
Constraints and Automata

Nicolas Beldiceanu
nicolas.beldiceanu@mines-nantes.fr

ACP summer school, Cork, June 2016

Reminder:	
 NFA	

(non-­‐determinis2c	
 finite	
 automaton)	

•  A NFA is defined by:
–  A finite set of states Q

–  An alphabet Σ (set of input symbols)

–  A transition function Δ: Q x Σ → power set of Q
–  An initial state qinit ∈ Q
–  A set of accepting states F ⊆ Q

The transition function Δ is allowed to be partial

Reminder:	
 NFA	

(non-­‐determinis2c	
 finite	
 automaton)	

•  Given a word w = w1 w2 … wn over the alphabet Σ	
 an	
 and	
 NFA	
 ω
w is accepted by ω

iff ∃ q0 q1 … qn in Q such: there is a sequence of states

–  q0 = qinit starting at qinit
–  qi+1 = Δ(qi,wi+1) with i ∈ [0,n-1] compatible with the transition function

–  qn ∈ F ending in an accepting state

Reminder:	
 DFA	

(determinis2c	
 finite	
 automaton)	

•  A DFA is defined by:
–  A finite set of states Q

–  An alphabet Σ (set of input symbols)

–  A transition function δ: Q x Σ → Q
–  An initial state qinit ∈ Q
–  A set of accepting states F ⊆ Q

The transition function δ is allowed to be partial

Reminder:	
 DFA	

(determinis2c	
 finite	
 automaton)	

•  Given a word w = w1 w2 … wn over the alphabet Σ	
 an	
 and	
 NFA	
 ω
w is accepted by ω

iff ∃ q0 q1 … qn in Q such: there is a sequence of states

–  q0 = qinit starting at qinit
–  qi+1 = δ(qi,wi+1) with i ∈ [0,n-1] compatible with the transition function

–  qn ∈ F ending in an accepting state

The	
 ini2al	
 general	
 idea	

•  Use finite automata as a general way for describing constraints

 based on the one to one correspondence between

 solutions of a constraint

 and

 words accepted by a finite automaton

Implicit assumption: both the automaton and the constraint
are use a sequence of same length	

The	
 main	
 difference	

•  Use finite automata as a general way for describing constraints
 based on a one to one correspondence between
 solutions of a constraint
 and
 words accepted by a finite automaton

•  Go

from checking whether a sequence of fixed letters is accepted
by an automaton or not

to checking whether a sequence of variables has at least one
assignment accepted by an automaton or not

Remark	
 1	
 	

•  Deal with finite sequences
 since
 post constraints on finite sequences of variables

 You may say that everything is easy with finite sequences

Remark	
 2	
 	

•  In the context of Constraint Programming

no need for determinizing a non-deterministic automaton

may lead to use smaller automata	

Remark	
 3	
 	

•  Modelling constraints with automata
 is independent from the solving technology

⇒

•  Can use different solving techniques like CP, LP, LS

 but even more important

•  Can develop concept/theory which will be
useful for more than one technology
(e.g. see later one glue matrix)

Remark	
 4	
 	

•  Using automata has a compositional flavor since:

–  conjunction of constraints : product of automata

–  disjunction of constraints : union of automata

–  negation of constraint : complement of automata

–  reification of constraint : combination of automata

Warning:	
 limita2ons	
 	

•  Expressivity limitation
–  Restrict ourselves to constraints that can be checked by

scanning once through their variables (e.g. no DFS),
–  The size of the automaton has to be bounded by a polynomial

of the number of variables (e.g. not applicable for alldifferent)

•  Operational limitation
–  For some constraints for which there exists a specialized

algorithm achieving GAC we don’t achieve GAC

Map	
 (precursors)	

•  Constraint networks
–  N. R. Vempaty [AAAI-92]

Solving constraint satisfaction problems using finite automata
–  J. Amilhastre [PhD-99, Montpellier]

Représentation par automate d’ensemble de solutions de
problèmes de satisfaction de contraintes
(in the context of configuration)

•  Arithmetic constraints
–  B. Boigelot, P. Wolper [ICLP-02]

Representing arithmetic constraints with finite automata:
an overview

Map	
 (early	
 work)	

•  Global constraints

–  G. Pesant [workshop CP-03] [CP-04]
A regular language membership constraint for finite sequences of
variables (regular constraint)

