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Reminder:	
  NFA	
  
(non-­‐determinis2c	
  finite	
  automaton)	
  

•  A NFA is defined by: 
–  A finite set of states Q 

–  An alphabet Σ (set of input symbols) 

–  A transition function Δ: Q x Σ → power set of Q 
–  An initial state qinit ∈ Q 
–  A set of accepting states F ⊆ Q 

The transition function Δ is allowed to be partial 



Reminder:	
  NFA	
  
(non-­‐determinis2c	
  finite	
  automaton)	
  

•  Given a word w = w1 w2 … wn over the alphabet Σ	
  an	
  and	
  NFA	
  ω 
w is accepted by ω 

iff ∃ q0 q1 … qn in Q such:     there is a sequence of states 

–  q0 = qinit                starting at qinit 
–  qi+1 = Δ(qi,wi+1)  with i ∈ [0,n-1]   compatible with the transition function 

–  qn ∈ F          ending in an accepting state 



Reminder:	
  DFA	
  
(determinis2c	
  finite	
  automaton)	
  

•  A DFA is defined by: 
–  A finite set of states Q 

–  An alphabet Σ (set of input symbols) 

–  A transition function δ: Q x Σ → Q 
–  An initial state qinit ∈ Q 
–  A set of accepting states F ⊆ Q 

The transition function δ is allowed to be partial 



Reminder:	
  DFA	
  
(determinis2c	
  finite	
  automaton)	
  

•  Given a word w = w1 w2 … wn over the alphabet Σ	
  an	
  and	
  NFA	
  ω 
w is accepted by ω 

iff ∃ q0 q1 … qn in Q such:     there is a sequence of states 

–  q0 = qinit                starting at qinit 
–  qi+1 = δ(qi,wi+1)  with i ∈ [0,n-1]   compatible with the transition function 

–  qn ∈ F          ending in an accepting state 



The	
  ini2al	
  general	
  idea	
  

•  Use finite automata as a general way for describing constraints 

    based on the one to one correspondence between 

    solutions of a constraint 

    and 

    words accepted by a finite automaton 

Implicit assumption: both the automaton and the constraint 
are use a sequence of same length	
  



The	
  main	
  difference	
  

•  Use finite automata as a general way for describing constraints 
    based on a one to one correspondence between 
    solutions of a constraint 
    and 
    words accepted by a finite automaton 

•  Go 

from checking whether a sequence of fixed letters is accepted 
by an automaton or not 

to checking whether a sequence of variables has at least one 
assignment accepted by an automaton or not 



Remark	
  1	
  	
  

•  Deal with finite sequences 
 since 
 post constraints on finite sequences of variables 

 You may say that everything is easy with finite sequences 



Remark	
  2	
  	
  

•  In the context of Constraint Programming 

no need for determinizing a non-deterministic automaton 

may lead to use smaller automata	
  



Remark	
  3	
  	
  

•  Modelling constraints with automata 
 is independent from the solving technology 

⇒

•  Can use different solving techniques like CP, LP, LS 

        but even more important 

•  Can develop concept/theory which will be 
useful for more than one technology 
(e.g. see later one glue matrix) 



Remark	
  4	
  	
  

•  Using automata has a compositional flavor since: 

–  conjunction of constraints :   product   of automata 

–  disjunction   of constraints :   union    of automata 

–  negation    of constraint  :   complement  of automata 

–  reification    of constraint  :   combination  of automata 



Warning:	
  limita2ons	
  	
  

•  Expressivity limitation 
–  Restrict ourselves to constraints that can be checked by 

scanning once through their variables (e.g. no DFS), 
–  The size of the automaton has to be bounded by a polynomial 

of the number of variables (e.g. not applicable for alldifferent) 

•  Operational limitation 
–  For some constraints for which there exists a specialized 

algorithm achieving GAC we don’t achieve GAC 



Map	
  (precursors)	
  

•  Constraint networks 
–  N. R. Vempaty [AAAI-92] 

Solving constraint satisfaction problems using finite automata 
–  J. Amilhastre [PhD-99, Montpellier] 

Représentation par automate d’ensemble de solutions de 
problèmes de satisfaction de contraintes 
(in the context of configuration) 

•  Arithmetic constraints 
–  B. Boigelot, P. Wolper [ICLP-02] 

Representing arithmetic constraints with finite automata: 
an overview 



Map	
  (early	
  work)	
  

