3 PR o A AT b < Y s 3% aar * sasreess Bl N 2l e B T sy Bove T USRS i RS Sael

e o3 WRSA] O Cme 2 i sy A . ;) ~ S N T pe e (: Iy il

Vo, x A PR R g N e A, s I 5 : 3 At . 1 4 LR L SN0 0 ey LW S R s 3y S

AT g PRI J TS R R ooy W : Pt i : IR i by et e ! - o PR+ 1T K 548 25

ST RN O et) o Y et ! o & aindhs i ; IV ek : NP o i ;oo ey
3 P .- Ve oy oy e 5 ’ . A . e . C 3) st “ \ . IR o L R e
5 v ! $ - d 4 <

- NICTA and University of New South Wales
www.cse.unsw.edu.au/~tw

RO, e

% UNSW isin Sydney
% Regularly voted in top 10
~cities in World
¥ UNSW is one of top
universities in Australic

* In top 100 universities in
world
* Talk to me about our PhD
programmel!

* Also happy to have
PhDs/PostDocs visit for
weeks/months/years ..

* Atftend CP/KR/ICAPS in
Sept

Value precedence

¥ Global constraint used to deal with
value symmeftry

¥ Good example of “global”

constraint where we can use an

efficient encoding

¥ Encoding gives us GAC

* Asymptoftically optimal, achieve GAC
iIn O(nd) time

¥ Good incremental/decremental
complexity

| * D"eéision variables:
*Col[l’raly] CoI[France]
| CoI[Aus’mG]

*Domom ofvalues - FA-U:S.T-R.ASEEA
- *red, yellow, green, ...
% Constraints
Col[ltaly]=/=Col[France]
Col[ltaly]=/=Col[Austria]

.7'14

* Soluhon

% Col[ltaly]= green
- Col[France]=red

- Col[Spain]=green
% Values (colours) are
~ Inferchangeable:

* Swap red with green
everywhere will sfill
give us a solufion

A-U.S-T-R.A A

Value precedence

% Old idea
¥ Used in bin-packing and graph
colouring algorithms
*¥0nly open the next new bin

*¥Only use one new colour

¥ Applied now to constraint
satfisfaction

Value precedence

*SUppose all values from 1 to m
are inferchangeable

*¥Might as well let X1=1

Value precedence

¥Suppose all values from 1 fom
are inferchangeable

*¥Might as well let X1=1

¥For X2, we need only consider
two choices
¥X2=1 or X2=2

Value precedence

¥Suppose all values from 1 fom
are inferchangeable

*¥Might as well let X1=1

¥For X2, we need only consider
two choices

*¥Suppose we try X2=2

Value precedence

*Suppose all values from 1 to m
are inferchangeable
*¥Might as well let X1=1

¥For X2, we need only consider
two choices

*¥Suppose we try X2=2

¥For X3, we need only consider
three choices

Ko=) X3=0 xg=8

Value precedence

*Suppose all values from 1 to m
are inferchangeable

*¥Might as well let X1=1

¥For X2, we need only consider
two choices

*¥Suppose we try X2=2

¥For X3, we need only consider
three choices

*Suppose we try X3=2

Value precedence

*SUppose all values from 1 fo m are
inferchangeable
* Might as well let X1=1

* For X2, we need only consider two
choices

¥ Suppose we try X2=2

¥ For X3, we need only consider three
choices

¥ Suppose we try X3=2

* For X4, we need only consider three
choices |

AN /A —1 N/ AN \/ A_ND

Value precedence

* Global constraint
¥Precedence([X1,..Xn]) iff
min({i | Xi=j ori=n+1}) <
min({i | Xi=k or i=n+2})
for all j<k

*In other words

¥The first time we use | Is before the
first time we use k

Value precedence

* Global constraint
*¥Precedence([X1,.Xn]) Iff
min({i | Xi=j ori=n+1}) <
min({i | Xi=k or i=n+2})

*E.Q
¥Precedence([1,1,2,1,3,2,4,2,3])
#*But not Precedence([1,1,2,1,4])

