
Thinking Abstractly About
Constraint Modelling

Ian Miguel
ianm@cs.st-andrews.ac.uk

Constraints

A Brief Recap

Constraint Solving

•  Offers an efficient means of finding
 solutions to combinatorial problems.

•  A constraint model is a description of a
 combinatorial problem in a format
 suitable for input to a constraint solver.

•  Constraint solver searches for solutions
 to the problem automatically.

Constraint Modelling & Solving

•  A constraint model is a description of a
combinatorial problem in terms of a
constraint satisfaction problem (CSP).
•  The features of a given problem are mapped

onto the features of a CSP.

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving

Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem

Constraint Modelling & Solving

•  The CSP is input to a constraint solver,
which produces a solution (or solutions).

•  The model is used to map the solution(s)
back onto the original problem.

Input Problem

Constraint
Modelling

Mapping from Input
Problem to CSP

Constraint
Solving Solution(s) to CSP

Mapping
Back

Solution(s) to Input
Problem

Assumptions

1.  Input problem and constraint model
 are finite.

2.  The problem to be modelled is known
 completely to the modeller.

•  In practice, knowledge elicitation and
 iterative modelling may be required.

Constraint Satisfaction
 Problems

•  A finite-domain constraint satisfaction
 problem comprises:
•  A finite set of decision variables.
•  For each decision variable, a finite domain

 of potential values.
•  A finite set of constraints on the decision

 variables.

Example

•  Find three digits that sum to 23.
•  We want to model this problem as a

 CSP.
•  So we must choose appropriate

 variables, domains, and constraints.

Decision Variables & Domains:
 Viewpoints

•  A decision variable corresponds to a choice
 that must be made in solving a problem.

•  Values in the domain of a decision variable
 correspond to the various options for this
 choice.

•  A decision variable is assigned a value from
 its domain.
•  Equivalently, the choice associated with that

 variable is made.

•  A viewpoint: a set of variables and
 domains sufficient to characterise the
 problem.

Example

•  Find three digits that sum to 23.
•  Decision variables: x1, x2, x3.
•  Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Constraints

•  A constraint has a scope:
•  The subset of the decision variables it involves.
•  The arity of the constraint is the cardinality of this

 subset.
•  Of the possible combinations of assignments

 to the variables in its scope, a constraint
 specifies:

•  Which are allowed. 

Assignments that satisfy the constraint.

•  Which are disallowed. 

Assignments that violate the constraint.

Example

•  Find three digits that sum to 23.
•  Decision variables: x1, x2, x3.
•  Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
•  Constraints: x1 + x2 + x3 = 23

Thinking Abstractly

Recognising & Exploiting Patterns
 in Constraint Problems

Thinking Abstractly

•  When viewed abstractly, many combinatorial
 problems that we wish to tackle with constraint
 solving exhibit common features.

•  Abstractly: above the level at which constraint
 modelling decisions are made.

Thinking Abstractly
•  Example: Many problems require us to find

 combinatorial objects such as:
•  (Multi-)sets
•  Relations
•  Functions

•  Typically, these are not supported directly
 by constraint solvers.

•  So we need to model them as constrained
 collections of more primitive objects.

Exploiting Patterns

•  By:
•  Recognising these commonly-occurring

 patterns, and
•  Developing corresponding modelling

 patterns for representing and constraining
 these combinatorial objects,

we can reduce effort required when
 modelling a new problem.

Overview

•  We will look at a number of individual
 patterns.

•  We will then look at how these patterns
 can be combined to model more
 complex problems.

Sequences

Sequences

•  A sequence is an ordered list of elements.
•  In the sense that a sequence has a first

 element, a second element, etc.
•  Repetition is allowed.

•  Examples:
•  0, 1, 1, 2, 3, 5, 8,13.
•  Turn right, drive ¼ mile, turn right, drive ½ mile,

 turn left.

Where does the Sequence
 Pattern Occur?

•  Planning Problems:
•  Find a sequence of actions to transform

 an initial state into a goal state.
•  Example: Peg Solitaire (CSPLib 38).