•  Global constraints 

–  G. Pesant [workshop CP-03] [CP-04] 
A regular language membership constraint for finite sequences of 
variables (regular constraint) 

–  M. Carlsson, N. Beldiceanu 
Revisiting the Lexicographic Ordering Constraint [TechReport-02] 
From constraints to finite automata to filtering algorithms 
[ESOP-04] 
Deriving Filtering Algorithms from Constraint Checkers [CP-04] 
(automaton with accumulators constraint) 



Map	
  (follow	
  up)	
  

•  Global constraints with cost 

–  S. Demassey, G. Pesant, L.-M. Rousseau [CPAIOR-05] 
Constraint Programming Based Column Generation for 
Employee Timetable (cost-regular constraint, one 
single criteria) 

–  J. Menana, S. Demassey [CPAIOR-09] 
Sequencing and Counting with the multicost-regular 
Constraint (more than one criteria) 



Map	
  (follow	
  up)	
  

•  Reformulation to Linear Programming 

–  M.-C. Côté, B. Gendron, L.-M. Rousseau [CPAIOR-07] 
Modeling the Regular Constraint with Integer Programming 
(regular constraint) 

–  E. Arafailova, N. Beldiceanu, R. Douence, P. Flener, 
M. A. F. Rodriguez, J. Pearson, H. Simonis [CPAIOR-16] 
Time-Series Constraints: Improvements and Application in CP 
and MIP Contexts (automaton with accumulators constraint) 



Advice	
  for	
  crea2ng	
  an	
  automaton	
  

•  Automata without accumulator 
–  Steps for creating an automaton 
–  Examples 

•  Automata with accumulators (see later on with the help of 
transducers) 



Steps	
  for	
  crea2ng	
  an	
  automaton	
  

•  Identify the input alphabet 
(most the time easy, but sometimes tricky) 

•  Identify all states  
–  Find the meaningful points wrt what we want to modelize 

(the most difficult part) 
–  Have a systematic method for generating all states 

•  Add transitions 
(easy if all states were identified correctly) 

But don’t try to define an automaton 
before having a clear view of all its states	
  



Exercise	
  1	
  (odd	
  numbers)	
  

Construct	
  and	
  automaton	
  that	
  only	
  accepts	
  binary	
  odd	
  

numbers	
  (e.g.	
  1,	
  001,	
  101)	
  



Exercise	
  1	
  (odd	
  numbers)	
  

Construct	
  and	
  automaton	
  that	
  only	
  accepts	
  binary	
  odd	
  

numbers	
  (e.g.	
  1,	
  001,	
  101)	
  

Input alphabet  {0,1} 

Observation   a binary odd number finishes with a 1, 
     consequently remember last letter. 

Set of states   s0: if last letter was a 0 (initial, non accepting) 
 s1: if last letter was a 1 (accepting) 



Exercise	
  2	
  (geXng	
  the	
  states)	
  

Construct an automaton that only accepts binary numbers 
that have an even number of 0 and an even number of 1 
(e.g. 11, 0110, 00). 



Input alphabet  {0,1} 

Observation   need to remember if we encountered 
     an even/odd number of 0/1, 
     so need two counters: 
     - one to 0 if even number of 0, to 1 otherwise 
     - one to 0 if even number of 1, to 1 otherwise 
     make the cartesian product of the values of 

      these two counters  

Set of states   s00: even number of 0, even number of 1 
 s01: even number of 0, odd   number of 1 
 s10: odd   number of 0, even number of 1 
 s11: odd   number of 0, odd   number of 1 

Construct an automaton that only accepts binary numbers 
that have an even number of 0 and an even number of 1 
(e.g. 11, 0110, 00). 



Exercise	
  3	
  (lets	
  count)	
  

Construct an automaton that only accepts binary numbers 
with at most two consecutive 1 
(e.g. 00, 0110001011). 



Construct an automaton that only accepts binary numbers 
with at most two consecutive 1 
(e.g. 00, 0110001011). 

Input alphabet  {0,1} 

Observation   since at most two consecutive 1 we have 
     to count number of consecutive 1. 
     since cannot exceed two consecutive 1, 
     count only up to 2 

Set of states   s0: the last suffix is 0 
 s1: the last suffix is 01 
 s2: the last suffix is 011 

Exercise	
  3	
  (lets	
  count)	
  



Exercise	
  4	
  (knowing	
  where	
  to	
  go	
  back)	
  

Construct an automaton that only accepts words of the 
form a (bb)* bc . 



