

Modelling for Constraint Programming Barbara Smith

3. Symmetry, Viewpoints

Symmetry in CSPs

- A symmetry transforms any solution into another
 - Sometimes symmetry is inherent in the problem (e.g. chessboard symmetry in *n*-queens)
 - Sometimes it's introduced in modelling
- Symmetry causes wasted search effort: after exploring choices that don't lead to a solution, symmetrically equivalent choices may be explored

Example: SONET Rings

- Split the demand graph into subgraphs (SONET rings):
 - every edge is in at least one subgraph
 - > a subgraph has at most 5 nodes
 - minimize total number of nodes in the subgraphs
- Modelled using Boolean variables, x_{ij} , such that $x_{ij} = 1$ if node *i* is on ring *j*
- > Introduces symmetry between the rings:
 - > in the problem, the rings are interchangeable
 - in the CSP, each ring has a distinct number

Symmetry between Values: Car sequencing

- A natural model has individual cars as the values
 - introduces symmetry between cars requiring the same option
- The model instead has classes of car
 - needs constraints to ensure the right number of cars in each class

cars	1	2	3	4	5	6	7	8	9	10
option 1	1	0	0	0	0	0	1	1	1	1
option 2	0	0	1	1	1	1	0	0	1	1
option 3	1	0	0	0	0	0	1	1	0	0
option 4	1	1	0	0	1	1	0	0	0	0
option 5	0	0	1	1	0	0	0	0	0	0

classes	1	2	3	4	5	6
option 1	1	0	0	0	1	1
option 2	0	0	1	1	0	1
option 3	1	0	0	0	1	0
option 4	1	1	0	1	0	0
option 5	0	0	1	0	0	0
no. of cars	1	1	2	2	2	2

Symmetry between Variables: Golfers Problem

- 32 golfers want to play in 8 groups of 4 each week, so that any two golfers play in the same group at most once. Find a schedule for n weeks
- > One viewpoint has 0/1 variables x_{ijkl} :
 - x_{ijkl} = 1 if player *i* is the *j* th player in the *k* th group in week *l*, and
 0 otherwise.
- The players within each group could be permuted in any solution to give an equivalent solution
 - also the groups within each week, the weeks within the schedule and the players themselves

Reformulating to avoid symmetry: Set Variables

- Eliminate the symmetry between players within a group by using set variables to represent the groups
 - \succ G_{kl} represents the k th group in week l
 - \succ the value of G_{kl} represents the set of players in the group.
- > The constraints on these variables are that:
 - the cardinality of each set is 4
 - ▶ the sets in any week do not overlap: for all *l*, the sets G_{kl} , k = 1,...,8 have an empty intersection
 - any two sets in different weeks have at most one member in common
- Constraint solvers that support set variables allow constraints of this kind

Symmetry Breaking

- Often, not all the symmetry can be eliminated by remodelling
- Remaining symmetry should be reduced or eliminated:
 - dynamic symmetry breaking methods (SBDS, SBDD, etc.)
 - symmetry-breaking constraints
 - unlike implied constraints, they change the set of solutions
 - > can lead to further implied constraints

Example: Template Design

- Plan layout of printing templates for catfood boxes
- Each template has 9 slots
 - 9 boxes from each sheet of card
- Choose best layout for 1, 2, 3,... templates to minimize waste in meeting order
 - > templates are expensive

Flavour	Order
	(1000s)
Liver	250
Rabbit	255
Tuna	260
Chicken Twin	500
Pilchard Twin	500
Chicken	800
Pilchard	1,100

One Template Solution

UNIVERSITY OF LEEDS

- Could meet the order using only one template
 - print it 550,000 times
 - but this wastes a lot of card

Flavour	Order
	(1000s)
Liver	250
Rabbit	255
Tuna	260
Chicken Twin	500
Pilchard Twin	500
Chicken	800
Pilchard	1,100

CP Model for Template Design

- > For a fixed number of templates:
- > x_{ij} = number of slots allocated to design *j* in template *i*
- r_i = run length for template i (number of sheets of card printed from this template)
- ► $\sum_{i} x_{ij} r_i \ge d_j$ j = 1, 2, ..., 7 where d_j is the order quantity for design j

> minimize $p = \sum_i r_i$ (p = total sheets printed)

Symmetry Breaking & Implied Constraints

- > The templates are indistinguishable
- \succ So add $r_1 \leq r_2 \leq \ldots \leq r_t$
- > If there are 2 templates:
 - at most half the sheets are printed from one template, at least half from the other
 - > so $r_1 ≤ p/2$; $r_2 ≥ p/2$
- For 3 templates:

► $r_1 \le p/3; r_2 \le p/2; r_3 \ge p/3$

- > These are *useful* implied constraints
 - they allow tighter constraints on the objective to propagate to the search variables

