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Value precedence

Global constraint used to deal with
value symmetry

Good example of “global”
constraint where we can use an
efficient encoding
 Encoding gives us GAC
Asymptotically optimal, achieve GAC

in O(nd) time
Good incremental/decremental

complexity



Value symmetry

Decision variables:
Col[Italy], Col[France],

Col[Austria] ...

Domain of values:
 red, yellow, green, ...

Constraints
Col[Italy]=/=Col[France]
Col[Italy]=/=Col[Austria]
   …



Value symmetry

 Solution:
Col[Italy]=green

Col[France]=red
   Col[Spain]=green
   …

Values (colours) are
interchangeable:
 Swap red with green

everywhere will still
give us a solution



Value precedence

Old idea
Used in bin-packing and graph

colouring algorithms
Only open the next new bin
Only use one new colour

Applied now to constraint
satisfaction



Value precedence

Suppose all values from 1 to m
are interchangeable
Might as well let X1=1
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Value precedence

 Suppose all values from 1 to m are
interchangeable
Might as well let X1=1
 For X2, we need only consider two

choices
 Suppose we try X2=2
 For X3, we need only consider three

choices
 Suppose we try X3=2
 For X4, we need only consider three

choices
X4=1, X4=2, X4=3



Value precedence

Global constraint
Precedence([X1,..Xn])     iff

                min({i | Xi=j or i=n+1}) <
              min({i | Xi=k or i=n+2})

                                           for all j<k
In other words

The first time we use j is before the
first time we use k



Value precedence

Global constraint
Precedence([X1,..Xn])     iff

                min({i | Xi=j or i=n+1}) <
                min({i | Xi=k or i=n+2})

E.g
Precedence([1,1,2,1,3,2,4,2,3])
But not Precedence([1,1,2,1,4])



Value precedence

Global constraint
Precedence([X1,..Xn])     iff

                min({i | Xi=j or i=n+1}) <
                 min({i | Xi=k or i=n+2})

Propagator proposed by [Law
and Lee 2004]
Pointer based propagator (alpha,

beta, gamma) but only for two
interchangeable values at a time



Value precedence
 Precedence([j,k],[X1,..Xn]) iff
                           min({i | Xi=j or i=n+1}) <

                          min({i | Xi=k or i=n+2})

Of course
Precedence([X1,..Xn]) iff

Precedence([i,j],[X1,..Xn]) for all i<j
Precedence([X1,..Xn]) iff

Precedence([i,i+1],[X1,..Xn]) for all i



Value precedence
 Precedence([j,k],[X1,..Xn]) iff
                           min({i | Xi=j or i=n+1}) <

                          min({i | Xi=k or i=n+2})

Of course
 Precedence([X1,..Xn]) iff Precedence([i,j],[X1,..Xn]) for

all i<j

 But this hinders propagation
 GAC(Precedence([X1,..Xn])) does strictly more

pruning than GAC(Precedence([i,j],[X1,..Xn])) for all i<j
 Consider

X1=1, X2 in {1,2}, X3 in {1,3} and X4 in {3,4}



Puget’s method

 Introduce Zj to record first time
we use j

Add constraints
Xi=j implies Zj <= i
Zj=i implies Xi=j
Zi < Zi+1



Puget’s method

 Introduce Zj to record first time
we use j

Add constraints
Xi=j implies Zj < i
Zj=i implies Xi=j
Zi < Zi+1

Binary constraints
easy to implement



Puget’s method

 Introduce Zj to record first time we
use j

Add constraints
Xi=j implies Zj < I
 Zj=i implies Xi=j
 Zi < Zi+1

 Unfortunately hinders propagation
AC on encoding may not give GAC

on Precedence([X1,..Xn])
Consider X1=1, X2 in {1,2}, X3 in {1,3},

X4 in {3,4}, X5=2, X6=3, X7=4



Propagating Precedence
Simple ternary encoding
 Introduce sequence of variables, Yi
Record largest value used so far
Y1=0



Propagating Precedence
Simple ternary encoding
Post sequence of constraints

C(Xi,Yi,Yi+1)  for each 1<=i<=n

   These hold iff

           Xi<=1+Yi and Yi+1=max(Yi,Xi)



