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Constraints 

A Brief Recap 



Constraint Solving 

•  Offers an efficient means of finding
 solutions to combinatorial problems. 

•  A constraint model is a description of a
 combinatorial problem in a format
 suitable for input to a constraint solver. 

•  Constraint solver searches for solutions
 to the problem automatically. 



Constraint Modelling & Solving 

•  A constraint model is a description of a 
combinatorial problem in terms of a 
constraint satisfaction problem (CSP). 
•  The features of a given problem are mapped 

onto the features of a CSP. 
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Constraint Modelling & Solving 

•  The CSP is input to a constraint solver, 
which produces a solution (or solutions). 

•  The model is used to map the solution(s) 
back onto the original problem. 
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Assumptions 

1.  Input problem and constraint model
 are finite. 

2.  The problem to be modelled is known
 completely to the modeller. 

•  In practice, knowledge elicitation and
 iterative modelling may be required. 



Constraint Satisfaction
 Problems 

•  A finite-domain constraint satisfaction
 problem comprises: 
•  A finite set of decision variables. 
•  For each decision variable, a finite domain

 of potential values. 
•  A finite set of constraints on the decision

 variables. 



Example 

•  Find three digits that sum to 23. 
•  We want to model this problem as a

 CSP. 
•  So we must choose appropriate

 variables, domains, and constraints. 



Decision Variables & Domains:
 Viewpoints 

•  A decision variable corresponds to a choice
 that must be made in solving a problem. 

•  Values in the domain of a decision variable
 correspond to the various options for this
 choice. 

•  A decision variable is assigned a value from
 its domain. 
•  Equivalently, the choice associated with that

 variable is made. 

•  A viewpoint: a set of variables and
 domains sufficient to characterise the
 problem. 



Example 

•  Find three digits that sum to 23. 
•  Decision variables: x1, x2, x3. 
•  Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 



Constraints 

•  A constraint has a scope: 
•  The subset of the decision variables it involves. 
•  The arity of the constraint is the cardinality of this

 subset. 
•  Of the possible combinations of assignments

 to the variables in its scope, a constraint
 specifies:

•  Which are allowed. 

Assignments that satisfy the constraint.

•  Which are disallowed. 

Assignments that violate the constraint. 




Example 

•  Find three digits that sum to 23. 
•  Decision variables: x1, x2, x3. 
•  Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 
•  Constraints: x1 + x2 + x3 = 23 



Thinking Abstractly 

Recognising & Exploiting Patterns
 in Constraint Problems 



Thinking Abstractly 

•  When viewed abstractly, many combinatorial
 problems that we wish to tackle with constraint
 solving exhibit common features. 

•  Abstractly: above the level at which constraint
 modelling decisions are made. 



Thinking Abstractly 
•  Example: Many problems require us to find

 combinatorial objects such as: 
•  (Multi-)sets 
•  Relations 
•  Functions 

•  Typically, these are not supported directly
 by constraint solvers. 

•  So we need to model them as constrained
 collections of more primitive objects. 



Exploiting Patterns 

•  By: 
•  Recognising these commonly-occurring

 patterns, and  
•  Developing corresponding modelling

 patterns for representing and constraining
 these combinatorial objects, 

we can reduce effort required when
 modelling a new problem. 



Overview 

•  We will look at a number of individual
 patterns. 

•  We will then look at how these patterns
 can be combined to model more
 complex problems. 



Sequences 



Sequences 

•  A sequence is an ordered list of elements. 
•  In the sense that a sequence has a first

 element, a second element, etc. 
•  Repetition is allowed. 

•  Examples: 
•  0, 1, 1, 2, 3, 5, 8,13. 
•  Turn right, drive ¼ mile, turn right, drive ½ mile,

 turn left. 



Where does the Sequence
 Pattern Occur? 

•  Planning Problems: 
•  Find a sequence of actions to transform

 an initial state into a goal state. 
•  Example: Peg Solitaire (CSPLib 38). 

Before 

After 

www.csplib.org 



Where does the Sequence
 Pattern Occur? 

•  Scheduling Problems: 
•  Travelling Salesperson 

•  Car Sequencing (see CSPLib  1). 

Image from www.jimloy.com 



Where does the Sequence
 Pattern Occur? 

