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Reminder:	  NFA	  
(non-‐determinis2c	  finite	  automaton)	  

•  A NFA is defined by: 
–  A finite set of states Q 

–  An alphabet Σ (set of input symbols) 

–  A transition function Δ: Q x Σ → power set of Q 
–  An initial state qinit ∈ Q 
–  A set of accepting states F ⊆ Q 

The transition function Δ is allowed to be partial 



Reminder:	  NFA	  
(non-‐determinis2c	  finite	  automaton)	  

•  Given a word w = w1 w2 … wn over the alphabet Σ	  an	  and	  NFA	  ω 
w is accepted by ω 

iff ∃ q0 q1 … qn in Q such:     there is a sequence of states 

–  q0 = qinit                starting at qinit 
–  qi+1 = Δ(qi,wi+1)  with i ∈ [0,n-1]   compatible with the transition function 

–  qn ∈ F          ending in an accepting state 



Reminder:	  DFA	  
(determinis2c	  finite	  automaton)	  

•  A DFA is defined by: 
–  A finite set of states Q 

–  An alphabet Σ (set of input symbols) 

–  A transition function δ: Q x Σ → Q 
–  An initial state qinit ∈ Q 
–  A set of accepting states F ⊆ Q 

The transition function δ is allowed to be partial 



Reminder:	  DFA	  
(determinis2c	  finite	  automaton)	  

•  Given a word w = w1 w2 … wn over the alphabet Σ	  an	  and	  NFA	  ω 
w is accepted by ω 

iff ∃ q0 q1 … qn in Q such:     there is a sequence of states 

–  q0 = qinit                starting at qinit 
–  qi+1 = δ(qi,wi+1)  with i ∈ [0,n-1]   compatible with the transition function 

–  qn ∈ F          ending in an accepting state 



The	  ini2al	  general	  idea	  

•  Use finite automata as a general way for describing constraints 

    based on the one to one correspondence between 

    solutions of a constraint 

    and 

    words accepted by a finite automaton 

Implicit assumption: both the automaton and the constraint 
are use a sequence of same length	  



The	  main	  difference	  

•  Use finite automata as a general way for describing constraints 
    based on a one to one correspondence between 
    solutions of a constraint 
    and 
    words accepted by a finite automaton 

•  Go 

from checking whether a sequence of fixed letters is accepted 
by an automaton or not 

to checking whether a sequence of variables has at least one 
assignment accepted by an automaton or not 



Remark	  1	  	  

•  Deal with finite sequences 
 since 
 post constraints on finite sequences of variables 

 You may say that everything is easy with finite sequences 



Remark	  2	  	  

•  In the context of Constraint Programming 

no need for determinizing a non-deterministic automaton 

may lead to use smaller automata	  



Remark	  3	  	  

•  Modelling constraints with automata 
 is independent from the solving technology 

⇒

•  Can use different solving techniques like CP, LP, LS 

        but even more important 

•  Can develop concept/theory which will be 
useful for more than one technology 
(e.g. see later one glue matrix) 



Remark	  4	  	  

•  Using automata has a compositional flavor since: 

–  conjunction of constraints :   product   of automata 

–  disjunction   of constraints :   union    of automata 

–  negation    of constraint  :   complement  of automata 

–  reification    of constraint  :   combination  of automata 



Warning:	  limita2ons	  	  

•  Expressivity limitation 
–  Restrict ourselves to constraints that can be checked by 

scanning once through their variables (e.g. no DFS), 
–  The size of the automaton has to be bounded by a polynomial 

of the number of variables (e.g. not applicable for alldifferent) 

•  Operational limitation 
–  For some constraints for which there exists a specialized 

algorithm achieving GAC we don’t achieve GAC 



Map	  (precursors)	  

•  Constraint networks 
–  N. R. Vempaty [AAAI-92] 

Solving constraint satisfaction problems using finite automata 
–  J. Amilhastre [PhD-99, Montpellier] 

Représentation par automate d’ensemble de solutions de 
problèmes de satisfaction de contraintes 
(in the context of configuration) 

•  Arithmetic constraints 
–  B. Boigelot, P. Wolper [ICLP-02] 