–  M. Carlsson, N. Beldiceanu
Revisiting the Lexicographic Ordering Constraint [TechReport-02]
From constraints to finite automata to filtering algorithms
[ESOP-04]
Deriving Filtering Algorithms from Constraint Checkers [CP-04]
(automaton with accumulators constraint)

Map	
 (follow	
 up)	

•  Global constraints with cost

–  S. Demassey, G. Pesant, L.-M. Rousseau [CPAIOR-05]
Constraint Programming Based Column Generation for
Employee Timetable (cost-regular constraint, one
single criteria)

–  J. Menana, S. Demassey [CPAIOR-09]
Sequencing and Counting with the multicost-regular
Constraint (more than one criteria)

Map	
 (follow	
 up)	

•  Reformulation to Linear Programming

–  M.-C. Côté, B. Gendron, L.-M. Rousseau [CPAIOR-07]
Modeling the Regular Constraint with Integer Programming
(regular constraint)

–  E. Arafailova, N. Beldiceanu, R. Douence, P. Flener,
M. A. F. Rodriguez, J. Pearson, H. Simonis [CPAIOR-16]
Time-Series Constraints: Improvements and Application in CP
and MIP Contexts (automaton with accumulators constraint)

Advice	
 for	
 crea2ng	
 an	
 automaton	

•  Automata without accumulator
–  Steps for creating an automaton
–  Examples

•  Automata with accumulators (see later on with the help of
transducers)

Steps	
 for	
 crea2ng	
 an	
 automaton	

•  Identify the input alphabet
(most the time easy, but sometimes tricky)

•  Identify all states
–  Find the meaningful points wrt what we want to modelize

(the most difficult part)
–  Have a systematic method for generating all states

•  Add transitions
(easy if all states were identified correctly)

But don’t try to define an automaton
before having a clear view of all its states	

Exercise	
 1	
 (odd	
 numbers)	

Construct	
 and	
 automaton	
 that	
 only	
 accepts	
 binary	
 odd	

numbers	
 (e.g.	
 1,	
 001,	
 101)	

Exercise	
 1	
 (odd	
 numbers)	

Construct	
 and	
 automaton	
 that	
 only	
 accepts	
 binary	
 odd	

numbers	
 (e.g.	
 1,	
 001,	
 101)	

Input alphabet {0,1}

Observation a binary odd number finishes with a 1,
 consequently remember last letter.

Set of states s0: if last letter was a 0 (initial, non accepting)
 s1: if last letter was a 1 (accepting)

Exercise	
 2	
 (geXng	
 the	
 states)	

Construct an automaton that only accepts binary numbers
that have an even number of 0 and an even number of 1
(e.g. 11, 0110, 00).

Input alphabet {0,1}

Observation need to remember if we encountered
 an even/odd number of 0/1,
 so need two counters:
 - one to 0 if even number of 0, to 1 otherwise
 - one to 0 if even number of 1, to 1 otherwise
 make the cartesian product of the values of

 these two counters

Set of states s00: even number of 0, even number of 1
 s01: even number of 0, odd number of 1
 s10: odd number of 0, even number of 1
 s11: odd number of 0, odd number of 1

Construct an automaton that only accepts binary numbers
that have an even number of 0 and an even number of 1
(e.g. 11, 0110, 00).

Exercise	
 3	
 (lets	
 count)	

Construct an automaton that only accepts binary numbers
with at most two consecutive 1
(e.g. 00, 0110001011).

Construct an automaton that only accepts binary numbers
with at most two consecutive 1
(e.g. 00, 0110001011).

Input alphabet {0,1}

Observation since at most two consecutive 1 we have
 to count number of consecutive 1.
 since cannot exceed two consecutive 1,
 count only up to 2

Set of states s0: the last suffix is 0
 s1: the last suffix is 01
 s2: the last suffix is 011

Exercise	
 3	
 (lets	
 count)	

Exercise	
 4	
 (knowing	
 where	
 to	
 go	
 back)	

Construct an automaton that only accepts words of the
form a (bb)* bc .

Exercise	
 4	
 (knowing	
 where	
 to	
 go	
 back)	

Construct an automaton that only accepts words of the
form a (bb)* bc .