•  Communications: 
•  Low Autocorrelation Binary Sequences

 (CSPLib 5). 
•  Mathematics: 

•  Langford’s Problem (CSPLib 24). 
•  Error-Correcting Codes (CSPLib 36). 

•  Puzzles: 
•  Magic Sequences (CSPLib 19). 



Fixed-length Sequences 

•  Problems of the form: 
•  Given n, 
•  Find a sequence of objects of length n, 
•  Such that … 



Fixed-length Sequences 

•  Example (Magic Sequence, CSPLib 19): 
•  Given n. 
•  Find a sequence S of integers s0, …, sn 
•  Such that there are si occurrences of i in S for 

each i in 0, …, n. 
•  If n = 9, a solution is: 

•  6, 2, 1, 0, 0, 0, 1, 0, 0, 0 



Fixed-length Sequences 

•  Problems of the form: 
•  Given n, 
•  Find a sequence of objects of length n, such that … 

•  Most straightforward model: use an array of 
decision variables indexed 1..n. Domains are 
the objects to be found. 

•  Example, find a sequence of n digits: 

0..9 0..9 0..9 0..9 

1 2 3 4 

0..9 

n 

… 

DigitsArray 



Fixed-length Sequences 

•  Example (Magic Sequence, CSPLib 19): 
•  Given n. 
•  Find a sequence S of integers s0, …, sn 
•  Such that there are si occurrences of i in S for 

each i in 0, …, n. 

0..n 0..n 0..n 0..n 
0 1 2 3 

0..n 
n 

… 

MagicSequence 

Constraints:  
  Forall i in 0..n .  
    No. of occurrences of i in MagicSequence of i is MagicSequence[i] 



Bounded-length Sequences 

•  Problems of the form: 
•  Given n, 
•  Find a sequence of objects of length at most n, 
•  Such that … 



Bounded-length Sequences 

•  Example (Kiselman Semigroup Problem): 
•  Given n. 
•  Find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of 

an integer i there exists an integer greater than i 
and an integer less than i. 

•  If n = 3, a solution is 2, 3, 1, 2 
•  We are usually interested in counting the 

solutions for a given n. 



Bounded-length Sequences 

•  Kiselman Semigroup Problem: 
•  Given n. 
•  Find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of an integer i 

there exists an integer greater than i and an integer less than i. 

Notice: 
•  There can be at most 1 occurrence of 1 and n. 
•  There can be at most 2 occurrences of 2 and n-1. 
•  There can be at most 4 occurrences of 3 and n-2. 

So, given n, we can derive a maximum sequence length: 
•  For even n: 1+2+4+8+…+2n/2-1 = 2n/2+1-2 
•  Similarly for odd n. 



Bounded-length Sequences 

•  Kiselman Semigroup Problem: 
•  Given n. 
•  Find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of an integer i 

there exists an integer greater than i and an integer less than i. 

Given n, we can derive a maximum sequence length: 
•  For even n: 1+2+4+8+…+2n/2-1 = 2n/2+1-2 
•  Similarly for odd n. 

Again, we can use an array indexed 1.. 2n/2+1-2: 

1 2 3 4 2n/2+1-2 

… 

KisSequence 



Bounded-length Sequences 
•  Kiselman Semigroup Problem: 

•  Given n. 
•  Find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of an integer i 

there exists an integer greater than i and an integer less than i. 
Again, we can use an array indexed 1.. 2n/2+1-2: 

1 2 3 4 2n/2+1-2 

… 

KisSequence 

Problem: What if a solution has length less than 2n/2+1-2? 
Example: The empty sequence is always a solution to this 
  problem.  



Bounded-length Sequences 
•  Kiselman Semigroup Problem: 

•  Given n. 
•  Find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of an integer i 

there exists an integer greater than i and an integer less than i. 

Problem: What if a solution has length less than 2n/2+1-2? 
Example: The empty sequence is always a solution to this 
  problem.  
Solution: Use a dummy value in the domain. 

0..n 0..n 0..n 0..n 
1 2 3 4 

0..n 
2n/2+1-2 

… 

KisSequence 



Bounded-length Sequences 
•  Kiselman Semigroup Problem: 

•  Given n, find a sequence of integers drawn from 1..n 
•  Such that between every pair of occurrences of an integer i 

there exists an integer greater than i and an integer less than i. 