Propagating Precedence
 Simple ternary encoding
 Post sequence of constraints
 Easily implemented within most solvers

 Implication and other logical primitives
GAC-Schema (alias “table” constraint)
…



Propagating Precedence
Simple ternary encoding
Post sequence of constraints
C(Xi,Yi,Yi+1)  for each 1<=i<=n
This decomposition is Berge-acyclic
Constraints overlap on one variable and

form a tree



Propagating Precedence
 Simple ternary encoding
 Post sequence of constraints
C(Xi,Yi,Yi+1)  for each 1<=i<=n
 This decomposition is Berge-acyclic
Constraints overlap on one variable and form

a tree
Hence enforcing GAC on the decomposition

achieves GAC on Precedence([X1,..Xn])
 Takes O(n) time
Also gives excellent incremental behaviour



Propagating Precedence
Simple ternary encoding
Post sequence of constraints
C(Xi,Yi,Yi+1)  for each 1<=i<=n
These hold iff Xi<=1+Yi and

Yi+1=max(Yi,Xi)

Consider Y1=0, X1 in {1,2,3}, X2 in {1,2,3}
and X3=3



Precedence and matrix
symmetry
Alternatively, could map into 2d

matrix
Xij=1 iff Xi=j

Value precedence now becomes
column symmetry
Can lex order columns to break all

such symmetry
Alternatively view value precedence

as ordering the columns of a matrix
model



Precedence and matrix
symmetry
Alternatively, could map into 2d

matrix
Xij=1 iff Xi=j

Value precedence now becomes
column symmetry

However, we get less pruning this
way
Additional constraint that rows have

sum of 1
Consider, X1=1, X2 in {1,2,3} and X3=1



Partial value precedence

Values may partition into
equivalence classes
Values within each equivalence class

are interchangeable

 E.g.
    Shift1=nursePaul, Shift2=nursePeter,

Shift3=nurseJane, Shift4=nursePaul ..



Partial value precedence

 Shift1=nursePaul, Shift2=nursePeter,
Shift3=nurseJane, Shift4=nursePaul ..

 If Paul and Jane have the same
skills, we can swap them (but not
with Peter who is less qualified)
 Shift1=nurseJane, Shift2=nursePeter,

Shift3=nursePaul, Shift4=nurseJane …



Partial value precedence

Values may partition into
equivalence classes

Value precedence easily
generalized to cover this case
Within each equivalence class, vi

occurs before vj for all i<j (ignore
values from other equivalence
classes)
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Partial value precedence

 Values may partition into equivalence
classes

 Value precedence easily generalized to
cover this case
 Within each equivalence class, vi occurs

before vj for all i<j (ignore values from other
equivalence classes)

 For example
 Suppose vi are one equivalence class, and ui

another
 X1=v1, X2=u1, X3=v2, X4=v1, X5=u2



Partial value precedence

 Values may partition into equivalence
classes

 Value precedence easily generalized to
cover this case
 Within each equivalence class, vi occurs

before vj for all i<j (ignore values from other
equivalence classes)

 For example
 Suppose vi are one equivalence class, and ui

another
 X1=v1, X2=u1, X3=v2, X4=v1, X5=u2
 Since v1, v2, v1 … and u1, u2, …



Variable and value
precedence
Value precedence compatible

with other symmetry breaking
methods
Interchangeable values and lex

ordering of rows and columns in
a matrix model



Conclusions

 Symmetry of interchangeable
values can be broken with value
precedence constraints

Value precedence can be
decomposed into ternary
constraints
 Efficient and effective method to

propagate
Can be generalized in many

directions
Partial interchangeability, …



Global constraints

Hardcore algorithms
Data structures
Graph theory
 Flow theory
Combinatorics
…

Computational complexity
Global constraints are often

balanced on the limits of tractability!



