
Global Constraints

Toby Walsh
NICTA and University of New South Wales

www.cse.unsw.edu.au/~tw

Quick advert

 UNSW is in Sydney
 Regularly voted in top 10

cities in World

 UNSW is one of top
universities in Australia
 In top 100 universities in

world

 Talk to me about our PhD
programme!
 Also happy to have

PhDs/PostDocs visit for
weeks/months/years …

 Attend CP/KR/ICAPS in
Sept

Value precedence

Global constraint used to deal with
value symmetry

Good example of “global”
constraint where we can use an
efficient encoding
 Encoding gives us GAC
Asymptotically optimal, achieve GAC

in O(nd) time
Good incremental/decremental

complexity

Value symmetry

Decision variables:
Col[Italy], Col[France],

Col[Austria] ...

Domain of values:
 red, yellow, green, ...

Constraints
Col[Italy]=/=Col[France]
Col[Italy]=/=Col[Austria]
 …

Value symmetry

 Solution:
Col[Italy]=green

Col[France]=red
 Col[Spain]=green
 …

Values (colours) are
interchangeable:
 Swap red with green

everywhere will still
give us a solution

Value precedence

Old idea
Used in bin-packing and graph

colouring algorithms
Only open the next new bin
Only use one new colour

Applied now to constraint
satisfaction

Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1

Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1
For X2, we need only consider

two choices
X2=1 or X2=2

Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1
For X2, we need only consider

two choices
Suppose we try X2=2

Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1
For X2, we need only consider

two choices
Suppose we try X2=2
For X3, we need only consider

three choices
X3=1, X3=2, X3=3

Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1
For X2, we need only consider

two choices
Suppose we try X2=2
For X3, we need only consider

three choices
Suppose we try X3=2

Value precedence

 Suppose all values from 1 to m are
interchangeable
Might as well let X1=1
 For X2, we need only consider two

choices
 Suppose we try X2=2
 For X3, we need only consider three

choices
 Suppose we try X3=2
 For X4, we need only consider three

choices
X4=1, X4=2, X4=3

Value precedence

Global constraint
Precedence([X1,..Xn]) iff

 min({i | Xi=j or i=n+1}) <
 min({i | Xi=k or i=n+2})

 for all j<k
In other words

The first time we use j is before the
first time we use k

Value precedence

Global constraint
Precedence([X1,..Xn]) iff

 min({i | Xi=j or i=n+1}) <
 min({i | Xi=k or i=n+2})

E.g
Precedence([1,1,2,1,3,2,4,2,3])
But not Precedence([1,1,2,1,4])

Value precedence

Global constraint
Precedence([X1,..Xn]) iff

 min({i | Xi=j or i=n+1}) <
 min({i | Xi=k or i=n+2})

Propagator proposed by [Law
and Lee 2004]
Pointer based propagator (alpha,

beta, gamma) but only for two
interchangeable values at a time

Value precedence
 Precedence([j,k],[X1,..Xn]) iff
 min({i | Xi=j or i=n+1}) <

 min({i | Xi=k or i=n+2})

Of course
Precedence([X1,..Xn]) iff

Precedence([i,j],[X1,..Xn]) for all i<j
Precedence([X1,..Xn]) iff

Precedence([i,i+1],[X1,..Xn]) for all i

Value precedence
 Precedence([j,k],[X1,..Xn]) iff
 min({i | Xi=j or i=n+1}) <

 min({i | Xi=k or i=n+2})

Of course
 Precedence([X1,..Xn]) iff Precedence([i,j],[X1,..Xn]) for

all i<j

 But this hinders propagation
 GAC(Precedence([X1,..Xn])) does strictly more

pruning than GAC(Precedence([i,j],[X1,..Xn])) for all i<j
 Consider

X1=1, X2 in {1,2}, X3 in {1,3} and X4 in {3,4}

Puget’s method

 Introduce Zj to record first time
we use j

Add constraints
Xi=j implies Zj <= i
Zj=i implies Xi=j
Zi < Zi+1

Puget’s method

 Introduce Zj to record first time
we use j

Add constraints
Xi=j implies Zj < i
Zj=i implies Xi=j
Zi < Zi+1

Binary constraints
easy to implement

Puget’s method

 Introduce Zj to record first time we
use j

Add constraints
Xi=j implies Zj < I
 Zj=i implies Xi=j
 Zi < Zi+1

 Unfortunately hinders propagation
AC on encoding may not give GAC

on Precedence([X1,..Xn])
Consider X1=1, X2 in {1,2}, X3 in {1,3},

X4 in {3,4}, X5=2, X6=3, X7=4

Propagating Precedence
Simple ternary encoding
 Introduce sequence of variables, Yi
Record largest value used so far
Y1=0