0..n 0..n 0..n 0..n 
1 2 3 4 

0..n 
2n/2+1-2 

… 

KisSequence 

Constraints: 
Forall i in 1.. 2n/2+1-2 . Forall j in i+1 .. 2n/2+1-2 .  
If 
    (KisSequence[i] = KisSequence[j] ≠ 0) 
Then exists k, l in i+1..j-1 .  
    (KisSequence[i] < KisSequence[k]) and  
    (KisSequence[i] > KisSequence[l])    



Bounded-length Sequences 

•  So, for n = 4 and the solution 1, 2  
the variables might be assigned: 

1 2 0 0 0 0 
1 2 3 4 KisSequence 

Problem: They might also be assigned 

Adding the dummy value has created equivalence classes 
 of assignments 

5 6 

1 0 0 2 0 0 
1 2 3 4 KisSequence 5 6 



Bounded-length Sequences 
•  Adding the dummy value has created equivalence classes 

 of assignments. 
•  Solution: choose a canonical element from each class. 
•  E.g. all 0s must appear at the end of the sequence: 

•  Forall i in 1.. 2n/2+1-3 .  
If (KisSequence[i] = 0) Then (KisSequence[i + 1] = 0) 

1 2 0 0 0 0 
1 2 3 4 KisSequence 5 6 

1 0 0 2 0 0 
1 2 3 4 KisSequence 5 6 



Something to Note 

•  It is very common when modelling an
 abstract object to introduce equivalences
 during modelling. 

•  Need to be aware of this happening, and of
 the measure used to counter it. 



Unbounded Sequences 

•  For the Kiselman problem, we were able to
 bound the sequence length (relatively)
 straightforwardly. 

•  For some problems either: 
•  We cannot derive a bound. 
•  Any bound we can derive is so weak as to be

 useless. 



Unbounded Sequences 
•  For some problems either: 

•  We cannot derive a bound. 
•  Any bound we can derive is so weak as to be

 useless. 
•  This is often the case when modelling

 planning problems. 
•  Difficult to tell how many actions are going to be

 needed to achieve the goal state. 



Unbounded Sequences 

•  Solution: solve a series of CSPs, incrementally
 increasing the length of the sequence. 

•  i.e. Try and find a solution for a sequence of
 length 1.  
•  If no solution, try length 2.  
•  If no solution, try length 3 … 



Permutations 
•  Some problems involve finding a sequence of 

elements where: 
•  The elements in the sequence are known 
•  Their arrangement is not. 

•  I.e. find a permutation of the sequence. 
•  E.g. The Travelling Salesman Problem 

•  Given a network of cities, known distances between every 
pair of cities, and a starting city. 

•  Find shortest route that visits all points, returns to start. 

Image from www.jimloy.com 



Permutations: 
First Viewpoint 

•  Assume that the elements of the 
permutation are distinct. 

•  First viewpoint is as fixed-length. 
If permutation contains elements a, …, f: 

a..f a..f a..f a..f a..f a..f 

1 2 3 4 Perm1 5 6 

Constraint: All-different(Perm1) 



Permutations: 
Second Viewpoint 

•  Alternatively, we know the elements that 
appear in the sequence. 

•  So we can index by those elements: 

1..6 1..6 1..6 1..6 1..6 1..6 

a b c d Perm2 e f 

Constraint: All-different(Perm2) 
•  Domain values represent the position in the sequence 
  an element is in. So “badcef” would be: 

2 1 4 3 5 6 

a b c d Perm2 e f 



Permutations: Which
 Viewpoint to Choose? 

•  Depends on the constraints on the
 permutation. 

•  Example: a and b must be adjacent. 

a..f a..f a..f a..f a..f a..f 

1 2 3 4 Perm1 5 6 

If Perm1[1] = a Then Perm1[2] = b 
If Perm1[6] = a Then Perm1[5] = b 
Forall i in 2..5 . If Perm1[i] = a Then 
  Perm1[i-1] = b or Perm1[i+1] = b 

(and vice versa) 



Permutations: Which
 Viewpoint to Choose? 

•  Depends on the constraints on the
 permutation. 