Computational complexity
101
 Some problems are essentially easy

 Multiplication, O(n1.58)
 Sorting, O(n logn)
 Regular language membership, O(n)

 Context free language membership, O(n3) ..
 P (for “polynomial”)

 Class of decision problems recognized by
deterministic Turing Machine in polynomial
number of steps

Decision problem
 Question with yes/no answer? E.g. is this

string in the regular language? Is this list
sorted? …



NP

NP
Class of decision problems recognized

by non-deterministic Turing Machine
in polynomial number of steps

Guess solution, check in polynomial
time

 E.g. is propositional formula Ψ
satisfiable? (SAT)
Guess model (truth assignment)
Check if it satisfies formulae in polynomial

time



NP

 Problems in NP
Multiplication
 Sorting
 ..
 SAT
3-SAT
Number partitioning
K-Colouring
Constraint satisfaction
…



NP-completeness

 Some problems are
computationally as hard as any
problem in NP
 If we had a fast (polynomial) method

to solve one of these, we could solve
any problem in NP in polynomial time

 These are the NP-complete problems
SAT (Cook’s theorem: non-deterministic TM

=> SAT)
3-SAT
….



NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

 in NP

NP-hard (it’s as hard as anything else
in NP)



NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

 in NP
Polynomial witness for a solution
E.g. SAT, 3-SAT, number partitioning, k-

Colouring, …

NP-hard (it’s as hard as anything else
in NP)



NP-completeness

 To demonstrate a problem is NP-
complete, there are two proof
obligations:

NP-hard (it’s as hard as anything else
in NP)
Reduce some other NP-complete to it
 That is, show how we can use our problem

to solve some other NP-complete problem
At most, a polynomial change in size of

problem



Global constraints are NP-
hard
Can solve 3SAT using a single

global constraint!

Given 3SAT problem in N vars and M
clauses

3SAT([X1,…Xn]) where n=N+3M+2
Constraint holds iff X1=N, X2=M,
X_2+i is 0/1 representing value

assigned to xi
X_2+N+3j, X_2+N+3j+1 and X_2+N+3j+2

represents jth clause



Our hammer
 Use tools of

computational
complexity to
study global
constraints



Questions to ask?

 GACSupport? is NP-complete
 Does this value have support?
 Basic question asked within many

propagators

 MaxGAC? is DP-complete
 Are these domains the maximal

generalized arc-consistent domains?
 Termination test for a propagator
 DP = NP u coNP
 Propagation “harder” than solving

the problem!



Questions to ask?

 IsItGAC? is NP-complete
 Are the domains GAC?
 Wakeup test for a propagator

 NoGACWipeOut? is NP-complete
 If we enforce GAC, do we not get a

wipeout?
 Used in many reductions

 GACDomain? is NP-hard
 Return the maximal GAC domains
 What a propagator actually does!



Relationships between
questions
NoGACWipeOut = GACSupport =

GACDomain
NoGACWipeOut in P <-> GACDomain

in P
NoGACWipeOut in NP <->

GACDomain in NP

GACDomain in P => MaxGAC in P
=> IsItGAC in P

 IsItGAC in NP => MaxGAC in NP =>
GACDomain in NP
Open if arrows cannot be reversed!



Constraints in practice

Some constraints proposed in
the past are intractable
NValues(N,X1,..Xn)
CardPath(N,[X1,..,Xn],C)
…



NValues

NValues(N,X1,..,Xm)
N values used in
X1,…,Xm
Useful for resource
allocation



NValues
NValues(Y,X1,..,Xn)

Reduction of 3SAT to NValues
3SAT problem in N vars, M clauses
Xi in {i,-i} for 1 ≤ i ≤ N
XN+s in {i,-j,k} if s-th clause is:  (i or -j or k)
 Y= N
Hence 3SAT has a solution =>
NoGACWipeOut answers “yes”



NValues
NValues(N,X1,..,Xm)

Reduction of 3SAT to NValues
3SAT problem in n vars, l clauses
Xi in {i,-i} for 1 ≤ i ≤ n
Xn+s in {i,-j,k} if s-th clause is:  (i or -j or k)
N = n
Hence 3SAT has a solution <=>
NoGACWipeOut answers “yes”
Enforce lesser level of local consistency (e.g.
BC)



Generalizing constraints

Take a tractable constraint
GCC([X1,..,Xn],[l1,..,lm],[u1,..,um])
Value j occurs between lj and uj
times in X1,..,Xn
Generalize some constants to
variables
E.g. GCC([X1,..,Xn],[O1,..,Om])
NP-hard to enforce GAC!