Exercise	
  4	
  (knowing	
  where	
  to	
  go	
  back)	
  

Construct an automaton that only accepts words of the 
form a (bb)* bc . 

Input alphabet  {a,b,c} 

Observation   enumerate the different prefixes of the 
     word to recognize (except the word itself) 

Set of states   sε : Recognize ε
 sa(bb)*  : Recognize a followed by an even 
     number of b 
 sa(bb)*b  : Recognize a followed by an odd 
     number of b 



Exercise	
  5	
  (limi2ng	
  back-­‐arcs)	
  

Construct an automaton that only accepts words finishing 
with 1101. 



Exercise	
  5	
  (no	
  back-­‐arcs)	
  

Construct an automaton that only accepts words finishing 
with 1101. 

Input alphabet  {0,1} 

Observation   enumerate the different prefixes of the 
     suffix to recognize (except the suffix itself) 
     use non-determinism to limit back-arcs 

Set of states   sε : Recognize ε
 s1   : Recognize 1 
 s11   : Recognize 11 
 s110 : Recognize 110 



Exercise	
  6	
  (represen2ng	
  a	
  func2on)	
  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 



Exercise	
  6	
  (represen2ng	
  a	
  func2on)	
  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 

Input alphabet  {1,2,3,4} 

Observation   for each potential value of min(x1,x2,…,xi) 
     (i ∈ [1,n-1]) we have a state + one accepting 
     state; use non-determinism to get the result 

Set of states   s1   : the value of min(x1,x2,…,xi) is 1 
 s2   : the value of min(x1,x2,…,xi) is 2 
 s3  : the value of min(x1,x2,…,xi) is 3 
 s4  : the value of min(x1,x2,…,xi) is 4 
 t  : the only accepting state 



Exercise	
  6	
  (represen2ng	
  a	
  func2on)	
  

Construct an automaton that only accepts words x1 x2 … xn (n>1) 
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4]. 

Can use the same construction for any function	
  

Part 
related to 
x1 x2 … xn-1 	
  

Part 
related to 
xn 	
  



Exercise	
  7	
  (lexicographic	
  ordering)	
  

Construct an automaton for the constraint 
lex_lesseq(VECTOR1,VECTOR2) 

(VECTOR1, VECTOR2 are two lists of variables of same 
length such that VECTOR1 is lexicographically less 
than or equal to VECTOR2. 



Exercise	
  7	
  (lexicographic	
  ordering)	
  



Lexicographic	
  
ordering	
  example:	
  
breaking	
  symmetry	
  
for	
  a	
  reversible	
  

sequence	
  



Exercise	
  8	
  (value	
  ordering)	
  



Exercise	
  8	
  (value	
  ordering)	
  

INT_VALUE_PRECEDE_CHAIN( 
[1,2,3,4,5,6,7,8,9], 
[1,2,1,2,3,4,5,6,7,8,9])	
  



Exercise	
  8	
  (value	
  ordering)	
  

STATE si : 
•  each value val1,val2,…,vali was already encountered at least once 
•  value vali+1 was not yet encountered 	
  



STATE si : 
•  each value 
  val1,val2,…,vali was 
  already encountered 
  at least once 
•  value vali+1 was not 
  yet encountered 	
  

Exercise	
  8	
  
(value	
  ordering)	
  



Construc2ng	
  an	
  automaton	
  
(enumera(ng	
  the	
  states)	
  

Quite often one can obtain the states by making the 
cartesian product of several accumulator values 

You get a polynomial or pseudo-polynomial number of 
states, not very useful in practice, but: 
-  Can be used to show that GAC can be achieved in polynomial 

time …  
-  Can be used to test the effect of having a GAC filtering 

algorithm without implementing a dedicated filtering algorithm 



States	
  as	
  the	
  cartesian	
  product	
  of	
  
accumulators	
  :	
  example	
  1	
  

change(NCHANGE, [V1,V2,…,Vn]) 
NCHANGE is the number of times that Vi≠Vi+1 holds 

Enumerating the states of the automaton of the change constraint: 

Use two accumulators: 
•  i: last value that was encountered 
•  j: number of already encountered constraints that hold of the 

   form Vi≠Vi+1  



Assume variables are in [0,3]	
  