•  Example: a and b must be adjacent. 

| Perm2[a] – Perm2[b] | = 1 

1..6 1..6 1..6 1..6 1..6 1..6 

a b c d Perm2 e f 



Permutations: Which
 Viewpoint to Choose? 

•  Depends on the constraints on the
 permutation. 

•  Example: The first three letters of the
 sequence must form an English word. 

a..f a..f a..f a..f a..f a..f 

1 2 3 4 Perm1 5 6 

Just need a table constraint on the first three variables 
in Perm1 that allows “bad”, “cad”, “fad”, … 



Permutations: Which
 Viewpoint to Choose? 

•  Depends on the constraints on the
 permutation. 

•  Example: The first three letters of the
 sequence must form an English word. 

Horrible: (Perm2[a] = 1 and Perm2[c] = 2 and Perm2[e] = 3) 
               or … 

1..6 1..6 1..6 1..6 1..6 1..6 

a b c d Perm2 e f 



Sequences: Summary 

•  Fixed-length. 
•  Bounded-length. 
•  Unbounded. 
•  Permutations. 
•  Try some of the problems from CSPLib! 



Sets 



Sets 
•  A collection of distinct objects. 

•  {1, 2, 3}. 
•  {red, green, blue}. 

•  Not arranged in any particular order. 
•  Yes, I know: many solvers support set

 variables. 
•  Some don’t (e.g. Minion). 
•  This pattern is still very useful when

 considering combinations of objects. 



Where does the Set Pattern
 Occur? 

•  Packing Problems: 
•  Can often represent a container (e.g. a bin)

 as a set of objects. 

See also: 
•  Steel Mill Slab Design (CSPLib 38) 
•  Rack Configuration (CSPLib 31) 



Where does the Set Pattern
 Occur? 

•  Scheduling: 
•  E.g. Progressive Party Problem (CSPLib 13) 
•  Timetable a party at a yacht club. 
•  Certain boats designated hosts, crews of

 remaining boats in turn visit the host boats for
 successive half-hour periods. 

•  View a boat as a set of crews. 

See also: Social Golfers (CSPLib 10) 



Where does the Set Pattern
 Occur? 

•  Mathematics: 
•  E.g. Steiner Triple Systems (CSPLib 44) 
•  Given n, find a set of n(n-1)/6 triples of

 elements from 1,…,n such that any pair of
 triples have at most one common element. 

•  If n = 7: 
•  {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7},

 3, 4, 7}, {3, 5, 6}} 
•  This is a set of sets (the triples). 

See also: Golomb Ruler (CSPLib 6). 



Fixed-cardinality Sets 

Consider the following simple problem class: 
•  Given n and s, Find a set of n digits that sum to s. 
•  To model this problem, we need to decide how to 

represent this set. 
•  We will look at two different ways 

(there are many more): 
•  The Explicit representation. 
•  The Occurrence representation. 



Fixed-cardinality Sets: 
Explicit Representation 

•  Given n and s, Find a set of n digits that sum to s. 
•  Introduce E, an array of decision variables indexed by 1..n. 

Domain of each is 0..9: 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

•  Constraints: 

E 

AllDifferent(E). 

Sum(E) = s. 



Fixed-cardinality Sets: 
Explicit Representation 

•  So the set {1, 3, 5, 7} might be represented: 

1 3 5 7 
1 3 2 4 

•  However, it might also be represented: 

E 

7 3 5 1 
1 3 2 4 

E 

•  Once again, a modelling step has introduced equivalence 
  classes of assignments. 



Fixed-cardinality Sets: 
Explicit Representation 

•  So the set {1, 3, 5, 7} might be represented: 

1 3 5 7 
1 3 2 4 

E 

7 3 5 1 
1 3 2 4 

E 

•  Again we need to choose a canonical element from each class. 
•  Obvious choice is to require ascending order. 
•  So, we can replace AllDifferent(E) with E[1] < E[2] < … 



Fixed-cardinality Sets: 
Occurrence Representation 

•  Given n and s, Find a set of n digits that sum to s. 
•  Introduce O, an array of 0/1 decision variables 

indexed by 0..9: 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

O 
0 5 6 7 8 9 

•  Constraints: 
Sum(E) = n. 