Generalizing constraints

GCC([X1,..,Xn],[O1,..,Om])
Reduction from 1in3SAT on positive
clauses
If jth clause is (x or y or z) then Xj in
{x,y,z}
If x occurs k times in all clauses then
Ox in {0,k}
Hence 1in3SAT has a solution iff
NoGACWipeOut answers “yes”
Thus enforcing GAC is NP-hard



Meta-constraints

Global constraint used in
sequencing problems

CardPath(C,[X1,..Xn],N) iff
C(Xi,..Xi+k) holds N times
 E.g. number of changes is

CardPath(=/=,[X1,..Xn],N)
 Fixed parameter tractable
 k fixed, GAC takes O(nd^k) time
 k = O(n), GAC is NP-hard even when

C is polynomial to test



Meta-constraints

CardPath(C,[X1,..Xn],N) iff
C(Xi,..Xi+k) holds N times
Reduce 3SAT in N variables and M

clauses to CardPath where k=N+2
NM vars Xi to represent repeated truth

assignment
M vars Yj to represent jth clause
C(X1,..,XN,Yj,X1’) iff Yj=k and Xk=1 and

X1=X1’
   or Yj=-k and Xk=0 and X1=X1’
C(X2,..,XM.Yj,X1’,X2’) iff X2=X2’
 ..



Conclusions

Computational complexity is a
useful hammer to study global
constraints
Uncovers fundamental limits of
reasoning with global constraints
Lesser consistency needs to be enforced
Generalization intractable
..



Global grammar
constraints
Often easy to specify a global

constraint

ALLDIFFERENT([X1,..Xn]) iff
               Xi=/=Xj for i<j

Difficult to build an efficient and
effective propagator
 Especially if we want global reasoning



Global grammar
constraints
 Promising direction initiated is to

specify constraints via
automata/grammar

 Sequence of variables =
             string in some formal language
 Satisfying assignment =
             string accepted by the

grammar/automata

Global constraints meets 
formal language theory



REGULAR constraint

 REGULAR(A,[X1,..Xn]) holds iff
X1 .. Xn is a string accepted by the

deterministic finite automaton A
Proposed by Pesant at CP 2004
GAC algorithm using dynamic

programming
However, DP is not needed since

simple ternary encoding is just as
efficient and effective



REGULAR constraint
Deterministic finite automaton (DFA)
<Q,Sigma,T,q0,F>
Q is finite set of states
 Sigma is alphabet (from which strings formed)
 T is transition function: Q x Sigma -> Q
q0 is starting state
 F subseteq Q are accepting states

DFAs accept precisely regular languages
Regular language can be specified by rules of

the form:
NonTerminal -> Terminal | Terminal NonTerminal



REGULAR constraint
DFAs accept precisely regular languages
Regular language can be specified
    by rules of the form:

NonTerminal -> Terminal
NonTerminal -> Terminal NonTerminal |
                            NonTerminal Terminal

- Alternatively given by regular expressions
- More limited than BNF which can express context-

free grammars



REGULAR constraint
 Regular language

 S -> 0 | 0A| AB | AC  | 1B | 1
 A -> 0 | 0A
 B -> 1 | 1B
 C -> 1 | 1C | 0 | 0A

DFA
 Q={q0,q1,q2}
 Sigma={0.1}
 T(q0,0)=q0. T(q0,1)=q1
 T(q1,0)=q2, T(q1,1)=q1
 T(q2,0)=q2
 F={q0,q1,q2}



REGULAR constraint
 Regular language

 S -> 0 | 0A| AB | AC  | 1B | 1
 A -> 0 | 0A
 B -> 1 | 1B
 C -> 1 | 1C | 0 | 0A

DFA
 Q={q0,q1,q2}
 Sigma={0.1}
 T(q0,0)=q0. T(q0,1)=q1
 T(q1,0)=q2, T(q1,1)=q1
 T(q2,0)=q2
 F={q0,q1,q2}