Propagating Precedence
Simple ternary encoding
Post sequence of constraints

C(Xi,Yi,Yi+1) for each 1<=i<=n

 These hold iff

 Xi<=1+Yi and Yi+1=max(Yi,Xi)

Propagating Precedence
 Simple ternary encoding
 Post sequence of constraints
 Easily implemented within most solvers

 Implication and other logical primitives
GAC-Schema (alias “table” constraint)
…

Propagating Precedence
Simple ternary encoding
Post sequence of constraints
C(Xi,Yi,Yi+1) for each 1<=i<=n
This decomposition is Berge-acyclic
Constraints overlap on one variable and

form a tree

Propagating Precedence
 Simple ternary encoding
 Post sequence of constraints
C(Xi,Yi,Yi+1) for each 1<=i<=n
 This decomposition is Berge-acyclic
Constraints overlap on one variable and form

a tree
Hence enforcing GAC on the decomposition

achieves GAC on Precedence([X1,..Xn])
 Takes O(n) time
Also gives excellent incremental behaviour

Propagating Precedence
Simple ternary encoding
Post sequence of constraints
C(Xi,Yi,Yi+1) for each 1<=i<=n
These hold iff Xi<=1+Yi and

Yi+1=max(Yi,Xi)

Consider Y1=0, X1 in {1,2,3}, X2 in {1,2,3}
and X3=3

Precedence and matrix
symmetry
Alternatively, could map into 2d

matrix
Xij=1 iff Xi=j

Value precedence now becomes
column symmetry
Can lex order columns to break all

such symmetry
Alternatively view value precedence

as ordering the columns of a matrix
model

Precedence and matrix
symmetry
Alternatively, could map into 2d

matrix
Xij=1 iff Xi=j

Value precedence now becomes
column symmetry

However, we get less pruning this
way
Additional constraint that rows have

sum of 1
Consider, X1=1, X2 in {1,2,3} and X3=1

Partial value precedence

Values may partition into
equivalence classes
Values within each equivalence class

are interchangeable

 E.g.
 Shift1=nursePaul, Shift2=nursePeter,

Shift3=nurseJane, Shift4=nursePaul ..

Partial value precedence

 Shift1=nursePaul, Shift2=nursePeter,
Shift3=nurseJane, Shift4=nursePaul ..

 If Paul and Jane have the same
skills, we can swap them (but not
with Peter who is less qualified)
 Shift1=nurseJane, Shift2=nursePeter,

Shift3=nursePaul, Shift4=nurseJane …

Partial value precedence

Values may partition into
equivalence classes

Value precedence easily
generalized to cover this case
Within each equivalence class, vi

occurs before vj for all i<j (ignore
values from other equivalence
classes)

Partial value precedence

 Values may partition into equivalence
classes

 Value precedence easily generalized to
cover this case
 Within each equivalence class, vi occurs

before vj for all i<j (ignore values from other
equivalence classes)

 For example
 Suppose vi are one equivalence class, and ui

another

Partial value precedence

 Values may partition into equivalence
classes

 Value precedence easily generalized to
cover this case
 Within each equivalence class, vi occurs

before vj for all i<j (ignore values from other
equivalence classes)

 For example
 Suppose vi are one equivalence class, and ui

another
 X1=v1, X2=u1, X3=v2, X4=v1, X5=u2

Partial value precedence

 Values may partition into equivalence
classes

 Value precedence easily generalized to
cover this case
 Within each equivalence class, vi occurs

before vj for all i<j (ignore values from other
equivalence classes)

 For example
 Suppose vi are one equivalence class, and ui

another
 X1=v1, X2=u1, X3=v2, X4=v1, X5=u2
 Since v1, v2, v1 … and u1, u2, …

Variable and value
precedence
Value precedence compatible

with other symmetry breaking
methods
Interchangeable values and lex

ordering of rows and columns in
a matrix model

Conclusions

 Symmetry of interchangeable
values can be broken with value
precedence constraints

Value precedence can be
decomposed into ternary
constraints
 Efficient and effective method to

propagate
Can be generalized in many

directions
Partial interchangeability, …

Global constraints

Hardcore algorithms
Data structures
Graph theory
 Flow theory
Combinatorics
…

Computational complexity
Global constraints are often

balanced on the limits of tractability!