O[1] + 2O[2] + 3O[3] + … + 9O[9] = s. 

Notice: This representation did not introduce equivalence classes. 



Explicit vs. Occurrence 
Representations 

•  What if we want to say: 
“If 5 is in the set then so is 4”? 

•  Explicitly: 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

E 

Forall j in 1..n . 
  If (E[j] = 5) Exists i in 1..j . E[i] = 4 

Notice how I exploit ascending order here 



Explicit vs. Occurrence 
Representations 

What if we want to say: 
“If 5 is in the set then so is 4”? 

Occurrence Rep: 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

O 
0 5 6 7 8 9 

If O[5] = 1 Then O[4] = 1  

0,1 



Explicit vs. Occurrence 
Representations 

•  What if we want to say:  
•  “The difference between every pair of elements is 

not equal to the assignment to a variable d”? 
•  Explicitly: 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

E 

Forall i in 1..n . Forall j in i+1..n . 
  E[j] - E[i] ≠ d 

Notice how I exploit ascending order here 



Explicit vs. Occurrence 
Representations 

•  What if we want to say:  
•  “The difference between every pair of elements is not equal 

to the assignment to a variable d”? 
•  Occurrence Rep: 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

O 
0 5 6 7 8 9 

Add constraints of the form: 
•  d = 1 Then ((O[0] × O[1]) + (O[1] × O[2]) + … = 0) 
•  d = 2 Then … 



The Golomb Ruler Problem 
•  Applications: x-ray crystallography,

 radio antenna placement. 
•  Given: 

•  A positive integer n. 
•  Find:  

•  A set of n integer ticks on a ruler of length
 m. 

•  Such that: 
•  All inter-tick distances are distinct. 

•  Minimising: 
•   m. 



Golomb Ruler: Example 

0 1 2 3 4 5 6 

1 2 3 

4 

5 

6 

n = 4, m = 6 



Modelling the Golomb Ruler 
•  Requires finding a set of ticks. 
•  Which of the two representations shall we use? 

•  The constraints need direct access to the values  
  in the set: let’s try the explicit representation. 

0..n2 0..n2 0..n2 0..n2 … 0..n2 

1 3 2 4 n 

T 

Ascending order: T[1] < T[2] < … < T[n] 



Modelling the Golomb Ruler 

•  All inter-tick distances are distinct: 

0..n2 0..n2 0..n2 0..n2 … 0..n2 

1 3 2 4 n 

T 

•  T[j] – T[i] ≠ T[k] – T[l] 
  for each {i, j}, {k, l} drawn from 1..n, 
  such that {i, j} ≠ {k, l}, i < j, k < l 
  again,exploiting ascending order. 



Modelling the Golomb Ruler 

•  Objective: 

0..n2 0..n2 0..n2 0..n2 … 0..n2 

1 3 2 4 n 

T 

•  Minimise(T[n]) 
  Again, exploiting ascending order. 



Modelling the Golomb Ruler 

•  A Challenge: 
•  Can you see how to model this problem

 using the occurrence representation? 



Bounded-cardinality Sets:
 Occurrence 

•  Given n and s, Find a set of at most n digits
 that sum to s. 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

O 
0 5 6 7 8 9 

•  Constraints: 
Sum(E) ≤ n. 

O[1] + 2O[2] + 3O[3] + … + 9O[9] = s. 



Bounded-cardinality Sets:
 Explicit 

•  Given n and s, Find a set of at most n digits
 that sum to s. 

•  Explicit? 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

•  Constraints: 

E 

E in ascending order. 

0,1 0,1 0,1 0,1 … 0,1 
1 3 2 4 n 

Switches 



Constraints on Sets 

•  Sets appear very frequently in problems we
 wish to model. 

•  It’s worth looking at how to model some other
 common constraints on them: 
•  Intersection 
•  Union 
•  Subset… 



Set Intersection: 
Occurrence Rep 

•  Model A ∩ B = C. 
•  A, B are sets of digits (cardinality 5). 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OA 

0 5 6 7 8 9 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OB 

0 5 6 7 8 9 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OC 

0 5 6 7 8 9 

Constraint: OC[i] = OA[i] × OB[i] (for each i in 0..9) 

Sum(OA) = 5 

Sum(OB) = 5 

Sum? 