•  i: last value that was encountered 
•  j: number of already encountered 

   constraints that hold of the 
   form Vi≠Vi+1  



Other	
  examples	
  of	
  constraints	
  for	
  
which	
  the	
  states	
  is	
  the	
  cartesian	
  
product	
  of	
  several	
  accumulators	
  

increasing_nvalue (increasing + nvalue) 
 (number of distinct values already encountered, 

     last encountered value) 

stretch_path (restrict the min/max length of 
                  maximum sequences of identical values) 
 (value of a strech, occurrence in the stretch) 



Context	
  underlying	
  the	
  crea2on	
  
of	
  automata	
  constraints	
  

•  Application 
(expressing regulation rules for time table) 

•  Automata with accumulator as a programming language 
(writing compact checkers) 

•  Automata with cost matrix 
(optimisation) 

•  Theory 
(go along the Chomsky hierarchy: from regular to grammar) 



Availability	
  of	
  automata	
  constraints	
  

•  regular:        most CP systems 
          (e.g. CHOCO, gecode, SICStus, 
            MiniZinc) 

•  cost regular, multi cost regular:  CHOCO 

•  automata with accumulators:   SICStus, SWI 
          (with the same syntax) 

    and all of them can be reformulated in linear programming 

but have to write a program in a specific language 
for generating the automaton 



Context	
  underlying	
  the	
  crea2on	
  
of	
  automata	
  constraints	
  (our	
  focus)	
  

•  Application 
(expressing regulation rules for time table) 

•  Automata with accumulator as a programming language 
(writing compact checkers) 

•  Automata with cost matrix 
(optimisation) 

•  Theory 
(go along the Chomsky hierarchy: from regular to grammar) 



Context	
  

•  Providing efficient filtering algorithms is challenging since: 
–  There are a lot of global constraints 
–  Filtering algorithms are far from obvious 
–  Easy to introduce errors or to forget cases 

•  Want to systematically derive correct filtering algorithms from 
first principle avoiding creativity 

As a first principle select a 
constraint checker for the ground case	
  



Automata	
  with	
  accumulators	
  

•  A model of automaton (with accumulators) for writing 
compact constraint checkers 

•  A reformulation of an automaton as a conjunction of 
signature and transition constraints 

•  A partial characterization of conditions for obtaining 
generalized arc-consistency for such constraint 



Automata	
  with	
  accumulators	
  

•  A model of automaton (with accumulators) for writing 
compact constraint checkers 

•  A reformulation of an automaton as a conjunction of 
signature and transition constraints 

•  A partial characterization of conditions for obtaining 
generalized arc-consistency for such constraint 



Example	
  of	
  constraint	
  checker	
  
•  Check is achieved by scanning once through the variables 

without using any data structure 

EXAMPLE 
counting the number of inflexions	
  

maximal occurrences	
  



Example	
  of	
  constraint	
  checker	
  (con2nued)	
  



Constraint	
  checker	
  
•  Use a deterministic automaton where all states are accepting 

–  use an accumulator for counting number of inflexions 
(updated while triggering certain transitions) 

–  final value of accumulator is returned 
(green box) 

State semantics 
 s : stationary mode  =* 
 r :  increasing mode  <{<|=}* 
 t :  decreasing mode >{>|=}*	
  



Transi2ons	
  
•  Transitions are labelled by a value in [val1,val2,…,valp], 

 where each value corresponds to a condition between a 
subset of variables of the original constraint: 
 - P0,P1,…,Pm are these subsets (signature arguments) 
 - to the i-th subset corresponds the signature variable Si 
 - the link between si and the variables of Pi is done according 
   to p mutually incompatible conditions: 
   C1(Pi) ⇔ si = val1 

   C2(Pi) ⇔ si = val2 
   … … … … … … 
   Cp(Pi) ⇔ si = valp 

This conjunction is called the signature constraint 
and is denoted Ψ(Pi , si). 



Example	
  (transi2ons	
  of	
  inflexion)	
  
inflexion(y, [x0,x1,x2,x3])  P0=〈x0,x1〉  P1=〈x1,x2〉  P2=〈x2,x3〉

Ψ(si,xi,xi+1) :  (xi > xi+1 ⇔	
  si = 0) ∧ (xi = xi+1 ⇔	
  si = 1) ∧ (xi < xi+1 ⇔	
  si = 2) 



Example	
  of	
  descrip2on	
  of	
  an	
  automaton	
  
inflexion(y, [x0,x1,…,xn-1])  P0=〈x0,x1〉  P1=〈x1,x2〉  P2=〈x2,x3〉
Ψ(si,xi,xi+1) :  (xi > xi+1 ⇔	
  si = 0) ∧ (xi = xi+1 ⇔	
  si = 1) ∧ (xi < xi+1 ⇔	
  si = 2) 