Before

After

www.csplib.org

Where does the Sequence
 Pattern Occur?

•  Scheduling Problems:
•  Travelling Salesperson

•  Car Sequencing (see CSPLib 1).

Image from www.jimloy.com

Where does the Sequence
 Pattern Occur?

•  Communications:
•  Low Autocorrelation Binary Sequences

 (CSPLib 5).
•  Mathematics:

•  Langford’s Problem (CSPLib 24).
•  Error-Correcting Codes (CSPLib 36).

•  Puzzles:
•  Magic Sequences (CSPLib 19).

Fixed-length Sequences

•  Problems of the form:
•  Given n,
•  Find a sequence of objects of length n,
•  Such that …

Fixed-length Sequences

•  Example (Magic Sequence, CSPLib 19):
•  Given n.
•  Find a sequence S of integers s0, …, sn
•  Such that there are si occurrences of i in S for

each i in 0, …, n.
•  If n = 9, a solution is:

•  6, 2, 1, 0, 0, 0, 1, 0, 0, 0

Fixed-length Sequences

•  Problems of the form:
•  Given n,
•  Find a sequence of objects of length n, such that …

•  Most straightforward model: use an array of
decision variables indexed 1..n. Domains are
the objects to be found.

•  Example, find a sequence of n digits:

0..9 0..9 0..9 0..9

1 2 3 4

0..9

n

…

DigitsArray

Fixed-length Sequences

•  Example (Magic Sequence, CSPLib 19):
•  Given n.
•  Find a sequence S of integers s0, …, sn
•  Such that there are si occurrences of i in S for

each i in 0, …, n.

0..n 0..n 0..n 0..n
0 1 2 3

0..n
n

…

MagicSequence

Constraints:
 Forall i in 0..n .
 No. of occurrences of i in MagicSequence of i is MagicSequence[i]

Bounded-length Sequences

•  Problems of the form:
•  Given n,
•  Find a sequence of objects of length at most n,
•  Such that …

Bounded-length Sequences

•  Example (Kiselman Semigroup Problem):
•  Given n.
•  Find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of

an integer i there exists an integer greater than i
and an integer less than i.

•  If n = 3, a solution is 2, 3, 1, 2
•  We are usually interested in counting the

solutions for a given n.

Bounded-length Sequences

•  Kiselman Semigroup Problem:
•  Given n.
•  Find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of an integer i

there exists an integer greater than i and an integer less than i.

Notice:
•  There can be at most 1 occurrence of 1 and n.
•  There can be at most 2 occurrences of 2 and n-1.
•  There can be at most 4 occurrences of 3 and n-2.

So, given n, we can derive a maximum sequence length:
•  For even n: 1+2+4+8+…+2n/2-1 = 2n/2+1-2
•  Similarly for odd n.

Bounded-length Sequences

•  Kiselman Semigroup Problem:
•  Given n.
•  Find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of an integer i

there exists an integer greater than i and an integer less than i.

Given n, we can derive a maximum sequence length:
•  For even n: 1+2+4+8+…+2n/2-1 = 2n/2+1-2
•  Similarly for odd n.

Again, we can use an array indexed 1.. 2n/2+1-2:

1 2 3 4 2n/2+1-2

…

KisSequence

Bounded-length Sequences
•  Kiselman Semigroup Problem:

•  Given n.
•  Find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of an integer i

there exists an integer greater than i and an integer less than i.
Again, we can use an array indexed 1.. 2n/2+1-2:

1 2 3 4 2n/2+1-2

…

KisSequence

Problem: What if a solution has length less than 2n/2+1-2?
Example: The empty sequence is always a solution to this
 problem.

Bounded-length Sequences
•  Kiselman Semigroup Problem:

•  Given n.
•  Find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of an integer i

there exists an integer greater than i and an integer less than i.

Problem: What if a solution has length less than 2n/2+1-2?
Example: The empty sequence is always a solution to this
 problem.
Solution: Use a dummy value in the domain.

