 
bits both set.

• Under this node, 
search leaves variable 
the same.

1

1

Booleans in Search

1

Value
0

• Search branches.

• The variable is 
assigned ‘1’.

• Value and Assigned 
bits both set.

• Under this node, 
search leaves variable 
the same.

1

1

1

Booleans in Search

1

Value
0

• Search branches.

• The variable is 
assigned ‘1’.

• Value and Assigned 
bits both set.

• Under this node, 
search leaves variable 
the same.

1

1 11

Booleans in Search

1

Value
0

• Search branches.

• The variable is 
assigned ‘1’.

• Value and Assigned 
bits both set.

• Under this node, 
search leaves variable 
the same.

1

1 1

1



Booleans in Search

1

Value
0

• On backtrack 
here, “Assigned” 
set to 0.

• “Value” will be 
ignored until 
Boolean is next 
assigned.

1

1 1

Booleans in Search

1

Value
0

1

1 1

0

Booleans in Search

0

Value
0

• Variable assigned 0.

• “Assigned” set to 1.

• “Value” set to 0.

1

1 1

0

1

Booleans in Search

0

Value
0

• “Assigned” reset 
on backtrack

• “Value” left alone.

• Search 
continues...1

1 1

0

1

Non-Backtracked 
Data Structures

• The ‘assigned’ value can change on 
backtrack, but the value is still correct.

• Many such data structures in SAT.

• Becoming increasingly popular in CP (or at 
least in Minion!)

• Proofs of correctness (and bugs in them) 
can be very subtle.

Inside a Boolean 
Variable

• A Boolean Variable is:

• Makes checking / assigning very quick

• checkAssigned: 
     return *assignPtr & mask

• assignTrue: 
    *assignPtr |= mask; *valPtr |= mask

 int* assignPtr
 int* valPtr
 int mask



• Use a Boolean array for domain values.

• Store upper and lower bounds for 
optimisation reasons.

1 1 1 1 1 1

Lower Upper

109

Discrete Variables Discrete Variables

• Domain {1,2,3,4,5,6}
1 1 1 1 1 1

Lower Upper

110

Discrete Variables

• Remove 3 from Domain.
1 1 0 1 1 1

Lower Upper

111

Discrete Variables

• Update Lower to 3
1 1 0 1 1 1

Lower Upper

112

Discrete Variables

• Update Lower to 3

• Optimisation:

Boolean array only valid 
between Lower and 
Upper.

• Gives fast bounds 
update.

1 1 0 1 1 1

Lower Upper

113

Discrete Variables

• Have to move Lower 
until the first value in 
Domain is found.

1 1 0 1 1 1

Lower Upper

114



Discrete Variables

• Tweaks can make big differences.

• Add ‘cache bounds’ to Choco provided a 4 
times speed-up on n-queens.

Heavy Duty Variables

• The one model Minion doesn’t have is the 
model most other solvers use!

List of Ranges

7 22 24 49* 3 60 *

Comparison

• For variables of domain < 256

• Bit array:

• (2 + length/8) bytes - 34 bytes for biggest

• List of ranges

• Starts with 12 bytes (4 * 4 pointers)

• Worst case ~ 170 bytes

Constants Matter!

• Don’t use bit arrays for huge domains.

• Minion does not handle backtrackable 

variable-sized allocations. !

Large Variables

• Variable of domain {1..n}.

• There are 2n subsets of domain.

• Need n bits to represent in the worst case.



Bound Variables

• Store only the upper and lower bounds.

• Loss of information

• {1,3,5}  "  [1 .. 5]  "  {1,2,3,4,5}

• In Minion, we simply forbid constraints from 
“poking holes” in the domain.

121

Bound Variables

• Very small memory usage!

• All operations are very quick!

• Bigger searches.

• Some constraints need special propagators.

• But not all.

Binary Representation

• We could turn an integer into an array of 
booleans, under binary representation.

• 7 = 101

• Takes O(log n) space!

• Is incredibly terrible in almost every case!

Set Variables

• I’m not going to discuss this here.

• Similar basic ideas.

• Can break down into integer variables.

• Ian Miguel’s talk.

Variable Mappers
The Implementer's Secret Code Reduction Trick.

Variable Mappers

X = -Y

Domain of X:
{-3,-1,1,2,10}

Domain of Y:
{3,1,-1,-2,-10}



Variable Mappers

• Consider you want X = -Y.

• Given X’s internal state, Y’s is redundant.

• Provide “Variable Mappers”

• Don’t store Y’s state, just refer to X’s

Variable Mappers

• Only store domain once, have other 
viewpoints to it.