(1) Signature variables   s0,s1,…,sn-2 

(2) Signature domain   [0,2] 

(3) Signature argument   〈x0,x1〉  , 〈x1,x2〉, … , 〈xn-2,xn-1〉  

(4) Counter(s)     R (initial value = 0) 

(5) States      s, r, t (all accepting), initial state: s 

(6) Transitions     (s, 0, t),       (s, 1, s),  (s, 2, r), 
       (r, 0, t, [R+1]),     (r, 1, r),   (r, 2, r), 

        (t, 0, t),       (t, 1, t),   (t, 2, r, [R+1]), 

(7) Return constraint   y = R 



For	
  inflexion(4,	
  [3,3,1,4,5,5,6,5,5,6,3])	
  we	
  get:	
  

s,	
  R=0 	
  {3	
  =	
  3	
  	
  ⇔ 	
  s0	
  =	
  1} 	
   	
  s	
  

	
   	
   	
  {3	
  >	
  1	
  	
  ⇔ 	
  s1	
  =	
  0} 	
   	
  t	
  

	
   	
   	
  {1	
  <	
  4	
  	
  ⇔ 	
  s2	
  =	
  2} 	
   	
  r,	
  R=1	
  

	
   	
   	
  {4	
  <	
  5	
  	
  ⇔ 	
  s3	
  =	
  2} 	
   	
  r	
  

	
   	
   	
  {5	
  =	
  5	
  	
  ⇔ 	
  s4	
  =	
  1} 	
   	
  r	
  

	
   	
   	
  {5	
  <	
  6	
  	
  ⇔ 	
  s5	
  =	
  2} 	
   	
  r	
  

	
   	
   	
  {6	
  >	
  5	
  	
  ⇔ 	
  s6	
  =	
  0} 	
   	
  t,	
  R=2	
  

	
   	
   	
  {5	
  =	
  5	
  	
  ⇔ 	
  s7	
  =	
  1} 	
   	
  t	
  

	
   	
   	
  {5	
  <	
  6	
  	
  ⇔ 	
  s8	
  =	
  2} 	
   	
  r,	
  R=3	
  

	
   	
   	
  {6	
  >	
  3	
  	
  ⇔ 	
  s9	
  =	
  0} 	
   	
  t,	
  R=4	
  

return	
  4	
  

Running	
  an	
  automaton	
  on	
  a	
  ground	
  instance	
  



From	
  automata	
  to	
  filtering	
  algorithms	
  

 Simulate all potentials executions of an automaton according to 

the current domain of the variables in order to deduce 

infeasible assignments 

How do we achieve this ?   First solution : 
 By reformulating this as a 
 conjunction of signature and transition constraints 



Reformula2on	
  

 Conjunction of signature and transition constraints : 

Ψ(s0 , P0) ∧  Φ(q0, K0, s0, q1, K1)      ∧
Ψ(s1 , P1) ∧  Φ(q1, K1, s1, q2, K2)      ∧
… … … … … … … … … … … … … … …

Ψ(sm-1 , Pm-1) ∧  Φ(qm-1, Km-1, sm-1, qm, Km)

where 
•	
  q0   is the initial state, 

 •	
  qm-1  is an accepting state, 
 •	
  Ki   is a vector containing the counters 

   (K0 is the vector of  initial counters value) 

signature 
variable	
  

current 
state 
variable	
  

next 
state 
variable	
  



Encoding	
  transi2ons	
  constraints	
  for	
  inflexion	
  

Φ(q0, s0, q1, R0, R1)
( q0= 0    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0     ) ∨   

( q0= 0    ∧   s0 = 1   ∧   q1 = 0   ∧   R1 = R0     ) ∨

( q0= 0    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 1    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0 +1) ∨   

( q0= 1    ∧   s0 = 1   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 1    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0     ) ∨

( q0= 2    ∧   s0 = 0   ∧   q1 = 2   ∧   R1 = R0     ) ∨   

( q0= 2    ∧   s0 = 1   ∧   q1 = 2   ∧   R1 = R0     ) ∨
( q0= 2    ∧   s0 = 2   ∧   q1 = 1   ∧   R1 = R0 +1)