Computational complexity
101
 Some problems are essentially easy

 Multiplication, O(n1.58)
 Sorting, O(n logn)
 Regular language membership, O(n)

 Context free language membership, O(n3) ..
 P (for “polynomial”)

 Class of decision problems recognized by
deterministic Turing Machine in polynomial
number of steps

Decision problem
 Question with yes/no answer? E.g. is this

string in the regular language? Is this list
sorted? …

NP

NP
Class of decision problems recognized

by non-deterministic Turing Machine
in polynomial number of steps

Guess solution, check in polynomial
time

 E.g. is propositional formula Ψ
satisfiable? (SAT)
Guess model (truth assignment)
Check if it satisfies formulae in polynomial

time

NP

 Problems in NP
Multiplication
 Sorting
 ..
 SAT
3-SAT
Number partitioning
K-Colouring
Constraint satisfaction
…

NP-completeness

 Some problems are
computationally as hard as any
problem in NP
 If we had a fast (polynomial) method

to solve one of these, we could solve
any problem in NP in polynomial time

 These are the NP-complete problems
SAT (Cook’s theorem: non-deterministic TM

=> SAT)
3-SAT
….

NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

 in NP

NP-hard (it’s as hard as anything else
in NP)

NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

 in NP
Polynomial witness for a solution
E.g. SAT, 3-SAT, number partitioning, k-

Colouring, …

NP-hard (it’s as hard as anything else
in NP)

NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

NP-hard (it’s as hard as anything else
in NP)
Reduce some other NP-complete to it
 That is, show how we can use our problem

to solve some other NP-complete problem
At most, a polynomial change in size of

problem

Global constraints are NP-
hard
Can solve 3SAT using a single

global constraint!

Given 3SAT problem in N vars and M
clauses

3SAT([X1,…Xn]) where n=N+3M+2
Constraint holds iff X1=N, X2=M,
X_2+i is 0/1 representing value

assigned to xi
X_2+N+3j, X_2+N+3j+1 and X_2+N+3j+2

represents jth clause

Our hammer
 Use tools of

computational
complexity to
study global
constraints

Questions to ask?

 GACSupport? is NP-complete
 Does this value have support?
 Basic question asked within many

propagators

 MaxGAC? is DP-complete
 Are these domains the maximal

generalized arc-consistent domains?
 Termination test for a propagator
 DP = NP u coNP
 Propagation “harder” than solving

the problem!

Questions to ask?

 IsItGAC? is NP-complete
 Are the domains GAC?
 Wakeup test for a propagator

 NoGACWipeOut? is NP-complete
 If we enforce GAC, do we not get a

wipeout?
 Used in many reductions

 GACDomain? is NP-hard
 Return the maximal GAC domains
 What a propagator actually does!

Relationships between
questions
NoGACWipeOut = GACSupport =

GACDomain
NoGACWipeOut in P <-> GACDomain

in P
NoGACWipeOut in NP <->

GACDomain in NP

GACDomain in P => MaxGAC in P
=> IsItGAC in P

 IsItGAC in NP => MaxGAC in NP =>
GACDomain in NP
Open if arrows cannot be reversed!

Constraints in practice

Some constraints proposed in
the past are intractable
NValues(N,X1,..Xn)
CardPath(N,[X1,..,Xn],C)
…

NValues

NValues(N,X1,..,Xm)
N values used in
X1,…,Xm
Useful for resource
allocation

NValues
NValues(Y,X1,..,Xn)

Reduction of 3SAT to NValues
3SAT problem in N vars, M clauses
Xi in {i,-i} for 1 ≤ i ≤ N
XN+s in {i,-j,k} if s-th clause is: (i or -j or k)
 Y= N
Hence 3SAT has a solution =>
NoGACWipeOut answers “yes”

NValues
NValues(N,X1,..,Xm)

Reduction of 3SAT to NValues
3SAT problem in n vars, l clauses
Xi in {i,-i} for 1 ≤ i ≤ n
Xn+s in {i,-j,k} if s-th clause is: (i or -j or k)
N = n
Hence 3SAT has a solution <=>
NoGACWipeOut answers “yes”
Enforce lesser level of local consistency (e.g.
BC)

Generalizing constraints

Take a tractable constraint
GCC([X1,..,Xn],[l1,..,lm],[u1,..,um])
Value j occurs between lj and uj
times in X1,..,Xn
Generalize some constants to
variables
E.g. GCC([X1,..,Xn],[O1,..,Om])
NP-hard to enforce GAC!