Representing arithmetic constraints with finite automata: 
an overview 



Map	  (early	  work)	  

•  Global constraints 

–  G. Pesant [workshop CP-03] [CP-04] 
A regular language membership constraint for finite sequences of 
variables (regular constraint) 

–  M. Carlsson, N. Beldiceanu 
Revisiting the Lexicographic Ordering Constraint [TechReport-02] 
From constraints to finite automata to filtering algorithms 
[ESOP-04] 
Deriving Filtering Algorithms from Constraint Checkers [CP-04] 
(automaton with accumulators constraint) 



Map	  (follow	  up)	  

•  Global constraints with cost 

–  S. Demassey, G. Pesant, L.-M. Rousseau [CPAIOR-05] 
Constraint Programming Based Column Generation for 
Employee Timetable (cost-regular constraint, one 
single criteria) 

–  J. Menana, S. Demassey [CPAIOR-09] 
Sequencing and Counting with the multicost-regular 
Constraint (more than one criteria) 



Map	  (follow	  up)	  

•  Reformulation to Linear Programming 

–  M.-C. Côté, B. Gendron, L.-M. Rousseau [CPAIOR-07] 
Modeling the Regular Constraint with Integer Programming 
(regular constraint) 

–  E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, 
M. A. F. Rodriguez, J. Pearson, H. Simonis [CPAIOR-16] 
Time-Series Constraints: Improvements and Application in CP 
and MIP Contexts (automaton with accumulators constraint) 



Advice	  for	  crea2ng	  an	  automaton	  

•  Automata without accumulator 
–  Steps for creating an automaton 
–  Examples 

•  Automata with accumulators (see later on with the help of 
transducers) 



Steps	  for	  crea2ng	  an	  automaton	  

•  Identify the input alphabet 
(most the time easy, but sometimes tricky) 

•  Identify all states  
–  Find the meaningful points wrt what we want to modelize 

(the most difficult part) 
–  Have a systematic method for generating all states 

•  Add transitions 
(easy if all states were identified correctly) 

But don’t try to define an automaton 
before having a clear view of all its states	  



Exercise	  1	  (odd	  numbers)	  

Construct	  and	  automaton	  that	  only	  accepts	  binary	  odd	  

numbers	  (e.g.	  1,	  001,	  101)	  



Exercise	  1	  (odd	  numbers)	  

Construct	  and	  automaton	  that	  only	  accepts	  binary	  odd	  

numbers	  (e.g.	  1,	  001,	  101)	  

Input alphabet  {0,1} 

Observation   a binary odd number finishes with a 1, 
     consequently remember last letter. 

Set of states   s0: if last letter was a 0 (initial, non accepting) 
 s1: if last letter was a 1 (accepting) 



Exercise	  2	  (geXng	  the	  states)	  

Construct an automaton that only accepts binary numbers 
that have an even number of 0 and an even number of 1 
(e.g. 11, 0110, 00). 



Input alphabet  {0,1} 

Observation   need to remember if we encountered 
     an even/odd number of 0/1, 
     so need two counters: 
     - one to 0 if even number of 0, to 1 otherwise 
     - one to 0 if even number of 1, to 1 otherwise 
     make the cartesian product of the values of 

      these two counters  

Set of states   s00: even number of 0, even number of 1 
 s01: even number of 0, odd   number of 1 
 s10: odd   number of 0, even number of 1 
 s11: odd   number of 0, odd   number of 1 

Construct an automaton that only accepts binary numbers 
that have an even number of 0 and an even number of 1 
(e.g. 11, 0110, 00). 



Exercise	  3	  (lets	  count)	  

Construct an automaton that only accepts binary numbers 
with at most two consecutive 1 
(e.g. 00, 0110001011). 



Construct an automaton that only accepts binary numbers 
with at most two consecutive 1 
(e.g. 00, 0110001011). 

Input alphabet  {0,1} 

Observation   since at most two consecutive 1 we have 
     to count number of consecutive 1. 
     since cannot exceed two consecutive 1, 
     count only up to 2 

Set of states   s0: the last suffix is 0 
 s1: the last suffix is 01 
 s2: the last suffix is 011 

Exercise	  3	  (lets	  count)	  



Exercise	  4	  (knowing	  where	  to	  go	  back)	  

Construct an automaton that only accepts words of the 
form a (bb)* bc . 