0..n 0..n 0..n 0..n
1 2 3 4

0..n
2n/2+1-2

…

KisSequence

Bounded-length Sequences
•  Kiselman Semigroup Problem:

•  Given n, find a sequence of integers drawn from 1..n
•  Such that between every pair of occurrences of an integer i

there exists an integer greater than i and an integer less than i.

0..n 0..n 0..n 0..n
1 2 3 4

0..n
2n/2+1-2

…

KisSequence

Constraints:
Forall i in 1.. 2n/2+1-2 . Forall j in i+1 .. 2n/2+1-2 .
If
 (KisSequence[i] = KisSequence[j] ≠ 0)
Then exists k, l in i+1..j-1 .
 (KisSequence[i] < KisSequence[k]) and
 (KisSequence[i] > KisSequence[l])

Bounded-length Sequences

•  So, for n = 4 and the solution 1, 2
the variables might be assigned:

1 2 0 0 0 0
1 2 3 4 KisSequence

Problem: They might also be assigned

Adding the dummy value has created equivalence classes
 of assignments

5 6

1 0 0 2 0 0
1 2 3 4 KisSequence 5 6

Bounded-length Sequences
•  Adding the dummy value has created equivalence classes

 of assignments.
•  Solution: choose a canonical element from each class.
•  E.g. all 0s must appear at the end of the sequence:

•  Forall i in 1.. 2n/2+1-3 .
If (KisSequence[i] = 0) Then (KisSequence[i + 1] = 0)

1 2 0 0 0 0
1 2 3 4 KisSequence 5 6

1 0 0 2 0 0
1 2 3 4 KisSequence 5 6

Something to Note

•  It is very common when modelling an
 abstract object to introduce equivalences
 during modelling.

•  Need to be aware of this happening, and of
 the measure used to counter it.

Unbounded Sequences

•  For the Kiselman problem, we were able to
 bound the sequence length (relatively)
 straightforwardly.

•  For some problems either:
•  We cannot derive a bound.
•  Any bound we can derive is so weak as to be

 useless.

Unbounded Sequences
•  For some problems either:

•  We cannot derive a bound.
•  Any bound we can derive is so weak as to be

 useless.
•  This is often the case when modelling

 planning problems.
•  Difficult to tell how many actions are going to be

 needed to achieve the goal state.

Unbounded Sequences

•  Solution: solve a series of CSPs, incrementally
 increasing the length of the sequence.

•  i.e. Try and find a solution for a sequence of
 length 1.
•  If no solution, try length 2.
•  If no solution, try length 3 …

Permutations
•  Some problems involve finding a sequence of

elements where:
•  The elements in the sequence are known
•  Their arrangement is not.

•  I.e. find a permutation of the sequence.
•  E.g. The Travelling Salesman Problem

•  Given a network of cities, known distances between every
pair of cities, and a starting city.

•  Find shortest route that visits all points, returns to start.

Image from www.jimloy.com

Permutations:
First Viewpoint

•  Assume that the elements of the
permutation are distinct.

•  First viewpoint is as fixed-length.
If permutation contains elements a, …, f:

a..f a..f a..f a..f a..f a..f

1 2 3 4 Perm1 5 6

Constraint: All-different(Perm1)

Permutations:
Second Viewpoint

•  Alternatively, we know the elements that
appear in the sequence.

•  So we can index by those elements:

1..6 1..6 1..6 1..6 1..6 1..6

a b c d Perm2 e f

Constraint: All-different(Perm2)
•  Domain values represent the position in the sequence
 an element is in. So “badcef” would be:

2 1 4 3 5 6

a b c d Perm2 e f

Permutations: Which
 Viewpoint to Choose?

•  Depends on the constraints on the
 permutation.

•  Example: a and b must be adjacent.

a..f a..f a..f a..f a..f a..f

1 2 3 4 Perm1 5 6

If Perm1[1] = a Then Perm1[2] = b
If Perm1[6] = a Then Perm1[5] = b
Forall i in 2..5 . If Perm1[i] = a Then
 Perm1[i-1] = b or Perm1[i+1] = b

(and vice versa)

Permutations: Which
 Viewpoint to Choose?