Value precedence

* Global constraint
¥Precedence([X1,..Xn]) iff
min({i | Xi=j ori=n+1}) <
min{{i | Xi=k or i=n+2})

¥Propagator proposed by [Law
and Lee 2004]

Pointer based propagator (alphag,
beta, gamma) but only for two
interchangeable values at a time

Value precedence

* Precedence(][].k],[X1,..Xn]) iff
min({i | Xi=j ori=n+1}) <
min({i | Xi=k or i=n+2})

¥ Of course

* Precedence([X1,..Xn]) iff
Precedence([i,j],[X1,..Xn]) for all i<

¥ Precedence([X1,..Xn]) iff
Precedence([i,i+1],[X1,..Xn]) for all |

Value precedence

* Precedence(][].k],[X1,..Xn]) iff
min({i | Xi=j ori=n+1}) <
min({i | Xi=k or i=n+2})

¥ Of course
% Precedence([X1,..Xn]) iff Precedence([ij].[X1,..X

all i<j
¥ But this hinders propagation

¥ GAC(Precedence([X1,..Xn])) does strictly m
pruning than GAC(Precedence([i,j].[X]1,..XN]

¥* Consider

VIiI—1T VDOimn 1T M V2in Il 1 AnA VA4 in 2 AN AR

" Puget’s method

¥ Introduce /] to record first time
we use |

¥ Add constraints
*Xi=] implies 7] <=1
*Zj=1 implies Xi=j
¥Zi < Zi+]

Puget’s method

*Infroduce 7] to record first fime
we use |

¥ Add constraints
*Xi=] implies 7] <1
*Zj=I iImplies Xi=j
*7Zi < Zi+]

¥ Binary constraints
¥easy to implement

Puget’'s method
¥ Infroduce Zj to record first fime we
use |
* Add constraints
* Xi=] implies 7] < |
* Zj=i implies Xi=]
* i < Zi+1]
¥ Unfortunately hinders propagation

* AC on encoding may not give GAC
on Precedence([X1,..Xn])

¥ Consider X1=1, X2in {1,2}, X3 in {1 3}
X4 In {3,4}, X5=2, X6=3, X7=4

Propagating Precedence
*Simple ternary encoding '

*¥Introduce sequence of variables, Yi

¥Record largest value used so far
*Y1=0

" Propagating Precedence

*Simple ternary encoding
¥ Post sequence of constraints

C(X,YL,Yi+1) for each 1<=i<=n

These hold iff

Xi<=1+Yi and Yi+1=max(Yi,Xi)

Propagating Precedence
* Simple ternary encoding '

¥ Post sequence of constraints

* Easily implemented within most solvers

¥ Implication and other logical primifives
¥ GAC-Schema (alias “table’ constraint)

Propagating Precedence

*Simple ternary encoding

¥ Post sequence of constraints
*C(X1,YL,Yi+1) for each 1<=i<=n
*This decomposition is Berge-acyclic

¥ Constraints overlap on one variable Gn@k.,
form a free pe

“ Propagating Precedence

* Simple ternary encoding

¥ Post sequence of constraints
* C(X1,YLYi+1) foreach I<=i<=n
* This decomposition Is Berge-acyclic

¥ Constraints overlap on one variable and form
a tree 5

* Hence enforcing GAC on the decomp
achieves GAC on Precedence([X]1,..

* Takes O(n) time

Propagating Precedence

*Simple ternary encoding

¥ Post sequence of constraints
*C(X1,YLYI+1) for each 1<=i<=n

¥These hold iff Xi<=1+Yi1 and
Yi+1=max(Yi,Xi)

¥Consider Y1=0, X1 in {1,2,3}, X2 In
and X3=3

~ Precedence and matrix
symmeftry

¥ Alternatively, could map into 2d
Matrix
* Xij=1 iff Xi=]

¥ Value precedence now becomes
column symmetry

¥ Can lex order columns to break all
such symmetry

¥ Alternatively view value precedence
as ordering the columns of a matrix
modadel

 Precedence and matrix ‘
symmetry

¥ Alternatively, could map into 2d
Matrix
* Xij=1 iff Xi=]

¥ Value precedence now becomes
column symmetry

* However, we get less pruning this
way

¥ Additional constraint that rows have
sum of 1

¥ Consider, X1=1, X21in {1,2,3} and X3=1 ¥

A
e

.
=¥

Partial value precedence

* Values may partition into
equivalence classes

* Values within each equivalence class
are interchangeable

* E.Q.