• Also need a way of mapping triggers.

• UpperBound " LowerBound

Mappers in Constraints

2X + 3Y - 7Z = 0

X’=2X,  Y’=3Y,  Z’=7Z,  
X’+Y’+Z’=0

Mapper Advantages

• Can often remove many variables.

• Makes constraints easier to implement.

• Weighted sum = normal sum + mappers.

• Imperially as fast as special 
implementation.

• But mappers are not completely free 
(division).

Minion Future

• At the moment, mappers are not user-
visible.

• Except Booleans:  
“!b” means “not b”.

• Problems with compile time (more later).

Implementation

• Implementing multiple 
variable types for one 
constraint:

• Abstract interface with 
variables chosen at run-
time.

• Slow.

• No inlining.

Constraint

Interface

Variable 1 Variable 2 Variable 3



Inside a Boolean 
Variable

• A Boolean Variable is:

• Makes checking / assigning very quick

• checkAssigned: 
     return *assignPtr & mask

• assignTrue: 
    *assignPtr |= mask; *valPtr |= mask

 int* assignPtr
 int* valPtr
 int mask

Implementation

• Implementing multiple 
variable types for one 
constraint:

• Abstract interface with 
variables chosen at run-
time.

• Slow.

• No inlining.

Constraint

Interface

Variable 1 Variable 2 Variable 3

Different Variable Types

• Implementing multiple 
variable types for one 
constraint:

• Implement each constraint 
for each type of variable.

• Fast.

• Have to write too much.

Constraint
for

Variable1

Constraint
for

Variable2

Compile-time 
Interfaces

• Define a minimal interface and compile 
each constraint with each variable type.

• Compiler optimisation removes the 
interface.

• Allows most constraints to have a single 
implementation.

• Looking at assembler, often identical to 
specialised implementations.

Memory Management

Backtracking

• Need to:

• Store state

• Revert to an old state when backtracking.

• Encapsulate as much as possible.

• Constraints should not know about 
backtracking.



Backtracking

• Trailing

• Copying

• Recomputation

Trailing

• Keep a log of changes made.

• On backtrack, use log to put things back 
how they were.

Boolean Variables

Assigned True

1 1 1 0
Assigned False

0 00 1
Boolean Unassigned
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Trailing Domains

• In Booleans, only ever go from 0 to 1.

• For domain values, only ever remove.

• So only ever go from 1 to 0.

Monotonic Booleans

• Values which only change once during 
search.

• In this case, only need to know the object 
changed, we know what it changed to!

• Everything can only change once.

Copying

• Just copy the entire state and restore on 
backtrack.

• Good for problems with a small state.

• Many problems do!



Memory Allocation

Constraint Constraint

Variable Variable Variable

Memory Allocation

Constraint Constraint

Variable Variable Variable

Memory Allocation

Constraint Constraint

Variable Variable Variable

Memory Management

• Choco / GeCode

• Store a CSP as a tree of objects, explore 
it to copy.

• Minion

• Stick everything in fixed memory block at 
the start, do a “stupid” copy of the 
memory.

Static vs Dynamic

• Static memory allocation:

• Does not allow objects to change size.

• Is much faster to copy at each node.

• Computers are VERY fast at coping blocks 
of memory.

Memory Copying

Copy



Memory Copying

Copy

FA
IL

Memory Copying

Copy

FA
IL ?

Two Choices

• Have a “Master Place” for state to live, and 
“saved” copies.

• Requires more copies.

• Allow “active state” to move around.

• Extra redirection is expensive.

• Depends on the problem.

Recomputation

• Regardless of your method, for large 
problems memory problems get painful.

• Only store state occasionally, and 
recompute to get back to where you want 
to be.

Recomputation 
Example

Start

Search Saved StatesState

Recomputation 
Example

X = 1

Search Saved StatesState

X = 1



Recomputation 
Example

X = 1
Y = 2

Search Saved StatesState

X = 1

Y = 2

Recomputation 
Example

X = 1
Y = 2

Search Saved StatesState

X = 1

Y = 2 Y # 2

Recomputation 
Example

Search Saved StatesState

X = 1

Y = 2 Y # 2

Recomputation 
Example

X = 1
Y # 2

Search Saved StatesState

X = 1

Y = 2 Y # 2

Recomputation

• Need to do extra work when recomputing.

• But save memory!

• Trade-off is not too hard to measure on 
the fly.

• You can do some other clever things in a 
recomputation framework - see GeCode

THE END