>: 0 
=: 1 
<: 2	
  

s : 0 
r : 1 
t : 2	
  

STATES	
  

INPUT LETTERS	
  

can use a table constraint  
(or logical constraints)	
  



Hypergraph	
  of	
  the	
  reformula2on	
  
of	
  the	
  inflexion	
  constraint	
  

Φ(Q0, C0, S1, Q1, C1)

Ψ(S1 , VAR1, VAR2)	
  



Berge	
  acyclic	
  hypergraph	
  (constraint	
  network)	
  

 An hypergraph is Berge acyclic if and only if: 

 1. No more than one shared variable between any pair of 
    constraints. 

 2. The hypergraph does not contain any cycle. 

A cycle of length k (k>2) is a sequence 
(x1, E1, x2, E2, x3, …, Ek, x1)  such: 
1.  E1, E2, … , Ek are distinct edges of the hypergraph, 
2.  x1, x2, … , xk are distinct vertices of the hypergraph, 
3.  xi, xi+1 belongs to Ei (i = 1,2,…,k-1), 
4.  xk, x1 belongs to Ek . 



Intersec2on	
  graph	
  

 Can also check that no cycle in an hypergraph by 
checking that no cycle in the corresponding 
intersection graph. 

 The intersection graph is defined as: 

 . to each constraint corresponds a vertex 

 . to each pair of constraints sharing at least one 
  variable corresponds an edge 



Berge	
  acyclic	
  constraint	
  network:	
  
examples	
  and	
  counter	
  examples	
  



Berge	
  acyclic	
  constraint	
  network:	
  
examples	
  and	
  counter	
  examples	
  

Yes	
  since:	
  
No	
  more	
  than	
  one	
  variable	
  in	
  common	
  in	
  (A)	
  
No	
  cycle	
  in	
  the	
  intersec2on	
  graph	
  (E)	
  



Berge	
  acyclic	
  constraint	
  network:	
  
examples	
  and	
  counter	
  examples	
  

No	
  since:	
  
The	
  hypergraph	
  (B)	
  
contains	
  a	
  cycle	
  



Berge	
  acyclic	
  constraint	
  network:	
  
examples	
  and	
  counter	
  examples	
  

No	
  since:	
  
The	
  CTR3	
  and	
  CTR4	
  have	
  two	
  
variables	
  in	
  common	
  in	
  (C)	
  	
  



Berge	
  acyclic	
  constraint	
  network:	
  
examples	
  and	
  counter	
  examples	
  

Yes	
  since:	
  
No	
  more	
  than	
  one	
  variable	
  in	
  common	
  in	
  (D)	
  
Even	
  if	
  the	
  intersec2on	
  graph	
  contains	
  a	
  cycle	
  (see	
  H),	
  
the	
  hypergraph	
  (see	
  D)	
  does	
  not	
  contain	
  any	
  cycle.	
  



Consistency	
  
•  Property : if the constraint hypergraph associated with the 

reformulation is Berge-acyclic and if we have GAC on each 
constraint then the full network is GAC [Jansen, Vilarem 88]. 

•  Observation 1 : the table constraint achieves GAC. 
•  Observation 2 : when no counter is used the transition constraint 

 is encoded with one single compact table constraint. 

 RESULT  If the automaton does not use any accumulator 
   and no intersection between the signature arguments 
   then the constraint hypergraph of the reformulation 
   is Berge-acyclic. 

    If the constraint hypergraph is Berge-acyclic 
   and the signature constraint achieves GAC 
   then the reformulation achieves GAC. 



Algorithmic	
  approach	
  
when	
  no	
  accumulator	
  (Pesant)	
  

•  Initialisation: unfold the automaton wrt a concrete sequence of 
variables and there respective domains into a DAG: 
–  Each layer is the set of states of the automaton 
–  Each arc represents: 

•  a transition from one state to the next state 
•  a value in the domain of a variables 

•  Forward phase: mark all vertices that can be reached from the 
initial state 

•  Backward phase: mark all vertices that can be reached from at 
least one of the final states (by reversing the arcs). 

•  Filtering phase: remove all arcs from u to v such that 
–  u not reachable from an initial state      or 
–  v cannot reach at least one of the accepting states. 