Input alphabet {a,b,c}

Observation enumerate the different prefixes of the
 word to recognize (except the word itself)

Set of states sε : Recognize ε
 sa(bb)* : Recognize a followed by an even
 number of b
 sa(bb)*b : Recognize a followed by an odd
 number of b

Exercise	
 5	
 (limi2ng	
 back-­‐arcs)	

Construct an automaton that only accepts words finishing
with 1101.

Exercise	
 5	
 (no	
 back-­‐arcs)	

Construct an automaton that only accepts words finishing
with 1101.

Input alphabet {0,1}

Observation enumerate the different prefixes of the
 suffix to recognize (except the suffix itself)
 use non-determinism to limit back-arcs

Set of states sε : Recognize ε
 s1 : Recognize 1
 s11 : Recognize 11
 s110 : Recognize 110

Exercise	
 6	
 (represen2ng	
 a	
 func2on)	

Construct an automaton that only accepts words x1 x2 … xn (n>1)
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4].

Exercise	
 6	
 (represen2ng	
 a	
 func2on)	

Construct an automaton that only accepts words x1 x2 … xn (n>1)
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4].

Input alphabet {1,2,3,4}

Observation for each potential value of min(x1,x2,…,xi)
 (i ∈ [1,n-1]) we have a state + one accepting
 state; use non-determinism to get the result

Set of states s1 : the value of min(x1,x2,…,xi) is 1
 s2 : the value of min(x1,x2,…,xi) is 2
 s3 : the value of min(x1,x2,…,xi) is 3
 s4 : the value of min(x1,x2,…,xi) is 4
 t : the only accepting state

Exercise	
 6	
 (represen2ng	
 a	
 func2on)	

Construct an automaton that only accepts words x1 x2 … xn (n>1)
such that xn=min(x1,x2,…,xn-1), assuming xi ∈ [1,4].

Can use the same construction for any function	

Part
related to
x1 x2 … xn-1 	

Part
related to
xn 	

Exercise	
 7	
 (lexicographic	
 ordering)	

Construct an automaton for the constraint
lex_lesseq(VECTOR1,VECTOR2)

(VECTOR1, VECTOR2 are two lists of variables of same
length such that VECTOR1 is lexicographically less
than or equal to VECTOR2.

Exercise	
 7	
 (lexicographic	
 ordering)	

Lexicographic	

ordering	
 example:	

breaking	
 symmetry	

for	
 a	
 reversible	

sequence	

Exercise	
 8	
 (value	
 ordering)	

Exercise	
 8	
 (value	
 ordering)	

INT_VALUE_PRECEDE_CHAIN(
[1,2,3,4,5,6,7,8,9],
[1,2,1,2,3,4,5,6,7,8,9])	

Exercise	
 8	
 (value	
 ordering)	

STATE si :
•  each value val1,val2,…,vali was already encountered at least once
•  value vali+1 was not yet encountered 	

STATE si :
•  each value
 val1,val2,…,vali was
 already encountered
 at least once
•  value vali+1 was not
 yet encountered 	

Exercise	
 8	

(value	
 ordering)	

Construc2ng	
 an	
 automaton	

(enumera(ng	
 the	
 states)	

Quite often one can obtain the states by making the
cartesian product of several accumulator values

You get a polynomial or pseudo-polynomial number of
states, not very useful in practice, but:
-  Can be used to show that GAC can be achieved in polynomial

time …
-  Can be used to test the effect of having a GAC filtering

algorithm without implementing a dedicated filtering algorithm

States	
 as	
 the	
 cartesian	
 product	
 of	

accumulators	
 :	
 example	
 1	

change(NCHANGE, [V1,V2,…,Vn])
NCHANGE is the number of times that Vi≠Vi+1 holds

Enumerating the states of the automaton of the change constraint:

Use two accumulators:
•  i: last value that was encountered
•  j: number of already encountered constraints that hold of the

 form Vi≠Vi+1

Assume variables are in [0,3]	

•  i: last value that was encountered
•  j: number of already encountered

 constraints that hold of the
 form Vi≠Vi+1

Other	
 examples	
 of	
 constraints	
 for	

which	
 the	
 states	
 is	
 the	
 cartesian	

product	
 of	
 several	
 accumulators	

increasing_nvalue (increasing + nvalue)
 (number of distinct values already encountered,

 last encountered value)

stretch_path (restrict the min/max length of
 maximum sequences of identical values)
 (value of a strech, occurrence in the stretch)