•  Depends on the constraints on the
 permutation.

•  Example: a and b must be adjacent.

| Perm2[a] – Perm2[b] | = 1

1..6 1..6 1..6 1..6 1..6 1..6

a b c d Perm2 e f

Permutations: Which
 Viewpoint to Choose?

•  Depends on the constraints on the
 permutation.

•  Example: The first three letters of the
 sequence must form an English word.

a..f a..f a..f a..f a..f a..f

1 2 3 4 Perm1 5 6

Just need a table constraint on the first three variables
in Perm1 that allows “bad”, “cad”, “fad”, …

Permutations: Which
 Viewpoint to Choose?

•  Depends on the constraints on the
 permutation.

•  Example: The first three letters of the
 sequence must form an English word.

Horrible: (Perm2[a] = 1 and Perm2[c] = 2 and Perm2[e] = 3)
 or …

1..6 1..6 1..6 1..6 1..6 1..6

a b c d Perm2 e f

Sequences: Summary

•  Fixed-length.
•  Bounded-length.
•  Unbounded.
•  Permutations.
•  Try some of the problems from CSPLib!

Sets

Sets
•  A collection of distinct objects.

•  {1, 2, 3}.
•  {red, green, blue}.

•  Not arranged in any particular order.
•  Yes, I know: many solvers support set

 variables.
•  Some don’t (e.g. Minion).
•  This pattern is still very useful when

 considering combinations of objects.

Where does the Set Pattern
 Occur?

•  Packing Problems:
•  Can often represent a container (e.g. a bin)

 as a set of objects.

See also:
•  Steel Mill Slab Design (CSPLib 38)
•  Rack Configuration (CSPLib 31)

Where does the Set Pattern
 Occur?

•  Scheduling:
•  E.g. Progressive Party Problem (CSPLib 13)
•  Timetable a party at a yacht club.
•  Certain boats designated hosts, crews of

 remaining boats in turn visit the host boats for
 successive half-hour periods.

•  View a boat as a set of crews.

See also: Social Golfers (CSPLib 10)

Where does the Set Pattern
 Occur?

•  Mathematics:
•  E.g. Steiner Triple Systems (CSPLib 44)
•  Given n, find a set of n(n-1)/6 triples of

 elements from 1,…,n such that any pair of
 triples have at most one common element.

•  If n = 7:
•  {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7},

 3, 4, 7}, {3, 5, 6}}
•  This is a set of sets (the triples).

See also: Golomb Ruler (CSPLib 6).

Fixed-cardinality Sets

Consider the following simple problem class:
•  Given n and s, Find a set of n digits that sum to s.
•  To model this problem, we need to decide how to

represent this set.
•  We will look at two different ways

(there are many more):
•  The Explicit representation.
•  The Occurrence representation.

Fixed-cardinality Sets:
Explicit Representation

•  Given n and s, Find a set of n digits that sum to s.
•  Introduce E, an array of decision variables indexed by 1..n.

Domain of each is 0..9:

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

•  Constraints:

E

AllDifferent(E).

Sum(E) = s.

Fixed-cardinality Sets:
Explicit Representation

•  So the set {1, 3, 5, 7} might be represented:

1 3 5 7
1 3 2 4

•  However, it might also be represented:

E

7 3 5 1
1 3 2 4

E

•  Once again, a modelling step has introduced equivalence
 classes of assignments.

Fixed-cardinality Sets:
Explicit Representation

•  So the set {1, 3, 5, 7} might be represented:

1 3 5 7
1 3 2 4

E

7 3 5 1
1 3 2 4

E

•  Again we need to choose a canonical element from each class.
•  Obvious choice is to require ascending order.
•  So, we can replace AllDifferent(E) with E[1] < E[2] < …

Fixed-cardinality Sets:
Occurrence Representation

•  Given n and s, Find a set of n digits that sum to s.
•  Introduce O, an array of 0/1 decision variables

indexed by 0..9:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

O
0 5 6 7 8 9

•  Constraints:
Sum(E) = n.