Shift1=nursePaul, Shift2=nursePefter,
Shift3=nurseJane, Shift4=nursePaul .

Partial value precedence

5 Shif’r] =nursePaul, Shift2=nursePeter,
Shift3=nurseJane, Shift4=nursePaul ..

* If Paul and Jane have the same
skills, we can swap them (but not
with Peter who is less qualified)

* Shift1=nurseJane, Shift2=nursePeter,
Shift3=nursePaul, Shift4d=nurseJane ...

Partial value precedence

¥ Values may partition info
equivalence classes

¥ Value precedence easily
generalized to cover this case

*¥Within each equivalence class, vi
occurs before vj for all i<j (ignore
values from other equivalence
classes)

Partial value precedence

¥ Values may partition info equivalence
classes

* Value precedence easily generalized to
cover this case
* Within each equivalence class, vi occurs
before vj for all i<j (ignore values from other
equivalence classes)
* For example

¥ Suppose vi are one equivalence class, and ui
another

Partial value precedence

¥ Values may partition info equivalence
classes

* Value precedence easily generalized to
cover this case
* Within each equivalence class, vi occurs
before vj for all i<j (ignore values from other
equivalence classes)
* For example

¥ Suppose vi are one equivalence class, and ui
another

¥ X1=vl, X2=ul, X3=v2, X4=v1, X5=u2

Partial value precedence

¥ Values may partition info equivalence
classes

* Value precedence easily generalized to
cover this case
* Within each equivalence class, vi occurs
before vj for all i<j (ignore values from other
equivalence classes)
* For example

¥ Suppose vi are one equivalence class, and ui
another

¥ X1=vl, X2=ul, X3=v2, X4=v], X5=u2
* Since vl, v2, vl ... and ul, u2, ...

~Variable and value
precedence

¥ Value precedence compatible
with other symmetry breaking
methods
*Interchangeable values and lex

ordering of rows and columns in
a matrix model

Conclusions

e Symme’rry of interchangeable
values can be broken with value
precedence constraints

¥ Value precedence can be
decomposed info ternary
constraints

¥ Efficient and effective method to
propagate
¥ Can be generalized in many
directions
¥ Partial interchangeabllity, ...

~ Global constraints

* Hardcore algorithms
* Data structures
* Graph theory
* Flow theory
¥ Combinatorics

¥ Computational complexity

* Global constraints are often
balanced on the limits of tractabllity!

[
i

Computational complexity
101 '

¥ Some problems are essentially easy
¥ Multiplication, O(n'-8)
* Sorting, O(n logn)
% Regular language membership, O(n)
* Context free language membership, O(n3) ..

* P (tor “polynomial”)
* Class of decision problems recognized by

deterministic Turing Machine in polynomial
number of steps

* Decision problem

* Question with yes/no answere E.g. is this
string in the regular language? Is this list

e

% NP
* Class of decision problems recognized

by non-deterministic Turing Machine
iINn polynomial number of steps

* Guess solution, check in polynomial
time

* E.qg. Is propositional formula ¥
satisfiablee (SAT)

¥ Guess model (truth assignment)

¥ Check if it satisfies formulae in polynomial
time

NP

¥ Problems in NP
¥ Multiplication
* Sorting
* SAT
* 3-SAT
* Number parfitioning
* K-Colouring
¥ Constraint satisfaction

'NP-completeness

% Some problems are
computationally as hard as any
problem in NP

*If we had a fast (polynomial) method
to solve one of these, we could solve
any problem in NP in polynomial fime

* These are the NP-complete problems

#* SAT (Cook's theorem: non-deterministic TM
=> SAT)

¥ 3-SAT

i NP-COmpleTeneSS

% To demonstrate a problem is NP-
complete, there are two proof
obligations:

*in NP

% NP-hard (it's as hard as anything else
INn NP)

'NP-completeness

% To demonstrate a problem is NP-
complete, there are two proof
obligations:

*in NP

¥ Polynomial withess for a solution

¥ E.g. SAT, 3-SAT, number partitioning, k-
Colouring, ...