Context	
 underlying	
 the	
 crea2on	

of	
 automata	
 constraints	

•  Application
(expressing regulation rules for time table)

•  Automata with accumulator as a programming language
(writing compact checkers)

•  Automata with cost matrix
(optimisation)

•  Theory
(go along the Chomsky hierarchy: from regular to grammar)

Availability	
 of	
 automata	
 constraints	

•  regular: most CP systems
 (e.g. CHOCO, gecode, SICStus,
 MiniZinc)

•  cost regular, multi cost regular: CHOCO

•  automata with accumulators: SICStus, SWI
 (with the same syntax)

 and all of them can be reformulated in linear programming

but have to write a program in a specific language
for generating the automaton

Context	
 underlying	
 the	
 crea2on	

of	
 automata	
 constraints	
 (our	
 focus)	

•  Application
(expressing regulation rules for time table)

•  Automata with accumulator as a programming language
(writing compact checkers)

•  Automata with cost matrix
(optimisation)

•  Theory
(go along the Chomsky hierarchy: from regular to grammar)

Context	

•  Providing efficient filtering algorithms is challenging since:
–  There are a lot of global constraints
–  Filtering algorithms are far from obvious
–  Easy to introduce errors or to forget cases

•  Want to systematically derive correct filtering algorithms from
first principle avoiding creativity

As a first principle select a
constraint checker for the ground case	

Automata	
 with	
 accumulators	

•  A model of automaton (with accumulators) for writing
compact constraint checkers

•  A reformulation of an automaton as a conjunction of
signature and transition constraints

•  A partial characterization of conditions for obtaining
generalized arc-consistency for such constraint

Automata	
 with	
 accumulators	

•  A model of automaton (with accumulators) for writing
compact constraint checkers

•  A reformulation of an automaton as a conjunction of
signature and transition constraints

•  A partial characterization of conditions for obtaining
generalized arc-consistency for such constraint

Example	
 of	
 constraint	
 checker	

•  Check is achieved by scanning once through the variables

without using any data structure

EXAMPLE
counting the number of inflexions	

maximal occurrences	

Example	
 of	
 constraint	
 checker	
 (con2nued)	

Constraint	
 checker	

•  Use a deterministic automaton where all states are accepting

–  use an accumulator for counting number of inflexions
(updated while triggering certain transitions)

–  final value of accumulator is returned
(green box)

State semantics
 s : stationary mode =*
 r : increasing mode <{<|=}*
 t : decreasing mode >{>|=}*	

Transi2ons	

•  Transitions are labelled by a value in [val1,val2,…,valp],

 where each value corresponds to a condition between a
subset of variables of the original constraint:
 - P0,P1,…,Pm are these subsets (signature arguments)
 - to the i-th subset corresponds the signature variable Si
 - the link between si and the variables of Pi is done according
 to p mutually incompatible conditions:
 C1(Pi) ⇔ si = val1

 C2(Pi) ⇔ si = val2
 … … … … … …
 Cp(Pi) ⇔ si = valp

This conjunction is called the signature constraint
and is denoted Ψ(Pi , si).

Example	
 (transi2ons	
 of	
 inflexion)	

inflexion(y, [x0,x1,x2,x3]) P0=〈x0,x1〉 P1=〈x1,x2〉 P2=〈x2,x3〉

Ψ(si,xi,xi+1) : (xi > xi+1 ⇔	
 si = 0) ∧ (xi = xi+1 ⇔	
 si = 1) ∧ (xi < xi+1 ⇔	
 si = 2)

Example	
 of	
 descrip2on	
 of	
 an	
 automaton	

inflexion(y, [x0,x1,…,xn-1]) P0=〈x0,x1〉 P1=〈x1,x2〉 P2=〈x2,x3〉
Ψ(si,xi,xi+1) : (xi > xi+1 ⇔	
 si = 0) ∧ (xi = xi+1 ⇔	
 si = 1) ∧ (xi < xi+1 ⇔	
 si = 2)

(1) Signature variables s0,s1,…,sn-2

(2) Signature domain [0,2]

(3) Signature argument 〈x0,x1〉 , 〈x1,x2〉, … , 〈xn-2,xn-1〉

(4) Counter(s) R (initial value = 0)

(5) States s, r, t (all accepting), initial state: s

(6) Transitions (s, 0, t), (s, 1, s), (s, 2, r),
 (r, 0, t, [R+1]), (r, 1, r), (r, 2, r),