O[1] + 2O[2] + 3O[3] + … + 9O[9] = s.

Notice: This representation did not introduce equivalence classes.

Explicit vs. Occurrence
Representations

•  What if we want to say:
“If 5 is in the set then so is 4”?

•  Explicitly:

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

E

Forall j in 1..n .
 If (E[j] = 5) Exists i in 1..j . E[i] = 4

Notice how I exploit ascending order here

Explicit vs. Occurrence
Representations

What if we want to say:
“If 5 is in the set then so is 4”?

Occurrence Rep:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

O
0 5 6 7 8 9

If O[5] = 1 Then O[4] = 1

0,1

Explicit vs. Occurrence
Representations

•  What if we want to say:
•  “The difference between every pair of elements is

not equal to the assignment to a variable d”?
•  Explicitly:

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

E

Forall i in 1..n . Forall j in i+1..n .
 E[j] - E[i] ≠ d

Notice how I exploit ascending order here

Explicit vs. Occurrence
Representations

•  What if we want to say:
•  “The difference between every pair of elements is not equal

to the assignment to a variable d”?
•  Occurrence Rep:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

O
0 5 6 7 8 9

Add constraints of the form:
•  d = 1 Then ((O[0] × O[1]) + (O[1] × O[2]) + … = 0)
•  d = 2 Then …

The Golomb Ruler Problem
•  Applications: x-ray crystallography,

 radio antenna placement.
•  Given:

•  A positive integer n.
•  Find:

•  A set of n integer ticks on a ruler of length
 m.

•  Such that:
•  All inter-tick distances are distinct.

•  Minimising:
•  m.

Golomb Ruler: Example

0 1 2 3 4 5 6

1 2 3

4

5

6

n = 4, m = 6

Modelling the Golomb Ruler
•  Requires finding a set of ticks.
•  Which of the two representations shall we use?

•  The constraints need direct access to the values
 in the set: let’s try the explicit representation.

0..n2 0..n2 0..n2 0..n2 … 0..n2

1 3 2 4 n

T

Ascending order: T[1] < T[2] < … < T[n]

Modelling the Golomb Ruler

•  All inter-tick distances are distinct:

0..n2 0..n2 0..n2 0..n2 … 0..n2

1 3 2 4 n

T

•  T[j] – T[i] ≠ T[k] – T[l]
 for each {i, j}, {k, l} drawn from 1..n,
 such that {i, j} ≠ {k, l}, i < j, k < l
 again,exploiting ascending order.

Modelling the Golomb Ruler

•  Objective:

0..n2 0..n2 0..n2 0..n2 … 0..n2

1 3 2 4 n

T

•  Minimise(T[n])
 Again, exploiting ascending order.

Modelling the Golomb Ruler

•  A Challenge:
•  Can you see how to model this problem

 using the occurrence representation?

Bounded-cardinality Sets:
 Occurrence

•  Given n and s, Find a set of at most n digits
 that sum to s.

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

O
0 5 6 7 8 9

•  Constraints:
Sum(E) ≤ n.

O[1] + 2O[2] + 3O[3] + … + 9O[9] = s.

Bounded-cardinality Sets:
 Explicit

•  Given n and s, Find a set of at most n digits
 that sum to s.

•  Explicit?

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

•  Constraints:

E

E in ascending order.

0,1 0,1 0,1 0,1 … 0,1
1 3 2 4 n

Switches

Constraints on Sets

•  Sets appear very frequently in problems we
 wish to model.

•  It’s worth looking at how to model some other
 common constraints on them:
•  Intersection
•  Union
•  Subset…

Set Intersection:
Occurrence Rep

•  Model A ∩ B = C.
•  A, B are sets of digits (cardinality 5).

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OA

0 5 6 7 8 9

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OB

0 5 6 7 8 9

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OC

0 5 6 7 8 9

Constraint: OC[i] = OA[i] × OB[i] (for each i in 0..9)

Sum(OA) = 5

Sum(OB) = 5

Sum?