* NP-hard (it's as hard as anything else
in NP) |

'NP-completeness

% To demonstrate a problem is NP-
complete, there are two proof
obligations:

* NP-hard (it's as hard as anything else
iIN NP)
¥ Reduce some other NP-complete to it

¥ That is, show how we can use our problem
to solve some other NP-complete problem

¥ At most, a polynomial change in size of
problem

Global constraints are NP-
hard

% Can solve 3SAT using a single
global constraint!

* Given 3SAT problem in N vars and M
clauses

* 3SAT([X]1,...Xn]) where n=N+3M+2
¥ Constraint holds iff X1=N, X2=M,

* X_2+11s O/1 representing value
assigned to xi

¥ X_2+N+3j, X_2+N+3j+1 and X_2+N+3j+2

Our hammer

¥ Use tools of
compu tational COMPUTERS AND INTRACTABILITY
complexity to
stfudy global
constraints

Questions to aske

¥ GACSupporte is NP-complete
¥ Does this value have supporte

% Basic question asked within many
propagators

¥ MaxGACze is DP-complete

* Are these domains the maximal
generalized arc-consistent domainse

* Termination test for a propagator
% DP = NP u coNP

¥ Propagation “harder’ than solving

Questions to ask?

¥ IsHGACZ? is NP-complete
¥ Are the domains GAC?
* Wakeup test for a propagator

¥ NOGACWIipeOute Is NP-complete

* If we enforce GAC, do we not get @
wipeoute

* Used in many reductions

¥ GACDomaine is NP-hard
¥ Return the maximal GAC domains

Relationships between

guestions
K NOGACWipeOU’r = GACSupport =
GACDomain
¥ NOGACWIipeOut in P <> GACDomain
in P

¥ NOGACWIipeOut in NP <->
GACDomain in NP

¥ GACDomainin P == MaxGAC in P
=> |SIIGAC In P

¥ ISITGAC In NP => MaxGAC in NP =>
GACDomain in NP -

~ Constraints in practice

¥Some constraints proposed In
the past are intractable

*¥NValues(N,X1,..Xn)
*¥CardPath(N,[XT,..,.Xn],C)

.»._—',sff)
AL N T

PR L A

- #NValues(NX1,...Xm)
¥N values used in
Xk m

~ *Useful for resource
allocation

NValues
~ ¥NValues(Y,X1,...Xn)

¥Reduction of 3SAT to NValues

*3SAT problem in N vars, M clauses
*¥Xiin{i,-i} for 1 <i<N

¥XN+s in {i,-j,k} if s-th clause is: (i or -j orddt %
* Y=N

¥Hence 3SAT has a solution =>
NOGACWIipeOut answers “yes”

NValues
| ¥NValues(N,X1,..,.Xm)

¥Reduction of 3SAT to NValues
#¥3SAT problem in n vars, | clauses
*¥Xiin{i,-i}for1<i<n

*¥Xn+s in {i,-],k} if s-th clause is: (i or -j or k)
*N =n

¥Hence 3SAT has a solution <=>
NoGACWIipeOut answers “yes”

¥Enforce lesser level of local consistency
BC)

‘Generalizing constraints

¥Take a tractable constraint
*¥GCC([X1,..Xn],[I1,...Im],[ul,..,.um])

*Value | occurs between | and uj
times in X1,..,Xn

¥Generalize some constants to
variables

*E.g. GCC([X]1,...Xn],[O1,..,.Om])
*¥NP-hard to enforce GAC!