Changing Viewpoint

> We can *improve* a CSP model of a problem

- express the constraints better
- break the symmetry
- add implied constraints
- But sometimes it's better just to use a different model
 - i.e. a different viewpoint

 \geq Reformulate in a standard way, e.g. non-binary to binary translations Jual viewpoint for permutation problems Boolean to integer or set viewpoints Find a new viewpoint by viewing the problem from a different angle The constraints may express different insights into the problem

Permutation Problems

> A CSP is a permutation problem if:

- it has the same number of values as variables
- > all variables have the same domain
- each variable must be assigned a different value
- Any solution assigns a permutation of the values to the variables
- Other constraints determine which permutations are solutions
- There is a *dual* viewpoint in which the variables and values are swapped

Example: *n*-queens

Standard model

- > a variable for each row, $x_1, x_2, ..., x_n$
- > values represent the columns, 1 to n
- > $x_i = j$ means that the queen in row *i* is in column *j*
- > *n* variables, *n* values, allDifferent($x_1, x_2, ..., x_n$)
- Dual viewpoint
 - > a variable for each column, d_1 , d_2 , ..., d_n ; values represent the rows
- > In this problem, both viewpoints give the same CSP

Example: Magic Square

First viewpoint:

- \succ variables $x_1, x_2, ..., x_9$
- values represent the numbers 1 to 9
- The assignment (x_i,j) means that the number in square i is j
- Dual viewpoint
 - > a variable for each number, d_1 , d_2 , ..., d_9
 - values represent the squares
- Constraints are much easier to express in the first viewpoint
 - ➢ see earlier

Boolean Models

- Permutation problems: another viewpoint has a Boolean variable b_{ii} for every variable-value combination
 - ▶ e.g. in the *n*-queens problem, $b_{ij} = 1$ if there is a queen on the square in row *i* and column *j*, 0 otherwise
- A Boolean viewpoint can be derived from a CSP viewpoint with integer or set variables (or v.v.)

> in an integer viewpoint, $b_{ij} = 1$ is equivalent to $x_i = j$

- ▶ in a set-variable viewpoint, $j \in X_i$ is equivalent to $b_{ij} = 1$
- The Boolean viewpoint often gives a less efficient CSP than the integer or set model
 - the reverse translation can be useful

Different Perspectives: Example

- Constraint Modelling Challenge, IJCAI 05
- "Minimizing the maximum number of open stacks"
- A manufacturer has a number of orders from customers to satisfy
 - each order is for a number of different products, and only one product can be made at a time
 - once a customer's order is started (i.e. the first product in the order is made) a *stack* is created for that customer
 - when all the products that a customer requires have been made, the stack is closed
 - the number of stacks that are in use simultaneously i.e. the number of customer orders that are in simultaneous production, should be minimized

Minimizing Open Stacks – Example

- The product sequence shown needs 4 stacks
- But if all customer 3's products are made before (or after) customer 4's, only 3 are needed
- 3 is the minimum possible because products 2 and 6 are each for 3 customers

products	1	2	3	4	5	6
customer 1	0	1	0	0	0	1
customer 2	1	1	1	0	0	1
customer 3	1	0	0	1	0	1
customer 4	0	1	0	0	1	0

products	1	4	6	2	3	5
customer 1	0	0	1	1	0	0
customer 2	1	0	1	1	1	0
customer 3	1	1	1	0	0	0
customer 4	0	0	0	1	0	1

Open Stacks – Possible Viewpoints

- Variables are positions in production sequence, values are products
 - > a permutation problem
 - > so has a dual viewpoint

products	1	2	3	4	5	6
customer 1	0	1	0	0	0	1
customer 2	1	1	1	0	0	1
customer 3	1	0	0	1	0	1
customer 4	0	1	0	0	1	0

- In constructing the product sequence, at any point, products that are only for customers that already have open stacks can be inserted straightaway
 - e.g. if product 1 is first, products 3 & 4 can follow
 - the next real decision is whether to open a stack for customer 1 or 4 next (or both)
 - leads to a viewpoint based on customers

Open Stacks – Customer Viewpoints

- Variables are positions in *customer* sequence, values are customers
 - > $r_i = j$ if the *i* th customer to have their order completed is *j*
- > A variable for each customer, values are stack locations
 - customers ordering the same product cannot share a stack location
 - > a graph colouring problem with additional constraints
- > A Boolean variable for each *pair* of customers
 - > 0 means they share a stack location, 1 means that they don't
 - NB we want to maximize the number of customers that can share a stack location

Summary

Symmetry

Look out for symmetry in the CSP

- > avoid it if possible by changing the model
- eliminate it e.g. by adding constraints
- > does this allow more implied constraints?

> Viewpoints

- don't stick to the first viewpoint you thought of, without considering others
 - think of standard reformulations
 - think about the problem in different ways