Set Intersection:
Explicit Rep

•  Model A ∩ B = C.
•  A, B are sets of digits (cardinality 5).

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EA
5

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EB
5

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EC
5

What does the intersection constraint look like?

EA, EB, EC in ascending order.

0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

SC
5

Set Union: Occurrence Rep
•  Model A ∪ B = C.
•  A, B are sets of digits (cardinality 5).

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OA

0 5 6 7 8 9

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OB

0 5 6 7 8 9

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OC

0 5 6 7 8 9

Sum(OA) = 5

Sum(OB) = 5

Sum?

Constraint:
OC[i] = (OA[i] = 1 ∨ OB[i] = 1) (for each i in 0..9)

OC[i] = max(OA[i], OB[i]) (for each i in 0..9)
OR

Set Union: Explicit Rep
•  Model A ∪ B = C.
•  A, B are sets of digits (cardinality 5).

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EA
5

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EB

5

0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9 0..9
1 3 2 4 5 6 7 8 9 10

EC

What does the union constraint look like?

EA, EB, EC in ascending order.

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4 5 6 7 8 9 10

SC

Subset: Occurrence Rep
•  Model A ⊆ B.
•  B is a set of digits (cardinality 5).

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OA

0 5 6 7 8 9

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

1 3 2 4
OB

0 5 6 7 8 9
Sum(OB) = 5

Subset constraint: OA[i] ≤ OB[i] (foreach i in 0..9)

Sum?

Subset: Explicit Rep
•  Model A ⊆ B.
•  B is a set of digits (cardinality 5).

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EB

5

0..9 0..9 0..9 0..9 0..9
1 3 2 4

EA

5

What does the subset constraint look like?

EA, EB in ascending order.

0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

SA

5

Combined Representations

•  Obviously, can have combinations of the two
 representations (e.g. OA, OB and EC).

•  Constraints on original sets have to be
 modelled appropriately.

Sets: Summary

•  We’ve seen that the explicit
 representation often looks much worse
 when the set is of bounded cardinality.

•  The explicit representation will make a
 comeback when we look at nested
 objects (e.g. sets of sets).

Multisets

(in brief)

Multisets

•  A collection of distinct objects.
•  Repetition allowed.
•  Not arranged in any particular order.

•  {1, 2, 3, 1}.
•  {red, green, blue, green, red}.

Where does the Multiset
 Pattern Occur?

•  In many places that the set pattern
 occurs. For example, in some packing
 problems (e.g. Vellino’s problem) it is
 appropriate to view the containers as
 multisets:

Multisets: Explicit
•  Find a multiset of n/at most n digits:
•  Explicit fixed-cardinality:

•  Bounded-cardinality:
0..9 0..9 0..9 0..9 … 0..9

1 3 2 4 n

E

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

E

0,1 0,1 0,1 0,1 … 0,1
1 3 2 4 n

Switches

Are we introducing equivalent assignments here?

No AllDiff
needed

Multisets: Occurrence
•  Find a multiset of n/at most n digits:
•  Occurrence representation:

•  Larger domain allows multiple occurrences.
•  Fixed-cardinality n: Sum is n.
•  Bounded-cardinality n: Sum is at most n.

0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n 0…n

1 3 2 4

O
0 5 6 7 8 9

Relations

Relations
•  Assign truth values to tuples of values.

•  Constraints are relations.
•  Example:

•  Set P is {Bill, Bert, Tom}.
•  Binary relation likes on P x P might assign

<Bill, Bert> and <Bert, Tom> true (to mean
 Bill likes Bert and Bert likes Tom),
and false to the other combinations.

Where Does the Relation
 Pattern Occur?

•  Combinatorial Design:
•  BIBDs (CSPLib 28)

•  Cellular Frequency Assignment
•  Assignment of frequencies to transmitters (see

 Van Hentenryck ’99)
•  Rostering

•  Assignment of staff to shifts.

Relations:
Occurrence Representation

•  Find a relation R between sets
A = {1, 2, 3} and B = {2, 3, 4}
such that each element of A is related to at
 least one element of B.”