Exercise	  4	  (knowing	  where	  to	  go	  back)	  

Construct an automaton that only accepts words of the 
form a (bb)* bc . 

Input alphabet  {a,b,c} 

Observation   enumerate the different prefixes of the 
     word to recognize (except the word itself) 

Set of states   sε : Recognize ε
 sa(bb)*  : Recognize a followed by an even 
     number of b 
 sa(bb)*b  : Recognize a followed by an odd 
     number of b 



Exercise	  5	  (limi2ng	  back-‐arcs)	  

Construct an automaton that only accepts words finishing 
with 1101. 



Exercise	  5	  (no	  back-‐arcs)	  

Construct an automaton that only accepts words finishing 
with 1101. 

Input alphabet  {0,1} 

Observation   enumerate the different prefixes of the 
     suffix to recognize (except the suffix itself) 
     use non-determinism to limit back-arcs 

Set of states   sε : Recognize ε
 s1   : Recognize 1 
 s11   : Recognize 11 
 s110 : Recognize 110 



Exercise	  6	  (represen2ng	  a	  func2on)	  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 



Exercise	  6	  (represen2ng	  a	  func2on)	  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 

Input alphabet  {1,2,3,4} 

Observation   for each potential value of min(x1,x2,…,xi) 
     (i ∈ [1,n-1]) we have a state + one accepting 
     state; use non-determinism to get the result 

Set of states   s1   : the value of min(x1,x2,…,xi) is 1 
 s2   : the value of min(x1,x2,…,xi) is 2 
 s3  : the value of min(x1,x2,…,xi) is 3 
 s4  : the value of min(x1,x2,…,xi) is 4 
 t  : the only accepting state 



Exercise	  6	  (represen2ng	  a	  func2on)	  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 

Can use the same construction for any function	  

Part 
related to 
x1 x2 … xn-1 	  

Part 
related to 
xn 	  



Exercise	  7	  (lexicographic	  ordering)	  

Construct an automaton for the constraint 
lex_lesseq(VECTOR1,VECTOR2) 

(VECTOR1, VECTOR2 are two lists of variables of same 
length such that VECTOR1 is lexicographically less 
than or equal to VECTOR2. 



Exercise	  7	  (lexicographic	  ordering)	  



Lexicographic	  
ordering	  example:	  
breaking	  symmetry	  
for	  a	  reversible	  

sequence	  



Exercise	  8	  (value	  ordering)	  



Exercise	  8	  (value	  ordering)	  

INT_VALUE_PRECEDE_CHAIN( 
[1,2,3,4,5,6,7,8,9], 
[1,2,1,2,3,4,5,6,7,8,9])	  



Exercise	  8	  (value	  ordering)	  

STATE si : 
•  each value val1,val2,…,vali was already encountered at least once 
•  value vali+1 was not yet encountered 	  



STATE si : 
•  each value 
  val1,val2,…,vali was 
  already encountered 
  at least once 
•  value vali+1 was not 
  yet encountered 	  

Exercise	  8	  
(value	  ordering)	  



Construc2ng	  an	  automaton	  
(enumera(ng	  the	  states)	  

Quite often one can obtain the states by making the 
cartesian product of several accumulator values 

You get a polynomial or pseudo-polynomial number of 
states, not very useful in practice, but: 
-  Can be used to show that GAC can be achieved in polynomial 

time …  
-  Can be used to test the effect of having a GAC filtering 

algorithm without implementing a dedicated filtering algorithm 



States	  as	  the	  cartesian	  product	  of	  
accumulators	  :	  example	  1	  

change(NCHANGE, [V1,V2,…,Vn]) 
NCHANGE is the number of times that Vi≠Vi+1 holds 

Enumerating the states of the automaton of the change constraint: 

Use two accumulators: 
•  i: last value that was encountered 
•  j: number of already encountered constraints that hold of the 

   form Vi≠Vi+1  



Assume variables are in [0,3]	  