 (t, 0, t), (t, 1, t), (t, 2, r, [R+1]),

(7) Return constraint y = R

For	
 inflexion(4,	
 [3,3,1,4,5,5,6,5,5,6,3])	
 we	
 get:	

s,	
 R=0 	
 {3	
 =	
 3	
 	
 ⇔ 	
 s0	
 =	
 1} 	
 	
 s	

	
 	
 	
 {3	
 >	
 1	
 	
 ⇔ 	
 s1	
 =	
 0} 	
 	
 t	

	
 	
 	
 {1	
 <	
 4	
 	
 ⇔ 	
 s2	
 =	
 2} 	
 	
 r,	
 R=1	

	
 	
 	
 {4	
 <	
 5	
 	
 ⇔ 	
 s3	
 =	
 2} 	
 	
 r	

	
 	
 	
 {5	
 =	
 5	
 	
 ⇔ 	
 s4	
 =	
 1} 	
 	
 r	

	
 	
 	
 {5	
 <	
 6	
 	
 ⇔ 	
 s5	
 =	
 2} 	
 	
 r	

	
 	
 	
 {6	
 >	
 5	
 	
 ⇔ 	
 s6	
 =	
 0} 	
 	
 t,	
 R=2	

	
 	
 	
 {5	
 =	
 5	
 	
 ⇔ 	
 s7	
 =	
 1} 	
 	
 t	

	
 	
 	
 {5	
 <	
 6	
 	
 ⇔ 	
 s8	
 =	
 2} 	
 	
 r,	
 R=3	

	
 	
 	
 {6	
 >	
 3	
 	
 ⇔ 	
 s9	
 =	
 0} 	
 	
 t,	
 R=4	

return	
 4	

Running	
 an	
 automaton	
 on	
 a	
 ground	
 instance	

From	
 automata	
 to	
 filtering	
 algorithms	

 Simulate all potentials executions of an automaton according to

the current domain of the variables in order to deduce

infeasible assignments

How do we achieve this ? First solution :
 By reformulating this as a
 conjunction of signature and transition constraints

Reformula2on	

 Conjunction of signature and transition constraints :

Ψ(s0 , P0) ∧ Φ(q0, K0, s0, q1, K1) ∧
Ψ(s1 , P1) ∧ Φ(q1, K1, s1, q2, K2) ∧
… … … … … … … … … … … … … … …

Ψ(sm-1 , Pm-1) ∧ Φ(qm-1, Km-1, sm-1, qm, Km)

where
•	
 q0 is the initial state,

 •	
 qm-1 is an accepting state,
 •	
 Ki is a vector containing the counters

 (K0 is the vector of initial counters value)

signature
variable	

current
state
variable	

next
state
variable	

Encoding	
 transi2ons	
 constraints	
 for	
 inflexion	

Φ(q0, s0, q1, R0, R1)
(q0= 0 ∧ s0 = 0 ∧ q1 = 2 ∧ R1 = R0) ∨

(q0= 0 ∧ s0 = 1 ∧ q1 = 0 ∧ R1 = R0) ∨

(q0= 0 ∧ s0 = 2 ∧ q1 = 1 ∧ R1 = R0) ∨

(q0= 1 ∧ s0 = 0 ∧ q1 = 2 ∧ R1 = R0 +1) ∨

(q0= 1 ∧ s0 = 1 ∧ q1 = 1 ∧ R1 = R0) ∨

(q0= 1 ∧ s0 = 2 ∧ q1 = 1 ∧ R1 = R0) ∨

(q0= 2 ∧ s0 = 0 ∧ q1 = 2 ∧ R1 = R0) ∨

(q0= 2 ∧ s0 = 1 ∧ q1 = 2 ∧ R1 = R0) ∨
(q0= 2 ∧ s0 = 2 ∧ q1 = 1 ∧ R1 = R0 +1)

>: 0
=: 1
<: 2	

s : 0
r : 1
t : 2	

STATES	

INPUT LETTERS	

can use a table constraint
(or logical constraints)	

Hypergraph	
 of	
 the	
 reformula2on	

of	
 the	
 inflexion	
 constraint	

Φ(Q0, C0, S1, Q1, C1)

Ψ(S1 , VAR1, VAR2)	

Berge	
 acyclic	
 hypergraph	
 (constraint	
 network)	

 An hypergraph is Berge acyclic if and only if:

 1. No more than one shared variable between any pair of
 constraints.

 2. The hypergraph does not contain any cycle.

A cycle of length k (k>2) is a sequence
(x1, E1, x2, E2, x3, …, Ek, x1) such:
1. E1, E2, … , Ek are distinct edges of the hypergraph,
2. x1, x2, … , xk are distinct vertices of the hypergraph,
3. xi, xi+1 belongs to Ei (i = 1,2,…,k-1),
4. xk, x1 belongs to Ek .