CONTIGUITY
constraint



REGULAR constraint

Many global constraints are
instances of REGULAR
AMONG, CONTIGUITY, LEX,

PRECEDENCE, STRETCH, ..
Domain consistency can be

enforced in O(ndQ) time using
dynamic programming
Contiguity example: {0,1}, {0}, {1},

{0,1}, {1}



REGULAR constraint

 REGULAR constraint can be
encoded into ternary constraints

 Introduce Qi+1
 state of the DFA after the ith transition

 Then post sequence of constraints
C(Xi,Qi,Qi+1) iff
   DFA goes from state Qi to Qi+1 on

symbol Xi



REGULAR constraint

 REGULAR constraint can be
encoded into ternary constraints

Constraint graph is Berge-acyclic
Constraints only overlap on one

variable
 Enforcing GAC on ternary constraints

achieves GAC on REGULAR in O(ndQ)
time



REGULAR constraint

 PRECEDENCE([X1,..Xn]) iff
min({i | Xi=j or i=n+1}) < min({i | Xi=k or

i=n+2}) for all j<k

 States of DFA represents largest
value so far used
 T(Si,vj)=Si if j<=i
 T(Si,vj)=Sj if j=i+1
 T(Si,vj)=fail if j>i+1
 T(fail,v)=fail



REGULAR constraint

 PRECEDENCE([X1,..Xn]) iff
min({i | Xi=j or i=n+1}) < min({i | Xi=k or

i=n+2}) for all j<k
 States of DFA represents largest

value so far used
 T(Si,vj)=Si if j<=i
 T(Si,vj)=Sj if j=i+1
 T(Si,vj)=fail if j>i+1
 T(fail,v)=fail
REGULAR encoding of this is just these

transition constraints (can ignore fail)



REGULAR constraint
STRETCH([X1,..Xn]) holds iff
Any stretch of consecutive values is

between shortest(v) and longest(v)
length

Any change (v1,v2) is in some permitted
set, P

For example, you can only have 3
consecutive night shifts and a night shift
must be followed by a day off



REGULAR constraint
 STRETCH([X1,..Xn]) holds iff
Any stretch of consecutive values is between

shortest(v) and longest(v) length
Any change (v1,v2) is in some permitted set, P

DFA
Qi is <last value, length of current stretch>
Q0= <dummy,0>
 T(<a,q>,a)=<a,q+1> if q+1<=longest(a)
 T(<a,q>,b)=<b,1> if (a,b) in P and

q>=shortest(a)
All states are accepting



Other generalizations of
REGULAR
 REGULAR FIX(A,[X1,..Xn],[B1,..Bm]) iff
REGULAR(A,[X1,..Xn]) and Bi=1 iff exists

j. Xj=I
Certain values must occur within the

sequence
 For example, there must be a

maintenance shift
Unfortunately NP-hard to enforce

GAC on this



Other generalizations of
REGULAR
REGULAR

FIX(A,[X1,..Xn],[B1,..Bm])
Simple reduction from

Hamiltonian path
Automaton A accepts any walk

on a graph
n=m and Bi=1 for all i



Chomsky hierarchy

Regular languages
Context-free languages
Context-sensitive languages
 ..



Chomsky hierarchy

 Regular languages
GAC propagator in O(ndQ) time

Conext-free languages
GAC propagator in O(n^3) time and

O(n^2) space
Asymptotically the same as parsing!

Conext-sensitive languages
Checking if a string is in the language

PSPACE-complete
Undecidable to know if empty string in

grammar and thus to detect domain
wipeout and enforce GAC!



Context-free grammars

Applications
Hierarchy configuration
Bioinformatics
Natual language parsing
Rostering
…

CFG(G,[X1,…Xn]) holds iff
X1 .. Xn is a string accepted by the

context free grammar G



CFG propagator

Adapt CYK parser
Works on Chomsky normal form
Non-terminal -> Terminal
Non-terminal -> Non-terminal Non-

terminal
 Using dynamic programming
Computes V[i,j], set of possible

parsings for the ith to the jth symbols



Conclusions

Global grammar constraints
Specify wide range of global

constraints
Provide efficient and effective

propagators automatically
Nice marriage of formal

language theory and constraint
programming!