0, 1 0, 1 0, 1
0, 1 0, 1 0, 1
0, 1 0, 1 0, 1

1 2 3

3

4

2

A

B

Relations: Projection

•  A common operation on relations. We project
 a relation onto one or more of its arguments.
 Result: a relation of reduced arity.

•  Example:
•  Set P is {Bill, Bert, Tom}.
•  Relation likes on P x P =

{<Bill, Bert>, <Bert, Tom>, <Bert, Bill>}.
•  Project likes onto “Bert” (first position):

{Tom, Bill}

Relations: Projection
•  Find a relation R between sets

A = {1, 2, 3} and B = {2, 3, 4}
such that each element of A is related to at
 least one element of B.”

•  So projection of R onto each element of A has
 size at least 1.

0, 1 0, 1 0, 1
0, 1 0, 1 0, 1
0, 1 0, 1 0, 1

1 2 3

3

4

2

A

B

Constraint: Summation on the columns

Relations: Occurrence
 Representation

•  What about k-ary relations?

k-dimensional matrices

0/1

Relations: Other
 Representations

•  Consider binary case, A × B.
(A = {1, 2, 3}, B = {2, 3, 4}).

•  Introduce a matrix indexed by elements of A
 and by 1 .. |B|:

{0,2,3,4} {0,2,3,4} {0,2,3,4}

{0,2,3,4} {0,2,3,4} {0,2,3,4}

{0,2,3,4} {0,2,3,4} {0,2,3,4}

1 2 3
A

1

2

3

Why did I add 0?

Do I need to add
constraints?

1..|B|

Relations: Other
 Representations

•  Consider ternary case, A × B × C.
(A = {1, 2, 3}, B = {2, 3, 4}, C = {4, 5, 6}).

•  Introduce a 3d matrix indexed by elements of
 A and B, and size of C. Domain is C and 0.

Can you think of
Other viewpoints?

A

B

Size of C

{0,4, 5, 6}

Would a 2d array indexed by A and B, with C as
domain work?

Relations: Other
 Representations

•  We will return to the natural “explicit”
 representation of a relation when
 considering modelling nested
 combinatorial objects.

BIBD: Specification
•  Given:

•  A 5-tuple of positive integers: 〈v, b, r, k, λ〉.
•  Find:

•  An assignment, associating each of v objects to b
 blocks.

•  Such that:
•  Each block contains k distinct objects.
•  Each object occurs in exactly r different blocks.
•  Every two distinct objects occur together in exactly

 λ blocks.

Applications: cryptography,
 experimental design.

Modelling the BIBD

•  An abstract view of the decision
 variable:
•  A relation on blocks × objects.

BIBD: Occurrence Model
•  Constraints can now be stated easily on rows and

 columns.

0/1

Blocks

Objects

BIBD: Occurrence Model
•  Each block contains k distinct objects.

•  Foreach i in blocks, sum of ith column is k.
•  So each instance has b sum constraints.

0/1

0/1

0/1

0/1

0/1

0/1

0/1

Blocks

Objects

BIBD: Occurrence Model
•  Each object occurs in exactly r different blocks.

•  Foreach i in objects, sum of ith row is r.
•  Again, each instance has v sum constraints.

0/1 0/1 0/1 0/1 0/1 0/1 0/1

Blocks

Objects

BIBD: Occurrence Model
•  Every 2 distinct objects occur together λ blocks.

•  Foreach {i, j} in objects, scalar product of ith and jth rows is λ.

0/1 0/1 0/1 0/1 0/1 0/1 0/1

0/1 0/1 0/1 0/1 0/1 0/1 0/1

Blocks

Objects

BIBD: Example
•  〈7, 7, 3, 3, 1〉

0 0 0 0 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 1

Blocks

Objects

… but did we introduce equivalence classes of assignments
here?

Functions

Functions
•  A function f is a binary relation on two sets:

•  a domain and a codomain.

•  Has the property that each element of the
 domain is related to at most one element
 of the codomain:

•  its image.