•  i: last value that was encountered 
•  j: number of already encountered 

   constraints that hold of the 
   form Vi≠Vi+1  



Other	  examples	  of	  constraints	  for	  
which	  the	  states	  is	  the	  cartesian	  
product	  of	  several	  accumulators	  

increasing_nvalue (increasing + nvalue) 
 (number of distinct values already encountered, 

     last encountered value) 

stretch_path (restrict the min/max length of 
                  maximum sequences of identical values) 
 (value of a strech, occurrence in the stretch) 



Context	  underlying	  the	  crea2on	  
of	  automata	  constraints	  

•  Application 
(expressing regulation rules for time table) 

•  Automata with accumulator as a programming language 
(writing compact checkers) 

•  Automata with cost matrix 
(optimisation) 

•  Theory 
(go along the Chomsky hierarchy: from regular to grammar) 



Availability	  of	  automata	  constraints	  

•  regular:        most CP systems 
          (e.g. CHOCO, gecode, SICStus, 
            MiniZinc) 

•  cost regular, multi cost regular:  CHOCO 

•  automata with accumulators:   SICStus, SWI 
          (with the same syntax) 

    and all of them can be reformulated in linear programming 

but have to write a program in a specific language 
for generating the automaton 



Context	  underlying	  the	  crea2on	  
of	  automata	  constraints	  (our	  focus)	  

•  Application 
(expressing regulation rules for time table) 

•  Automata with accumulator as a programming language 
(writing compact checkers) 

•  Automata with cost matrix 
(optimisation) 

•  Theory 
(go along the Chomsky hierarchy: from regular to grammar) 



Context	  

•  Providing efficient filtering algorithms is challenging since: 
–  There are a lot of global constraints 
–  Filtering algorithms are far from obvious 
–  Easy to introduce errors or to forget cases 

•  Want to systematically derive correct filtering algorithms from 
first principle avoiding creativity 

As a first principle select a 
constraint checker for the ground case	  



Automata	  with	  accumulators	  

•  A model of automaton (with accumulators) for writing 
compact constraint checkers 

•  A reformulation of an automaton as a conjunction of 
signature and transition constraints 

•  A partial characterization of conditions for obtaining 
generalized arc-consistency for such constraint 



Automata	  with	  accumulators	  

•  A model of automaton (with accumulators) for writing 
compact constraint checkers 

•  A reformulation of an automaton as a conjunction of 
signature and transition constraints 

•  A partial characterization of conditions for obtaining 
generalized arc-consistency for such constraint 



Example	  of	  constraint	  checker	  
•  Check is achieved by scanning once through the variables 

without using any data structure 

EXAMPLE 
counting the number of inflexions	  

maximal occurrences	  



Example	  of	  constraint	  checker	  (con2nued)	  



Constraint	  checker	  
•  Use a deterministic automaton where all states are accepting 

–  use an accumulator for counting number of inflexions 
(updated while triggering certain transitions) 

–  final value of accumulator is returned 
(green box) 

State semantics 
 s : stationary mode  =* 
 r :  increasing mode  <{<|=}* 
 t :  decreasing mode >{>|=}*	  



Transi2ons	  
•  Transitions are labelled by a value in [val1,val2,…,valp], 

 where each value corresponds to a condition between a 
subset of variables of the original constraint: 
 - P0,P1,…,Pm are these subsets (signature arguments) 
 - to the i-th subset corresponds the signature variable Si 
 - the link between si and the variables of Pi is done according 
   to p mutually incompatible conditions: 
   C1(Pi) ⇔ si = val1 

   C2(Pi) ⇔ si = val2 
   … … … … … … 
   Cp(Pi) ⇔ si = valp 

This conjunction is called the signature constraint 
and is denoted Ψ(Pi , si). 