‘Generalizing constraints

¥GCC([X1,...Xn],[O1,..,0m])

¥Reduction from 1In3SAT on positive
clauses

*¥If |th clause is (x or y or z) then Xj In
{x.y.z}

¥If x occurs k times In all clauses then
Ox in {0k}

¥Hence 1IN3SAT has a solution iff
NOGACWIipeOut answers “yes”

*¥Thus enforcing GAC is NP-hard

Meta-constraints

¥ Global constraint used in
sequencing problems

¥ CardPath(C,[X1,..Xn],N) iff
C(Xl,..Xi+k) holds N times
* E.g. number of changes is
CardPath(=/=,[X1,..Xn],N)
¥ Fixed parameter tractable
* k fixed, GAC takes O(ndAk) time

¥k = O(n), GAC Is NP-hard even when
C is polynomial to test

Meta-constraints

¥ CardPath(C,[X1,..Xn],N) iff
C(Xi,..Xi+k) holds N times

¥ Reduce 3SAT in N variables and M
clauses to CardPath where k=N+2

* NM vars Xi to represent repeated truth
assignment

* M vars Yj to represent jth clause

* C(XT1,...XN,Y],X1') iff Y=k and Xk=1 an
X1=X1"
or Yj=-k and Xk=0 and X1=X1'

* C(X2,.. XM.Y],X1",X2") iff X2=X2'

Conclusions

*¥Computational complexity is a
useful hammer to study global
constraints

¥Uncovers fundamental limits of
reasoning with global constraints
¥Lesser consistency needs to be enforced
*¥Generalization infractable
I

~ Global grammar
constraints

% Often easy o specity a global
constraint

% ALLDIFFERENT([X1,..Xn]) iff
Xi=/=X] for i<j

¥ Difficult To build an efficient and
effective propagator
* Especially it we want global reasonin

ul
.
-

SO LO-grammor o sk e
constraints

¥ Promising direction initiated is to
specify constraints via
automata/grammar

* Sequence of variables =
string in some formal language
* Satistying assignment =

string accepted by the
grammar/automarto

'REGULAR constraint

% REGULAR(A, [X1,..Xn]) holds iff

* X1 .. Xn is a string accepted by the
deterministic finite automaton A

* Proposed by Pesant at CP 2004

* GAC algorithm using dynamic
programming
* However, DP is not needed since

simple ternary encoding is just as
efficient and effective

" REGULAR constraint

* Deterministic finite automaton (DFA)
* <Q,Sigma,T,g0,F>
* Q is finite set of states
* Sigma Is alphabet (from which strings formed)
¥ T is transition function: Q x Sigma -> Q
* 90 Is starting state
* F subseteqg Q are accepting states

¥ DFAs accept precisely regular lang

¥ Regular language can be specified b
the form: -

REGULAR constraint
* DFAs accept precisely regular Ianguages

% Regular language can be specified
by rules of the form:

NonTerminal -> Terminal
NonTerminal -> Terminal NonTerminal |
NonTerminal Termindadl

- Alternatively given by regular expressi

- More limited than BNF which can exp
free grammars

" REGULAR constraint

* Regular language
¥S->0|0A| AB | AC | 1B | 1
¥ A->0 | 0A
¥B->1] 1B
O] R0 0A

* DFA
* Q={90,91,92}
* Sigma={0.1}
* T(90,0)=90. T(90,1)=9]
* T(gl1,0)=9g2, T(gl,1)=9gl
* T(g2,0)=92
* F={g0,91,92}

" REGULAR constraint

* Regular language
¥S->0|0A| AB | AC | 1B | 1
¥ A->0 | 0A
¥B->1] 1B
O] R0 0A

* DFA
* Q={90,91,92}
* Sigma={0.1}
* T(90,0)=90. T(90,1)=9]
* T(gl1,0)=9g2, T(gl,1)=9gl
* T(g2,0)=92
* F={g0,91,92}

" REGULAR constraint

* Many global constraints are
instances of REGULAR

¥ AMONG, CONTIGUITY, LEX,
PRECEDENCE, STRETCH, ..
¥ Domain consistency can be p-
enforced in O(ndQ) time using pa
dynamic programming
*Configuity example: {0,1}, {0}, {1}
{01}, {1}