Intersec2on	
 graph	

 Can also check that no cycle in an hypergraph by
checking that no cycle in the corresponding
intersection graph.

 The intersection graph is defined as:

 . to each constraint corresponds a vertex

 . to each pair of constraints sharing at least one
 variable corresponds an edge

Berge	
 acyclic	
 constraint	
 network:	

examples	
 and	
 counter	
 examples	

Berge	
 acyclic	
 constraint	
 network:	

examples	
 and	
 counter	
 examples	

Yes	
 since:	

No	
 more	
 than	
 one	
 variable	
 in	
 common	
 in	
 (A)	

No	
 cycle	
 in	
 the	
 intersec2on	
 graph	
 (E)	

Berge	
 acyclic	
 constraint	
 network:	

examples	
 and	
 counter	
 examples	

No	
 since:	

The	
 hypergraph	
 (B)	

contains	
 a	
 cycle	

Berge	
 acyclic	
 constraint	
 network:	

examples	
 and	
 counter	
 examples	

No	
 since:	

The	
 CTR3	
 and	
 CTR4	
 have	
 two	

variables	
 in	
 common	
 in	
 (C)	
 	

Berge	
 acyclic	
 constraint	
 network:	

examples	
 and	
 counter	
 examples	

Yes	
 since:	

No	
 more	
 than	
 one	
 variable	
 in	
 common	
 in	
 (D)	

Even	
 if	
 the	
 intersec2on	
 graph	
 contains	
 a	
 cycle	
 (see	
 H),	

the	
 hypergraph	
 (see	
 D)	
 does	
 not	
 contain	
 any	
 cycle.	

Consistency	

•  Property : if the constraint hypergraph associated with the

reformulation is Berge-acyclic and if we have GAC on each
constraint then the full network is GAC [Jansen, Vilarem 88].

•  Observation 1 : the table constraint achieves GAC.
•  Observation 2 : when no counter is used the transition constraint

 is encoded with one single compact table constraint.

 RESULT If the automaton does not use any accumulator
 and no intersection between the signature arguments
 then the constraint hypergraph of the reformulation
 is Berge-acyclic.

 If the constraint hypergraph is Berge-acyclic
 and the signature constraint achieves GAC
 then the reformulation achieves GAC.

Algorithmic	
 approach	

when	
 no	
 accumulator	
 (Pesant)	

•  Initialisation: unfold the automaton wrt a concrete sequence of
variables and there respective domains into a DAG:
–  Each layer is the set of states of the automaton
–  Each arc represents:

•  a transition from one state to the next state
•  a value in the domain of a variables

•  Forward phase: mark all vertices that can be reached from the
initial state

•  Backward phase: mark all vertices that can be reached from at
least one of the final states (by reversing the arcs).

•  Filtering phase: remove all arcs from u to v such that
–  u not reachable from an initial state or
–  v cannot reach at least one of the accepting states.

Reformula2on	
 versus	
 dedicated	
 algorithm	

(automaton	
 +	
 accumulators)	

•  Dedicated algorithm
- Unfold the automaton wrt a sequence: huge graph when

domains are not sparse (memory is a problem)
+ For extensions of regular can record specific information to do

better deductions (without getting the problem of loosing
information because projecting information onto the domain of
variables)

Reformula2on	
 versus	
 dedicated	
 algorithm	

(automaton	
 +	
 accumulators)	

•  Reformulation
- For automata with accumulators may perform poorly when

necessary conditions are not added (the disjunction coming
from the choice of transitions may hinder propagation)

+ Use less memory since do not unfold the automata (note that
the table encoding the transition constraint is the same for all
transition constraints and note that the reformulation
introduces only a linear number of extra variables)

+ The reformulation introduces variables (i.e. states variables)
that can be useful for expressing additional constraints like
accessibility constraints (e.g. is a given state accessible ?).