Set Intersection: 
Explicit Rep 

•  Model A ∩ B = C. 
•  A, B are sets of digits (cardinality 5). 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EA 
5 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EB 
5 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EC 
5 

What does the intersection constraint look like? 

EA, EB, EC in ascending order. 

0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

SC 
5 



Set Union: Occurrence Rep 
•  Model A ∪ B = C. 
•  A, B are sets of digits (cardinality 5). 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OA 

0 5 6 7 8 9 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OB 

0 5 6 7 8 9 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OC 

0 5 6 7 8 9 

Sum(OA) = 5 

Sum(OB) = 5 

Sum? 

Constraint: 
OC[i] = (OA[i] = 1 ∨ OB[i] = 1) (for each i in 0..9) 

OC[i] = max(OA[i], OB[i]) (for each i in 0..9) 
OR 



Set Union: Explicit Rep 
•  Model A ∪ B = C. 
•  A, B are sets of digits (cardinality 5). 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EA 
5 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EB 

5 

0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9 
1 3 2 4 5 6 7 8 9 10 

EC 

What does the union constraint look like? 

EA, EB, EC in ascending order. 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 5 6 7 8 9 10 

SC 



Subset: Occurrence Rep 
•  Model A ⊆ B. 
•  B is a set of digits (cardinality 5). 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OA 

0 5 6 7 8 9 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 

1 3 2 4 
OB 

0 5 6 7 8 9 
Sum(OB) = 5 

Subset constraint:  OA[i] ≤ OB[i] (foreach i in 0..9) 

Sum? 



Subset: Explicit Rep 
•  Model A ⊆ B. 
•  B is a set of digits (cardinality 5). 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EB 

5 

0..9 0..9 0..9 0..9 0..9 
1 3 2 4 

EA 

5 

What does the subset constraint look like? 

EA, EB in ascending order. 

0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

SA 

5 



Combined Representations 

•  Obviously, can have combinations of the two
 representations (e.g. OA, OB and EC). 

•  Constraints on original sets have to be
 modelled appropriately. 



Sets: Summary 

•  We’ve seen that the explicit
 representation often looks much worse
 when the set is of bounded cardinality. 

•  The explicit representation will make a
 comeback when we look at nested
 objects (e.g. sets of sets). 



Multisets 

(in brief) 



Multisets 

•  A collection of distinct objects. 
•  Repetition allowed. 
•  Not arranged in any particular order. 

•  {1, 2, 3, 1}. 
•  {red, green, blue, green, red}. 



Where does the Multiset
 Pattern Occur? 

•  In many places that the set pattern
 occurs. For example, in some packing
 problems (e.g. Vellino’s problem) it is
 appropriate to view the containers as
 multisets: 



Multisets: Explicit 
•  Find a multiset of n/at most n digits: 
•  Explicit fixed-cardinality: 

•  Bounded-cardinality: 
0..9 0..9 0..9 0..9 … 0..9 

1 3 2 4 n 

E 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

E 

0,1 0,1 0,1 0,1 … 0,1 
1 3 2 4 n 

Switches 

Are we introducing equivalent assignments here? 

No AllDiff 
needed 



Multisets: Occurrence 
•  Find a multiset of n/at most n digits: 
•  Occurrence representation: 

•  Larger domain allows multiple occurrences. 
•  Fixed-cardinality n: Sum is n. 
•  Bounded-cardinality n: Sum is at most n. 

0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n 

1 3 2 4 

O 
0 5 6 7 8 9 



Relations 



Relations 
•  Assign truth values to tuples of values. 

•  Constraints are relations. 
•  Example: 

•  Set P is {Bill, Bert, Tom}. 
•  Binary relation likes on P x P might assign 

<Bill, Bert> and <Bert, Tom> true (to mean
 Bill likes Bert and Bert likes Tom),  
and false to the other combinations. 



Where Does the Relation
 Pattern Occur? 

•  Combinatorial Design:  
•  BIBDs (CSPLib 28) 

•  Cellular Frequency Assignment 
•  Assignment of frequencies to transmitters (see

 Van Hentenryck ’99) 
•  Rostering 

•  Assignment of staff to shifts. 