•  We write f(x) = y to mean that the image of
 x under the function f is y.

a

b

c

d

1

2

3

4

domain	

 codomain	

Where does the Function
 Pattern Occur?

•  Timetabling:
•  E.g. Balanced Academic Curriculum

 Problem (CSPLib 30).
•  Find a function from courses to periods in

 the timetable.

Where does the Function
 Pattern Occur?

•  Graph Colouring:
•  Find a function from the vertices of a graph

 to a set of colours

Highland
Moray

Ab’dnshire
P&K

Fife

Angus

Where does the Function
 Pattern Occur?

•  Warehouse Location.
•  Find a function from stores to warehouses

 to indicate which store is supplied by
 which warehouse.

Total Functions: Explicit
•  In a total function, every element of the

 domain has an image in the codomain.

•  Use a variable per element of the domain,
 domain of each is the codomain.

a

b

c

d

1

2

3

domain	

 codomain	

1,2,3 1,2,3 1,2,3 1,2,3
a b c TotalFn d

Total Functions: Occurrence
•  In a total function, every element of the domain has

 an image in the codomain.

•  Use a 2d array of 0/1 variables, indexed by the
 domain and codomain.

a

b

c

d

1

2

3

domain	

 codomain	

0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1

a b c TotalFn d
1
2
3

Sum of each col is 1

Partial Functions: Explcit
•  In a partial function, some elements of the

 domain have no image in the codomain.

•  Use a variable per element of the domain,
 domain of each is the codomain and a
 dummy element:

a

b

c

d

1

2

3

domain	

 codomain	

0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3

a b c PartialFn d

Partial Functions: Occurrence
•  In a partial function, some elements of the

 domain have no image in the codomain.

•  Use a 2d array of 0/1 variables, indexed by the domain
 and codomain.

a

b

c

d

1

2

3

domain	

 codomain	

PartialFn

0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1

a b c d
1
2
3

Sum of each col ≤ 1

Injections: Explicit
•  The images of two distinct elements of the domain

 under an injective function are distinct

•  If total, just need to add a constraint to our basic
 model of a function: allDifferent(injection)

a

b

c

d

1

2

3

4

domain	

 codomain	

1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4

a b c Injection d

Injections: Occurrence
•  The images of two distinct elements of the domain under an

 injective function are distinct

•  If total, just need to add constraints to our basic model of a
 function:

a

b

c

d

1

2

3

4

domain	

 codomain	

Injection
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1

a b c d
1
2
3

Sum of each col: 1
Sum of each row: ≤1

4

Partial Injections
•  The images of two distinct elements of the domain under an

 injective function are distinct

•  If partial, explicit model is messy, but 0/1 model is easy:

a

b

c

d

1

2

3

4

domain	

 codomain	

Injection
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1

a b c d
1
2
3

Sum of each col: ≤1
Sum of each row: ≤1

4

Surjections: Explicit
•  A function is surjective if every element of the

 codomain is the image of some element of the
 domain.

•  Can modify our explicit total/partial models of a
 function to model surjections:

a

b

c

d

1

2

3

domain	

 codomain	

1,2,3 1,2,3 1,2,3 1,2,3
a b c Surjection d

Must exist
 indices where
 each of 1, 2,
 3 appear.

Surjections: Occurrence
•  A function is surjective if every element of the codomain is the

 image of some element of the domain.

•  Can modify our 0/1 total/partial models of a function to model
 surjections easily:

a

b

c

d

1

2

3

domain	

 codomain	

Surjection

0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1

a b c d
1
2
3

Sum of each row: ≥ 1

Modelling Bijections

•  A bijection is both an injection and a surjection.
•  In fact, we’ve seen this already when looking at

 permutations.
•  Can you formulate a 0/1 model?

Summary
•  There are a number of patterns prevalent in

 many combinatorial problems.
•  We’ve seen some of these and some

 alternative ways of modelling them.
•  You can invoke these patterns when

 modelling a new problem.
•  Beware of introducing equivalence classes

 of assignments, and the steps needed to
 avoid this.