Automata	
 in	
 the	
 global	

constraint	
 catalog	

(without	
 accumulator)	

Automata	
 in	
 the	
 global	
 constraint	
 catalog	

(with	
 accumulator)	

Exercise:	
 GAC	
 for	
 a	
 conjunc2on	
 of	
 constraints	

1. Provide an automaton without accumulator for the
between(A,X,B) constraint, where A,B are lists of integer values,
and X is a list of domain variables; the between constraint
enforces that A is lexicographically less than or equal to X and
that X is lexicographically less than or equal to B
(all lists have the same length)

2. Provide an automaton without accumulator for the
exactly_one(X,V) constraint, where X is list of domain variables
and V is a list of distinct integers; the exactly_one constraint holds
if exactly one variable from the list list is assigned a value in V.

3. Provide an automaton without accumulator for the conjunction of
between(A,X,B) and exactly_one(X,V). Does it provides GAC ?

Hint: think about the signature constraints	

Exercise:	
 between(A,X,B)	

Alphabet: all 9 combinations of these two groups of conditions
(compare xi with the corresponding bounds of A and B)	

Exercise:	
 between(A,X,B)	

e : prefixes of A, X and B are identical
b : A is lexicographically strictly less than X
a : X is lexicographically strictly less than B
t : A is lexicographically strictly less than X and
 X is lexicographically strictly less than B 	

State semantics:	

Exercise:	
 exactly_one(X,V)	

Alphabet:	

Exercise:	
 exactly_one(X,V)	

Alphabet:	

o : did not see any value in V
i : exactly one variable of X is assigned a value in V	

State semantics:	

Exercise:	
 between(A,X,B)	
 and	
 exactly_one(X,V)	

First question: what is the input alphabet ?	

Exercise:	
 between(A,X,B)	
 and	
 exactly_one(X,V)	

Remark: the signature /transition constraint is still a unary constraint	

Exercise:	
 between(A,X,B)	
 and	
 exactly_one(X,V)	

Exercise:	
 between(A,X,B)	
 and	
 exactly_one(X,V)	

no	
 occurrence	
 of	
 V	
 in	
 the	
 prefix	
 exactly	
 one	
 occurrence	
 of	
 a	
 V	
 in	
 the	
 prefix	

Exercise:	
 between(A,X,B)	
 and	
 exactly_one(X,V)	

Exercise:	
 Reifica2on	
 of	
 a	
 constraint	
 specified	
 by	
 an	

automaton	
 without	
 accumulator	

1. Provide an automaton for the global_contiguity constraint: all
variables are assigned value 0 or 1, and no multiple occurrences
of 1 separated by at least one 0

2. Provide an automaton for the negation of the global_contiguity
constraint.

3. From 1. and 2. construct an automaton for the reification of the
global_contiguity constraint (it contains an additional 0/1 variables
that is set to 1 if and only if the global_contiguity constraint holds)

Exercise:	
 automaton	
 for	
 global_con2guity	

Exercise:	
 automaton	
 for	
 the	
 nega2on	
 of	

global_con2guity	

Exercise:	
 reifica2on	
 of	
 global_con2guity	

Reversible	
 automata	
 constraints	

and	
 glue	
 matrix	
 (in	
 the	
 context	
 of	

automata	
 with	
 accumulators)	

•  Reversibility
•  Glue matrix
•  Applications of glue matrix

Reversible	
 constraint	

Reversible	
 constraint	
 (example)	

nocc_001(N, [x1, x2, … , xn])	

reverse ?

Reversible	
 constraint	
 (example)	

nocc_001(N, [x1, x2, … , xn])	

reverse ?

nocc_100(N, [x1, x2, … , xn])	

Reversible	
 constraint	
 (example)	

nocc_001(N, [x1, x2, … , xn])	
 nocc_100(N, [x1, x2, … , xn])	

Can be computed mechanically if only one accumulator and use
only incrementation (but may be non-deterministic and contains ε)	

Reversible	
 constraint	
 (other	
 example)	

Not always same number of states	

Reversible	
 constraints	
 in	
 the	
 context	

of	
 global	
 constraints:	
 constraints	

on	
 sequences	

In practice :

•  Many cases where a constraint is its own reverse

•  When a constraint is not its own reverse most of the time
the corresponding automata are symmetric
(i.e., permute some letters of the alphabet)