Generalizing constraints

GCC([X1,..,Xn],[O1,..,Om])
Reduction from 1in3SAT on positive
clauses
If jth clause is (x or y or z) then Xj in
{x,y,z}
If x occurs k times in all clauses then
Ox in {0,k}
Hence 1in3SAT has a solution iff
NoGACWipeOut answers “yes”
Thus enforcing GAC is NP-hard

Meta-constraints

Global constraint used in
sequencing problems

CardPath(C,[X1,..Xn],N) iff
C(Xi,..Xi+k) holds N times
 E.g. number of changes is

CardPath(=/=,[X1,..Xn],N)
 Fixed parameter tractable
 k fixed, GAC takes O(nd^k) time
 k = O(n), GAC is NP-hard even when

C is polynomial to test

Meta-constraints

CardPath(C,[X1,..Xn],N) iff
C(Xi,..Xi+k) holds N times
Reduce 3SAT in N variables and M

clauses to CardPath where k=N+2
NM vars Xi to represent repeated truth

assignment
M vars Yj to represent jth clause
C(X1,..,XN,Yj,X1’) iff Yj=k and Xk=1 and

X1=X1’
 or Yj=-k and Xk=0 and X1=X1’
C(X2,..,XM.Yj,X1’,X2’) iff X2=X2’
 ..

Conclusions

Computational complexity is a
useful hammer to study global
constraints
Uncovers fundamental limits of
reasoning with global constraints
Lesser consistency needs to be enforced
Generalization intractable
..

Global grammar
constraints
Often easy to specify a global

constraint

ALLDIFFERENT([X1,..Xn]) iff
 Xi=/=Xj for i<j

Difficult to build an efficient and
effective propagator
 Especially if we want global reasoning

Global grammar
constraints
 Promising direction initiated is to

specify constraints via
automata/grammar

 Sequence of variables =
 string in some formal language
 Satisfying assignment =
 string accepted by the

grammar/automata

Global constraints meets
formal language theory

REGULAR constraint

 REGULAR(A,[X1,..Xn]) holds iff
X1 .. Xn is a string accepted by the

deterministic finite automaton A
Proposed by Pesant at CP 2004
GAC algorithm using dynamic

programming
However, DP is not needed since

simple ternary encoding is just as
efficient and effective

REGULAR constraint
Deterministic finite automaton (DFA)
<Q,Sigma,T,q0,F>
Q is finite set of states
 Sigma is alphabet (from which strings formed)
 T is transition function: Q x Sigma -> Q
q0 is starting state
 F subseteq Q are accepting states

DFAs accept precisely regular languages
Regular language can be specified by rules of

the form:
NonTerminal -> Terminal | Terminal NonTerminal

REGULAR constraint
DFAs accept precisely regular languages
Regular language can be specified
 by rules of the form:

NonTerminal -> Terminal
NonTerminal -> Terminal NonTerminal |
 NonTerminal Terminal

- Alternatively given by regular expressions
- More limited than BNF which can express context-

free grammars

REGULAR constraint
 Regular language

 S -> 0 | 0A| AB | AC | 1B | 1
 A -> 0 | 0A
 B -> 1 | 1B
 C -> 1 | 1C | 0 | 0A

DFA
 Q={q0,q1,q2}
 Sigma={0.1}
 T(q0,0)=q0. T(q0,1)=q1
 T(q1,0)=q2, T(q1,1)=q1
 T(q2,0)=q2
 F={q0,q1,q2}

REGULAR constraint
 Regular language

 S -> 0 | 0A| AB | AC | 1B | 1
 A -> 0 | 0A
 B -> 1 | 1B
 C -> 1 | 1C | 0 | 0A

DFA
 Q={q0,q1,q2}
 Sigma={0.1}
 T(q0,0)=q0. T(q0,1)=q1
 T(q1,0)=q2, T(q1,1)=q1
 T(q2,0)=q2
 F={q0,q1,q2}