Example	  (transi2ons	  of	  inflexion)	  
inflexion(y, [x0,x1,x2,x3])  P0=〈x0,x1〉  P1=〈x1,x2〉  P2=〈x2,x3〉

Ψ(si,xi,xi+1) :  (xi > xi+1 ⇔	  si = 0) ∧ (xi = xi+1 ⇔	  si = 1) ∧ (xi < xi+1 ⇔	  si = 2) 



Example	  of	  descrip2on	  of	  an	  automaton	  
inflexion(y, [x0,x1,…,xn-1])  P0=〈x0,x1〉  P1=〈x1,x2〉  P2=〈x2,x3〉
Ψ(si,xi,xi+1) :  (xi > xi+1 ⇔	  si = 0) ∧ (xi = xi+1 ⇔	  si = 1) ∧ (xi < xi+1 ⇔	  si = 2) 

(1) Signature variables   s0,s1,…,sn-2 

(2) Signature domain   [0,2] 

(3) Signature argument   〈x0,x1〉  , 〈x1,x2〉, … , 〈xn-2,xn-1〉  

(4) Counter(s)     R (initial value = 0) 

(5) States      s, r, t (all accepting), initial state: s 

(6) Transitions     (s, 0, t),       (s, 1, s),  (s, 2, r), 
       (r, 0, t, [R+1]),     (r, 1, r),   (r, 2, r), 

        (t, 0, t),       (t, 1, t),   (t, 2, r, [R+1]), 

(7) Return constraint   y = R 



For	  inflexion(4,	  [3,3,1,4,5,5,6,5,5,6,3])	  we	  get:	  

s,	  R=0 	  {3	  =	  3	  	  ⇔ 	  s0	  =	  1} 	   	  s	  

	   	   	  {3	  >	  1	  	  ⇔ 	  s1	  =	  0} 	   	  t	  

	   	   	  {1	  <	  4	  	  ⇔ 	  s2	  =	  2} 	   	  r,	  R=1	  

	   	   	  {4	  <	  5	  	  ⇔ 	  s3	  =	  2} 	   	  r	  

	   	   	  {5	  =	  5	  	  ⇔ 	  s4	  =	  1} 	   	  r	  

	   	   	  {5	  <	  6	  	  ⇔ 	  s5	  =	  2} 	   	  r	  

	   	   	  {6	  >	  5	  	  ⇔ 	  s6	  =	  0} 	   	  t,	  R=2	  

	   	   	  {5	  =	  5	  	  ⇔ 	  s7	  =	  1} 	   	  t	  

	   	   	  {5	  <	  6	  	  ⇔ 	  s8	  =	  2} 	   	  r,	  R=3	  

	   	   	  {6	  >	  3	  	  ⇔ 	  s9	  =	  0} 	   	  t,	  R=4	  

return	  4	  

Running	  an	  automaton	  on	  a	  ground	  instance	  



From	  automata	  to	  filtering	  algorithms	  

 Simulate all potentials executions of an automaton according to 

the current domain of the variables in order to deduce 

infeasible assignments 

How do we achieve this ?   First solution : 
 By reformulating this as a 
 conjunction of signature and transition constraints 



Reformula2on	  

 Conjunction of signature and transition constraints : 

Ψ(s0 , P0) ∧  Φ(q0, K0, s0, q1, K1)      ∧
Ψ(s1 , P1) ∧  Φ(q1, K1, s1, q2, K2)      ∧
… … … … … … … … … … … … … … …

Ψ(sm-1 , Pm-1) ∧  Φ(qm-1, Km-1, sm-1, qm, Km)

where 
•	  q0   is the initial state, 

 •	  qm-1  is an accepting state, 
 •	  Ki   is a vector containing the counters 

   (K0 is the vector of  initial counters value) 

signature 
variable	  

current 
state 
variable	  

next 
state 
variable	  



Encoding	  transi2ons	  constraints	  for	  inflexion	  

Φ(q0, s0, q1, R0, R1)
( q0= 0    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0     ) ∨   

( q0= 0    ∧   s0 = 1   ∧   q1 = 0   ∧   R1 = R0     ) ∨

( q0= 0    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 1    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0 +1) ∨   

( q0= 1    ∧   s0 = 1   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 1    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 2    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0     ) ∨   

( q0= 2    ∧   s0 = 1   ∧   q1 = 2   ∧   R1 = R0     ) ∨
( q0= 2    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0 +1)

>: 0 
=: 1 
<: 2	  

s : 0 
r : 1 
t : 2	  

STATES	  

INPUT LETTERS	  

can use a table constraint  
(or logical constraints)	  



Hypergraph	  of	  the	  reformula2on	  
of	  the	  inflexion	  constraint	  

Φ(Q0, C0, S1, Q1, C1)