Reversible	
 constraints:	
 nb_peak	

Example where a
constraint is its
own reverse	

Reverse	
 of	
 max_decreasing_slope	

max_decreasing_slope example	
 max_decreasing_slope automaton	

Reverse	
 of	
 max_decreasing_slope	

is	
 max_increasing_slope	

max_decreasing_slope automaton	
 max_increasing_slope automaton	

•  Reversibility
•  Glue matrix
•  Applications of glue matrix

Glue	
 matrix	
 for	
 a	
 constraint	
 and	
 its	
 reverse:	

what	
 it	
 is	
 all	
 about?	

Consider counting peaks in a sequence:

Glue	
 matrix	
 for	
 a	
 constraint	
 and	
 its	
 reverse:	

what	
 it	
 is	
 all	
 about?	

Consider counting peaks in a sequence:

Glue	
 matrix	
 for	
 a	
 constraint	
 and	
 its	
 reverse:	

what	
 it	
 is	
 all	
 about?	

Consider counting peaks in a sequence:

REMARK:	
 for	
 a	
 signature	
 constraint	
 of	
 arity	
 k,	
 the	
 prefix	
 and	
 suffix	
 overlap	
 by	
 k-­‐1	
 posi2ons	

Glue	
 matrix	
 for	
 a	
 constraint	
 and	
 its	
 reverse:	

what	
 it	
 is	
 all	
 about?	

Count the number of occurrence of a pattern in a word
using an automaton with accumulators.

Characterize the prefix-suffix relationship and use it
in different contexts, e.g. :

 •	
 constraint programming
 •	
 local search
 •	
 linear programming (most likely)

(with	
 a	
 signature	
 constraint	
 of	
 arity	
 one)	

The	
 global	
 constraint	
 catalog	
 contains	
 a	
 number	
 of	
 glue	
 matrices	

•  Reversibility
•  Glue matrix
•  Applications of glue matrix

Enhancing	
 bound	
 on	
 the	
 full	
 sequence	

by	
 propaga2ng	
 the	
 informa2on	

from	
 the	
 prefix	
 (constraint	
 programming)	

•  Evaluating a bound on the full sequence is not enough as soon as
we fix variables during the labelling (want to take into account the
effect of the fixed variables on the bound on the full sequence)

•  Solution
–  Set bound on the full sequence
–  Set bound of each prefix and each suffix (linear)
–  Use the glue matrix to link each prefix with its complement

(remark: the automaton with accumulator constraint will also
update the bound)

Enhancing	
 bound	
 on	
 the	
 full	

sequence:	
 example	

•  Consider the peak constraint
•  Maximum number of peaks on
•  a sequence of length n: (n-1) div 2

(e.g., 010, 01010)
•  Set bound on all prefix and suffix +

 glue constraint

	
 (Qi	
 =	
 t 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 t	
 	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 t 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 u	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 u 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 t	
 	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 u 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 u	
 	
 	
 !	
 	
 	
 B	
 =	
 1) 	
 	
 	
 	
 	
 /\	

	
 N	
 =	
 Ci	
 +	
 Cj	
 +	
 B	

Glue constraint (Qi,Qj,Ci,Cj,N):	

Enhancing	
 bound	
 on	
 the	
 full	

sequence:	
 example	

•  Maximum number of peaks on sequence 00001000 x1,x2,x3,x4 :
–  Maximum number of peaks on 0000100: 1 (remark: go down)
–  Maximum number of peaks on 0 x1,x2,x3,x4: (5-1)div 2=2
–  Maximum number of peak on the full sequence (using the glue

constraint to channel the information from the prefix to the full
sequence is 1+2).

	
 (Qi	
 =	
 t 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 t	
 	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 t 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 u	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 u 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 t	
 	
 	
 	
 !	
 	
 	
 B	
 =	
 0) 	
 	
 	
 	
 	
 /\	

	
 (Qi	
 =	
 u 	
 	
 	
 	
 /\	
 	
 	
 	
 	
 	
 Qj	
 =	
 u	
 	
 	
 !	
 	
 	
 B	
 =	
 1) 	
 	
 	
 	
 	
 /\	

	
 N	
 =	
 Ci	
 +	
 Cj	
 +	
 B	

Glue constraint (Qi,Qj,Ci,Cj,N):	