'REGULAR constraint

% REGULAR constraint can be
encoded info fernary constraints

¥ Infroduce Qi+
¥ state of the DFA after the ith transifion

¥ Then post sequence of constraints
* C(Xi,Qi,Qi+1) iff

DFA goes from state Qi to Qi+1 on
symbol Xi

'REGULAR constraint

% REGULAR constraint can be
encoded info fernary constraints

¥ Constraint graph is Berge-acyclic

¥ Constraints only overlap on one
variable

* Enforcing GAC on ternary constraints
achieves GAC on REGULAR in O(ndQ
fime

'REGULAR constraint

* PRECEDENCE([X1,..Xn]) iff

*¥min({i | Xi=jori=n+1}) <min({i | Xi=k or
I=n+2}) for all j[<k

* States of DFA represents largest
value so far used

T(S1,v})=SI It |[<=i

T(Si,vj)=Sj if j=i+]1

T(Si,vj)=fail if j>i+1

T(fail,v)=tail

* ¥ K K

'REGULAR constraint

#* PRECEDENCE([X1,..Xn]) iff
*¥min({i | Xi=jori=n+1}) <min({i | Xi=k or
I=n+2}) for all j<k
¥ States of DFA represents largest
value so far used
* T(Si,vj)=Si if j<=i
¥ T(Si,vj)=S] if j=i+]
* T(Si,vj)=tail if j>i+]1
* T(fail,v)=tail
* REGULAR encoding of this is just these §
fransifion constraints (can ignore fail) =

'REGULAR constraint
%STRETCH([X1,..Xn]) holds iff

*¥Any stretch of consecutive values is
between shortest(v) and longest(v)
length

¥Any change (v1,v2) is in some permitted
set, P o
¥For example, you can only have

consecutive night shifts and a ni
must be followed by a day off

hift

'REGULAR constraint

% STRETCH([X1,..Xn]) holds iff

* Any stretch of consecutive values is between
shortest(v) and longest(v) length

¥ Any change (v1,v2) is in some permitted set, P

* DFA
* Qi is <last value, length of current stretch>
% Q0= <dummy,0> o
*T(<a,0>,0)=<a,9+1> if g+1<=longest(a

*T(<a,0>,b)=<b,1>if (a,b) in P and
g>=shortest(q)

* All states are accepting

~ Other generalizations of
REGULAR '

% REGULAR FIX(A,[X1,..Xn],[B1,..Bm]) iff
* REGULAR(A,[X1,..Xn]) and Bi=1 iff exists
j. Xj=l
¥ Certain values must occur within the
sequence

* For example, there must be a
maintenance shift

* Unfortunately NP-hard to enforce
GAC on this

- Other generalizations of ‘
REGULAR '

%REGULAR
FIX(A,[X1,..Xn],[B1,..Bm])

*Simple reduction from
Hamiltonian path

¥Automaton A accepts any walk
on a graph
¥n=m and Bi=1 for all |

" Chomsky hierarchy

*Regulor languages

¥ Cont

¥ Cont

%* ..

Xl
Xl

-free languages

-sensitive languages

' Chomsky hierarchy

¥ Regular languages
¥ GAC propagator in O(ndQ) time
* Conext-free languages
¥ GAC propagator in O(nA3) fime and
O(nA2) space
* Asympitotically the same as parsing!

¥ Conext-sensitive languages

* Checking if a string is in the language
PSPACE-complete

¥ Undecidable to know if empty string iny

.

grammar and thus to detect domaing ™S

" Context-free grammars

* Applications
* Hierarchy configuration
* Bioinformatics
* Natual language parsing
¥ Rostering
x*

% CFG(G,[X1,...Xn]) holds iff

* X1 .. Xn iIs a string accepted by the
context free grammar G

CFG propagator

e Adop’r CYK parser

* Works on Chomsky normal form
¥ Non-tferminal -> Terminal
¥ Non-terminal -> Non-terminal Non-
terminal
¥ Using dynamic programming

* Computes Vi ||, set of possible
parsings for the ith to the jth symbols

Conclusions

* Global grammar constraints

*Specity wide range of global
constraints

*¥Provide efficient and effective
propagators automatically

*¥Nice marriage of formal
language theory and constraint
programming!