Reformula2on	
  versus	
  dedicated	
  algorithm	
  
(automaton	
  +	
  accumulators)	
  

•  Dedicated algorithm 
-   Unfold the automaton wrt a sequence: huge graph when 

domains are not sparse (memory is a problem) 
+  For extensions of regular can record specific information to do 

better deductions (without getting the problem of loosing 
information because projecting information onto the domain of 
variables) 



Reformula2on	
  versus	
  dedicated	
  algorithm	
  
(automaton	
  +	
  accumulators)	
  

•  Reformulation 
-   For automata with accumulators may perform poorly when 

necessary conditions are not added (the disjunction coming 
from the choice of transitions may hinder propagation) 

+  Use less memory since do not unfold the automata (note that 
the table encoding the transition constraint is the same for all 
transition constraints and note that the reformulation 
introduces only a linear number of extra variables) 

+ The reformulation introduces variables (i.e. states variables) 
that can be useful for expressing additional constraints like 
accessibility constraints (e.g. is a given state accessible ?). 



Automata	
  in	
  the	
  global	
  
constraint	
  catalog	
  

(without	
  accumulator)	
  



Automata	
  in	
  the	
  global	
  constraint	
  catalog	
  
(with	
  accumulator)	
  



Exercise:	
  GAC	
  for	
  a	
  conjunc2on	
  of	
  constraints	
  

1.  Provide an automaton without accumulator for the 
between(A,X,B) constraint, where A,B are lists of integer values, 
and X is a list of domain variables; the between constraint 
enforces that A is lexicographically less than or equal to X and 
that X is lexicographically less than or equal to B 
(all lists have the same length) 

2. Provide an automaton without accumulator for the 
exactly_one(X,V) constraint, where X is list of domain variables 
and V is a list of distinct integers; the exactly_one constraint holds 
if exactly one variable from the list list is assigned a value in V. 

3. Provide an automaton without accumulator for the conjunction of 
between(A,X,B) and exactly_one(X,V). Does it provides GAC ? 

Hint: think about the signature constraints	
  



Exercise:	
  between(A,X,B)	
  

Alphabet: all 9 combinations of these two groups of conditions 
(compare xi with the corresponding bounds of A and B)	
  



Exercise:	
  between(A,X,B)	
  

e : prefixes of A, X and B are identical 
b : A is lexicographically strictly less than X 
a : X is lexicographically strictly less than B 
t  : A is lexicographically strictly less than X and 
     X is lexicographically strictly less than B  	
  

State semantics:	
  



Exercise:	
  exactly_one(X,V)	
  

Alphabet:	
  



Exercise:	
  exactly_one(X,V)	
  

Alphabet:	
  

o : did not see any value in V 
i :  exactly one variable of X is assigned a value in V	
  

State semantics:	
  



Exercise:	
  between(A,X,B)	
  and	
  exactly_one(X,V)	
  

First question: what is the input alphabet ?	
  



Exercise:	
  between(A,X,B)	
  and	
  exactly_one(X,V)	
  

Remark: the signature /transition constraint is still a unary constraint	
  



Exercise:	
  between(A,X,B)	
  and	
  exactly_one(X,V)	
  



Exercise:	
  between(A,X,B)	
  and	
  exactly_one(X,V)	
  

no	
  occurrence	
  of	
  V	
  in	
  the	
  prefix	
   exactly	
  one	
  occurrence	
  of	
  a	
  V	
  in	
  the	
  prefix	
  



Exercise:	
  between(A,X,B)	
  and	
  exactly_one(X,V)	
  



Exercise:	
  Reifica2on	
  of	
  a	
  constraint	
  specified	
  by	
  an	
  
automaton	
  without	
  accumulator	
  

1.  Provide an automaton for the global_contiguity constraint: all 
variables are assigned value 0 or 1, and no multiple occurrences 
of 1 separated by at least one 0 

2. Provide an automaton for the negation of the global_contiguity 
constraint. 

3. From 1. and 2. construct an automaton for the reification of the 
global_contiguity constraint (it contains an additional 0/1 variables 
that is set to 1 if and only if the global_contiguity constraint holds) 



Exercise:	
  automaton	
  for	
  global_con2guity	
  



Exercise:	
  automaton	
  for	
  the	
  nega2on	
  of	
  
global_con2guity	
  



Exercise:	
  reifica2on	
  of	
  global_con2guity	
  



Reversible	
  automata	
  constraints	
  
and	
  glue	
  matrix	
  (in	
  the	
  context	
  of	
  
automata	
  with	
  accumulators)	
  

•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 



Reversible	
  constraint	
  



Reversible	
  constraint	
  (example)	
  

nocc_001(N, [x1, x2, … , xn])	
  

reverse ? 