Ψ(S1 , VAR1, VAR2)	  



Berge	  acyclic	  hypergraph	  (constraint	  network)	  

 An hypergraph is Berge acyclic if and only if: 

 1. No more than one shared variable between any pair of 
    constraints. 

 2. The hypergraph does not contain any cycle. 

A cycle of length k (k>2) is a sequence 
(x1, E1, x2, E2, x3, …, Ek, x1)  such: 
1.  E1, E2, … , Ek are distinct edges of the hypergraph, 
2.  x1, x2, … , xk are distinct vertices of the hypergraph, 
3.  xi, xi+1 belongs to Ei (i = 1,2,…,k-1), 
4.  xk, x1 belongs to Ek . 



Intersec2on	  graph	  

 Can also check that no cycle in an hypergraph by 
checking that no cycle in the corresponding 
intersection graph. 

 The intersection graph is defined as: 

 . to each constraint corresponds a vertex 

 . to each pair of constraints sharing at least one 
  variable corresponds an edge 



Berge	  acyclic	  constraint	  network:	  
examples	  and	  counter	  examples	  



Berge	  acyclic	  constraint	  network:	  
examples	  and	  counter	  examples	  

Yes	  since:	  
No	  more	  than	  one	  variable	  in	  common	  in	  (A)	  
No	  cycle	  in	  the	  intersec2on	  graph	  (E)	  



Berge	  acyclic	  constraint	  network:	  
examples	  and	  counter	  examples	  

No	  since:	  
The	  hypergraph	  (B)	  
contains	  a	  cycle	  



Berge	  acyclic	  constraint	  network:	  
examples	  and	  counter	  examples	  

No	  since:	  
The	  CTR3	  and	  CTR4	  have	  two	  
variables	  in	  common	  in	  (C)	  	  



Berge	  acyclic	  constraint	  network:	  
examples	  and	  counter	  examples	  

Yes	  since:	  
No	  more	  than	  one	  variable	  in	  common	  in	  (D)	  
Even	  if	  the	  intersec2on	  graph	  contains	  a	  cycle	  (see	  H),	  
the	  hypergraph	  (see	  D)	  does	  not	  contain	  any	  cycle.	  



Consistency	  
•  Property : if the constraint hypergraph associated with the 

reformulation is Berge-acyclic and if we have GAC on each 
constraint then the full network is GAC [Jansen, Vilarem 88]. 

•  Observation 1 : the table constraint achieves GAC. 
•  Observation 2 : when no counter is used the transition constraint 

 is encoded with one single compact table constraint. 

 RESULT  If the automaton does not use any accumulator 
   and no intersection between the signature arguments 
   then the constraint hypergraph of the reformulation 
   is Berge-acyclic. 

    If the constraint hypergraph is Berge-acyclic 
   and the signature constraint achieves GAC 
   then the reformulation achieves GAC. 



Algorithmic	  approach	  
when	  no	  accumulator	  (Pesant)	  

•  Initialisation: unfold the automaton wrt a concrete sequence of 
variables and there respective domains into a DAG: 
–  Each layer is the set of states of the automaton 
–  Each arc represents: 

•  a transition from one state to the next state 
•  a value in the domain of a variables 

•  Forward phase: mark all vertices that can be reached from the 
initial state 

•  Backward phase: mark all vertices that can be reached from at 
least one of the final states (by reversing the arcs). 

•  Filtering phase: remove all arcs from u to v such that 
–  u not reachable from an initial state      or 
–  v cannot reach at least one of the accepting states. 



Reformula2on	  versus	  dedicated	  algorithm	  
(automaton	  +	  accumulators)	  

•  Dedicated algorithm 
-   Unfold the automaton wrt a sequence: huge graph when 

domains are not sparse (memory is a problem) 
+  For extensions of regular can record specific information to do 

better deductions (without getting the problem of loosing 
information because projecting information onto the domain of 
variables) 



Reformula2on	  versus	  dedicated	  algorithm	  
(automaton	  +	  accumulators)	  

•  Reformulation 
-   For automata with accumulators may perform poorly when 

necessary conditions are not added (the disjunction coming 
from the choice of transitions may hinder propagation) 

+  Use less memory since do not unfold the automata (note that 
the table encoding the transition constraint is the same for all 
transition constraints and note that the reformulation 
introduces only a linear number of extra variables) 

+ The reformulation introduces variables (i.e. states variables) 
that can be useful for expressing additional constraints like 
accessibility constraints (e.g. is a given state accessible ?). 