Relations: 
Occurrence Representation 

•  Find a relation R between sets 
A = {1, 2, 3} and B = {2, 3, 4} 
such that each element of A is related to at
 least one element of B.” 

0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 

1 2 3 

3 

4 

2 

A 

B 



Relations: Projection 

•  A common operation on relations. We project
 a relation onto one or more of its arguments.
 Result: a relation of reduced arity. 

•  Example: 
•  Set P is {Bill, Bert, Tom}. 
•  Relation likes on P x P =  

{<Bill, Bert>, <Bert, Tom>, <Bert, Bill>}. 
•  Project likes onto “Bert” (first position): 

{Tom, Bill} 



Relations: Projection 
•  Find a relation R between sets 

A = {1, 2, 3} and B = {2, 3, 4} 
such that each element of A is related to at
 least one element of B.” 

•  So projection of R onto each element of A has
 size at least 1. 

0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 

1 2 3 

3 

4 

2 

A 

B 

Constraint: Summation on the columns 



Relations: Occurrence
 Representation 

•  What about k-ary relations? 

k-dimensional matrices 

0/1 



Relations: Other
 Representations 

•  Consider binary case, A × B. 
(A = {1, 2, 3}, B = {2, 3, 4}). 

•  Introduce a matrix indexed by elements of A
 and by 1 .. |B|: 

{0,2,3,4} {0,2,3,4} {0,2,3,4} 

{0,2,3,4} {0,2,3,4} {0,2,3,4} 

{0,2,3,4} {0,2,3,4} {0,2,3,4} 

1 2 3 
A 

1 

2 

3 

Why did I add 0? 

Do I need to add 
constraints? 

1..|B| 



Relations: Other
 Representations 

•  Consider ternary case, A × B × C. 
(A = {1, 2, 3}, B = {2, 3, 4}, C = {4, 5, 6}). 

•  Introduce a 3d matrix indexed by elements of
 A and B, and size of C. Domain is C and 0. 

Can you think of 
Other viewpoints? 

A 

B 

Size of C 

{0,4, 5, 6} 

Would a 2d array indexed by A and B, with C as 
domain work? 



Relations: Other
 Representations 

•  We will return to the natural “explicit”
 representation of a relation when
 considering modelling nested
 combinatorial objects. 



BIBD: Specification 
•  Given: 

•  A 5-tuple of positive integers: 〈v, b, r, k, λ〉. 
•  Find:  

•  An assignment, associating each of v objects to b
 blocks. 

•  Such that: 
•  Each block contains k distinct objects. 
•  Each object occurs in exactly r different blocks. 
•  Every two distinct objects occur together in exactly

 λ blocks. 

Applications: cryptography,
 experimental design. 



Modelling the BIBD 

•  An abstract view of the decision
 variable: 
•  A relation on blocks × objects. 



BIBD: Occurrence Model 
•  Constraints can now be stated easily on rows and

 columns. 

0/1 

Blocks 

Objects 



BIBD: Occurrence Model 
•  Each block contains k distinct objects. 

•  Foreach i in blocks, sum of ith column is k. 
•  So each instance has b sum constraints. 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

0/1 

Blocks 

Objects 



BIBD: Occurrence Model 
•  Each object occurs in exactly r different blocks. 

•  Foreach i in objects, sum of ith row is r. 
•  Again, each instance has v sum constraints. 

0/1 0/1 0/1 0/1 0/1 0/1 0/1 

Blocks 

Objects 



BIBD: Occurrence Model 
•  Every 2 distinct objects occur together λ blocks. 

•  Foreach {i, j} in objects, scalar product of ith and jth rows is λ. 

0/1 0/1 0/1 0/1 0/1 0/1 0/1 

0/1 0/1 0/1 0/1 0/1 0/1 0/1 

Blocks 

Objects 



BIBD: Example 
•  〈7, 7, 3, 3, 1〉 

0 0 0 0 1 1 1 

0 0 1 1 0 0 1 

0 1 0 1 0 1 0 

0 1 1 0 1 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 1 0 

1 1 0 0 0 0 1 

Blocks 

Objects 

… but did we introduce equivalence classes of assignments 
here? 



Functions 



Functions 
•  A function f is a binary relation on two sets:

•  a domain and a codomain.