Reversible	
  constraint	
  (example)	
  

nocc_001(N, [x1, x2, … , xn])	
  

reverse ? 

nocc_100(N, [x1, x2, … , xn])	
  



Reversible	
  constraint	
  (example)	
  

nocc_001(N, [x1, x2, … , xn])	
   nocc_100(N, [x1, x2, … , xn])	
  

Can be computed mechanically if only one accumulator and use 
only incrementation (but may be non-deterministic and contains ε)	
  



Reversible	
  constraint	
  (other	
  example)	
  

Not always same number of states	
  



Reversible	
  constraints	
  in	
  the	
  context	
  
of	
  global	
  constraints:	
  constraints	
  

on	
  sequences	
  

In practice : 

•  Many cases where a constraint is its own reverse 

•  When a constraint is not its own reverse most of the time 
the corresponding automata are symmetric 
(i.e., permute some letters of the alphabet) 



Reversible	
  constraints:	
  nb_peak	
  

Example where a 
constraint is its 
own reverse	
  



Reverse	
  of	
  max_decreasing_slope	
  

max_decreasing_slope example	
   max_decreasing_slope automaton	
  



Reverse	
  of	
  max_decreasing_slope	
  
is	
  max_increasing_slope	
  

max_decreasing_slope automaton	
   max_increasing_slope automaton	
  



•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 



Glue	
  matrix	
  for	
  a	
  constraint	
  and	
  its	
  reverse:	
  
what	
  it	
  is	
  all	
  about?	
  

Consider counting peaks in a sequence: 



Glue	
  matrix	
  for	
  a	
  constraint	
  and	
  its	
  reverse:	
  
what	
  it	
  is	
  all	
  about?	
  

Consider counting peaks in a sequence: 



Glue	
  matrix	
  for	
  a	
  constraint	
  and	
  its	
  reverse:	
  
what	
  it	
  is	
  all	
  about?	
  

Consider counting peaks in a sequence: 

REMARK:	
  for	
  a	
  signature	
  constraint	
  of	
  arity	
  k,	
  the	
  prefix	
  and	
  suffix	
  overlap	
  by	
  k-­‐1	
  posi2ons	
  



Glue	
  matrix	
  for	
  a	
  constraint	
  and	
  its	
  reverse:	
  
what	
  it	
  is	
  all	
  about?	
  

Count the number of occurrence of a pattern in a word 
using an automaton with accumulators. 

Characterize the prefix-suffix relationship and use it 
in different contexts, e.g. : 

 •	
  constraint programming 
 •	
  local search 
 •	
  linear programming (most likely) 



















(with	
  a	
  signature	
  constraint	
  of	
  arity	
  one)	
  

The	
  global	
  constraint	
  catalog	
  contains	
  a	
  number	
  of	
  glue	
  matrices	
  



•  Reversibility 
•  Glue matrix 
•  Applications of glue matrix 







Enhancing	
  bound	
  on	
  the	
  full	
  sequence	
  
by	
  propaga2ng	
  the	
  informa2on	
  

from	
  the	
  prefix	
  (constraint	
  programming)	
  

•  Evaluating a bound on the full sequence is not enough as soon as 
we fix variables during the labelling (want to take into account the 
effect of the fixed variables on the bound on the full sequence) 

•  Solution 
–  Set bound on the full sequence 
–  Set bound of each prefix and each suffix (linear) 
–  Use the glue matrix to link each prefix with its complement 

(remark: the automaton with accumulator constraint will also 
update the bound) 



Enhancing	
  bound	
  on	
  the	
  full	
  
sequence:	
  example	
  

•  Consider the peak constraint 
•  Maximum number of peaks on 
•  a sequence of length n: (n-1) div 2 

(e.g., 010, 01010) 
•  Set bound on all prefix and suffix + 

 glue constraint 
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Glue constraint (Qi,Qj,Ci,Cj,N):	
  



Enhancing	
  bound	
  on	
  the	
  full	
  
sequence:	
  example	
  

•  Maximum number of peaks on sequence  00001000 x1,x2,x3,x4 : 
–  Maximum number of peaks on 0000100: 1 (remark: go down) 
–  Maximum number of peaks on 0 x1,x2,x3,x4: (5-1)div 2=2 
–  Maximum number of peak on the full sequence (using the glue 

constraint to channel the information from the prefix to the full 
sequence is 1+2). 
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Glue constraint (Qi,Qj,Ci,Cj,N):	
  