Automata	  in	  the	  global	  
constraint	  catalog	  

(without	  accumulator)	  



Automata	  in	  the	  global	  constraint	  catalog	  
(with	  accumulator)	  



Exercise:	  GAC	  for	  a	  conjunc2on	  of	  constraints	  

1.  Provide an automaton without accumulator for the 
between(A,X,B) constraint, where A,B are lists of integer values, 
and X is a list of domain variables; the between constraint 
enforces that A is lexicographically less than or equal to X and 
that X is lexicographically less than or equal to B 
(all lists have the same length) 

2. Provide an automaton without accumulator for the 
exactly_one(X,V) constraint, where X is list of domain variables 
and V is a list of distinct integers; the exactly_one constraint holds 
if exactly one variable from the list list is assigned a value in V. 

3. Provide an automaton without accumulator for the conjunction of 
between(A,X,B) and exactly_one(X,V). Does it provides GAC ? 

Hint: think about the signature constraints	  



Exercise:	  between(A,X,B)	  

Alphabet: all 9 combinations of these two groups of conditions 
(compare xi with the corresponding bounds of A and B)	  



Exercise:	  between(A,X,B)	  

e : prefixes of A, X and B are identical 
b : A is lexicographically strictly less than X 
a : X is lexicographically strictly less than B 
t  : A is lexicographically strictly less than X and 
     X is lexicographically strictly less than B  	  

State semantics:	  



Exercise:	  exactly_one(X,V)	  

Alphabet:	  



Exercise:	  exactly_one(X,V)	  

Alphabet:	  

o : did not see any value in V 
i :  exactly one variable of X is assigned a value in V	  

State semantics:	  



Exercise:	  between(A,X,B)	  and	  exactly_one(X,V)	  

First question: what is the input alphabet ?	  



Exercise:	  between(A,X,B)	  and	  exactly_one(X,V)	  

Remark: the signature /transition constraint is still a unary constraint	  



Exercise:	  between(A,X,B)	  and	  exactly_one(X,V)	  



Exercise:	  between(A,X,B)	  and	  exactly_one(X,V)	  

no	  occurrence	  of	  V	  in	  the	  prefix	   exactly	  one	  occurrence	  of	  a	  V	  in	  the	  prefix	  



Exercise:	  between(A,X,B)	  and	  exactly_one(X,V)	  



Exercise:	  Reifica2on	  of	  a	  constraint	  specified	  by	  an	  
automaton	  without	  accumulator	  

1.  Provide an automaton for the global_contiguity constraint: all 
variables are assigned value 0 or 1, and no multiple occurrences 
of 1 separated by at least one 0 

2. Provide an automaton for the negation of the global_contiguity 
constraint. 

3. From 1. and 2. construct an automaton for the reification of the 
global_contiguity constraint (it contains an additional 0/1 variables 
that is set to 1 if and only if the global_contiguity constraint holds) 



Exercise:	  automaton	  for	  global_con2guity	  



Exercise:	  automaton	  for	  the	  nega2on	  of	  
global_con2guity	  



Exercise:	  reifica2on	  of	  global_con2guity	  



Reversible	  automata	  constraints	  
and	  glue	  matrix	  (in	  the	  context	  of	  
automata	  with	  accumulators)	  

•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 



Reversible	  constraint	  



Reversible	  constraint	  (example)	  

nocc_001(N, [x1, x2, … , xn])	  

reverse ? 