CONTIGUITY
constraint

REGULAR constraint

Many global constraints are
instances of REGULAR
AMONG, CONTIGUITY, LEX,

PRECEDENCE, STRETCH, ..
Domain consistency can be

enforced in O(ndQ) time using
dynamic programming
Contiguity example: {0,1}, {0}, {1},

{0,1}, {1}

REGULAR constraint

 REGULAR constraint can be
encoded into ternary constraints

 Introduce Qi+1
 state of the DFA after the ith transition

 Then post sequence of constraints
C(Xi,Qi,Qi+1) iff
 DFA goes from state Qi to Qi+1 on

symbol Xi

REGULAR constraint

 REGULAR constraint can be
encoded into ternary constraints

Constraint graph is Berge-acyclic
Constraints only overlap on one

variable
 Enforcing GAC on ternary constraints

achieves GAC on REGULAR in O(ndQ)
time

REGULAR constraint

 PRECEDENCE([X1,..Xn]) iff
min({i | Xi=j or i=n+1}) < min({i | Xi=k or

i=n+2}) for all j<k

 States of DFA represents largest
value so far used
 T(Si,vj)=Si if j<=i
 T(Si,vj)=Sj if j=i+1
 T(Si,vj)=fail if j>i+1
 T(fail,v)=fail

REGULAR constraint

 PRECEDENCE([X1,..Xn]) iff
min({i | Xi=j or i=n+1}) < min({i | Xi=k or

i=n+2}) for all j<k
 States of DFA represents largest

value so far used
 T(Si,vj)=Si if j<=i
 T(Si,vj)=Sj if j=i+1
 T(Si,vj)=fail if j>i+1
 T(fail,v)=fail
REGULAR encoding of this is just these

transition constraints (can ignore fail)

REGULAR constraint
STRETCH([X1,..Xn]) holds iff
Any stretch of consecutive values is

between shortest(v) and longest(v)
length

Any change (v1,v2) is in some permitted
set, P

For example, you can only have 3
consecutive night shifts and a night shift
must be followed by a day off

REGULAR constraint
 STRETCH([X1,..Xn]) holds iff
Any stretch of consecutive values is between

shortest(v) and longest(v) length
Any change (v1,v2) is in some permitted set, P

DFA
Qi is <last value, length of current stretch>
Q0= <dummy,0>
 T(<a,q>,a)=<a,q+1> if q+1<=longest(a)
 T(<a,q>,b)=<b,1> if (a,b) in P and

q>=shortest(a)
All states are accepting

Other generalizations of
REGULAR
 REGULAR FIX(A,[X1,..Xn],[B1,..Bm]) iff
REGULAR(A,[X1,..Xn]) and Bi=1 iff exists

j. Xj=I
Certain values must occur within the

sequence
 For example, there must be a

maintenance shift
Unfortunately NP-hard to enforce

GAC on this

Other generalizations of
REGULAR
REGULAR

FIX(A,[X1,..Xn],[B1,..Bm])
Simple reduction from

Hamiltonian path
Automaton A accepts any walk

on a graph
n=m and Bi=1 for all i

Chomsky hierarchy

Regular languages
Context-free languages
Context-sensitive languages
 ..

Chomsky hierarchy

 Regular languages
GAC propagator in O(ndQ) time

Conext-free languages
GAC propagator in O(n^3) time and

O(n^2) space
Asymptotically the same as parsing!

Conext-sensitive languages
Checking if a string is in the language

PSPACE-complete
Undecidable to know if empty string in

grammar and thus to detect domain
wipeout and enforce GAC!

Context-free grammars

Applications
Hierarchy configuration
Bioinformatics
Natual language parsing
Rostering
…

CFG(G,[X1,…Xn]) holds iff
X1 .. Xn is a string accepted by the

context free grammar G

CFG propagator

Adapt CYK parser
Works on Chomsky normal form
Non-terminal -> Terminal
Non-terminal -> Non-terminal Non-

terminal
 Using dynamic programming
Computes V[i,j], set of possible

parsings for the ith to the jth symbols

Conclusions

Global grammar constraints
Specify wide range of global

constraints
Provide efficient and effective

propagators automatically
Nice marriage of formal

language theory and constraint
programming!