•  Has the property that each element of the
 domain is related to at most one element
 of the codomain:

•  its image.


•  We write f(x) = y to mean that the image of
 x under the function f is y.


a 

b 

c 

d 

1 

2 

3 

4 

domain	

 codomain	





Where does the Function
 Pattern Occur? 

•  Timetabling: 
•  E.g. Balanced Academic Curriculum

 Problem (CSPLib 30). 
•  Find a function from courses to periods in

 the timetable. 



Where does the Function
 Pattern Occur? 

•  Graph Colouring: 
•  Find a function from the vertices of a graph

 to a set of colours 

Highland 
Moray 

Ab’dnshire 
P&K 

Fife 

Angus 



Where does the Function
 Pattern Occur? 

•  Warehouse Location. 
•  Find a function from stores to warehouses

 to indicate which store is supplied by
 which warehouse.  



Total Functions: Explicit 
•  In a total function, every element of the

 domain has an image in the codomain. 

•  Use a variable per element of the domain,
 domain of each is the codomain. 

a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



1,2,3 1,2,3 1,2,3 1,2,3 
a b c TotalFn d 



Total Functions: Occurrence 
•  In a total function, every element of the domain has

 an image in the codomain. 

•  Use a 2d array of 0/1 variables, indexed by the
 domain and codomain. 

a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 

a b c TotalFn d 
1 
2 
3 

Sum of each col is 1 



Partial Functions: Explcit 
•  In a partial function, some elements of the

 domain have no image in the codomain. 

•  Use a variable per element of the domain,
 domain of each is the codomain and a
 dummy element: 

a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3 

a b c PartialFn d 



Partial Functions: Occurrence 
•  In a partial function, some elements of the

 domain have no image in the codomain. 

•  Use a 2d array of 0/1 variables, indexed by the domain
 and codomain. 

a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



PartialFn 

0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 

a b c d 
1 
2 
3 

Sum of each col ≤ 1 



Injections: Explicit 
•  The images of two distinct elements of the domain

 under an injective function are distinct


•  If total, just need to add a constraint to our basic
 model of a function: allDifferent(injection)


a 

b 

c 

d 

1 

2 

3 

4 

domain	

 codomain	



1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 

a b c Injection d 



Injections: Occurrence 
•  The images of two distinct elements of the domain under an

 injective function are distinct


•  If total, just need to add constraints to our basic model of a
 function:


a 

b 

c 

d 

1 

2 

3 

4 

domain	

 codomain	



Injection 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 

a b c d 
1 
2 
3 

Sum of each col: 1 
Sum of each row: ≤1  

4 



Partial Injections 
•  The images of two distinct elements of the domain under an

 injective function are distinct


•  If partial, explicit model is messy, but 0/1 model is easy:


a 

b 

c 

d 

1 

2 

3 

4 

domain	

 codomain	



Injection 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 

a b c d 
1 
2 
3 

Sum of each col: ≤1 
Sum of each row: ≤1  

4 



Surjections: Explicit 
•  A function is surjective if every element of the

 codomain is the image of some element of the
 domain.


•  Can modify our explicit total/partial models of a
 function to model surjections:


a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



1,2,3 1,2,3 1,2,3 1,2,3 
a b c Surjection d 

Must exist
 indices where
 each of 1, 2,
 3 appear. 



Surjections: Occurrence 
•  A function is surjective if every element of the codomain is the

 image of some element of the domain.


•  Can modify our 0/1 total/partial models of a function to model
 surjections easily:


a 

b 

c 

d 

1 

2 

3 

domain	

 codomain	



Surjection 

0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 
0/1 0/1 0/1 0/1 

a b c d 
1 
2 
3 

Sum of each row: ≥ 1  



Modelling Bijections 

•  A bijection is both an injection and a surjection. 
•  In fact, we’ve seen this already when looking at

 permutations. 
•  Can you formulate a 0/1 model? 



Summary 
•  There are a number of patterns prevalent in

 many combinatorial problems. 
•  We’ve seen some of these and some

 alternative ways of modelling them. 
•  You can invoke these patterns when

 modelling a new problem. 
•  Beware of introducing equivalence classes

 of assignments, and the steps needed to
 avoid this. 