Reversible	  constraint	  (example)	  

nocc_001(N, [x1, x2, … , xn])	  

reverse ? 

nocc_100(N, [x1, x2, … , xn])	  



Reversible	  constraint	  (example)	  

nocc_001(N, [x1, x2, … , xn])	   nocc_100(N, [x1, x2, … , xn])	  

Can be computed mechanically if only one accumulator and use 
only incrementation (but may be non-deterministic and contains ε)	  



Reversible	  constraint	  (other	  example)	  

Not always same number of states	  



Reversible	  constraints	  in	  the	  context	  
of	  global	  constraints:	  constraints	  

on	  sequences	  

In practice : 

•  Many cases where a constraint is its own reverse 

•  When a constraint is not its own reverse most of the time 
the corresponding automata are symmetric 
(i.e., permute some letters of the alphabet) 



Reversible	  constraints:	  nb_peak	  

Example where a 
constraint is its 
own reverse	  



Reverse	  of	  max_decreasing_slope	  

max_decreasing_slope example	   max_decreasing_slope automaton	  



Reverse	  of	  max_decreasing_slope	  
is	  max_increasing_slope	  

max_decreasing_slope automaton	   max_increasing_slope automaton	  



•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 



Glue	  matrix	  for	  a	  constraint	  and	  its	  reverse:	  
what	  it	  is	  all	  about?	  

Consider counting peaks in a sequence: 



Glue	  matrix	  for	  a	  constraint	  and	  its	  reverse:	  
what	  it	  is	  all	  about?	  

Consider counting peaks in a sequence: 



Glue	  matrix	  for	  a	  constraint	  and	  its	  reverse:	  
what	  it	  is	  all	  about?	  

Consider counting peaks in a sequence: 

REMARK:	  for	  a	  signature	  constraint	  of	  arity	  k,	  the	  prefix	  and	  suffix	  overlap	  by	  k-‐1	  posi2ons	  



Glue	  matrix	  for	  a	  constraint	  and	  its	  reverse:	  
what	  it	  is	  all	  about?	  

Count the number of occurrence of a pattern in a word 
using an automaton with accumulators. 

Characterize the prefix-suffix relationship and use it 
in different contexts, e.g. : 

 •	  constraint programming 
 •	  local search 
 •	  linear programming (most likely) 



















(with	  a	  signature	  constraint	  of	  arity	  one)	  

The	  global	  constraint	  catalog	  contains	  a	  number	  of	  glue	  matrices	  



•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 







Enhancing	  bound	  on	  the	  full	  sequence	  
by	  propaga2ng	  the	  informa2on	  

from	  the	  prefix	  (constraint	  programming)	  

•  Evaluating a bound on the full sequence is not enough as soon as 
we fix variables during the labelling (want to take into account the 
effect of the fixed variables on the bound on the full sequence) 

•  Solution 
–  Set bound on the full sequence 
–  Set bound of each prefix and each suffix (linear) 
–  Use the glue matrix to link each prefix with its complement 

(remark: the automaton with accumulator constraint will also 
update the bound) 



Enhancing	  bound	  on	  the	  full	  
sequence:	  example	  

•  Consider the peak constraint 
•  Maximum number of peaks on 
•  a sequence of length n: (n-1) div 2 

(e.g., 010, 01010) 
•  Set bound on all prefix and suffix + 

 glue constraint 

	  (Qi	  =	  t 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  t	  	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  t 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  u	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  u 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  t	  	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  u 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  u	  	  	  !	  	  	  B	  =	  1) 	  	  	  	  	  /\	  
	  N	  =	  Ci	  +	  Cj	  +	  B	  

Glue constraint (Qi,Qj,Ci,Cj,N):	  



Enhancing	  bound	  on	  the	  full	  
sequence:	  example	  

•  Maximum number of peaks on sequence  00001000 x1,x2,x3,x4 : 
–  Maximum number of peaks on 0000100: 1 (remark: go down) 
–  Maximum number of peaks on 0 x1,x2,x3,x4: (5-1)div 2=2 
–  Maximum number of peak on the full sequence (using the glue 

constraint to channel the information from the prefix to the full 
sequence is 1+2). 

	  (Qi	  =	  t 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  t	  	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  t 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  u	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  u 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  t	  	  	  	  !	  	  	  B	  =	  0) 	  	  	  	  	  /\	  
	  (Qi	  =	  u 	  	  	  	  /\	  	  	  	  	  	  Qj	  =	  u	  	  	  !	  	  	  B	  =	  1) 	  	  	  	  	  /\	  
	  N	  =	  Ci	  +	  Cj	  +	  B	  

Glue constraint (Qi,Qj,Ci,Cj,N):	  










