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Previously on the X-files… 

•  When viewed abstractly, many combinatorial
 problems that we wish to tackle with constraint
 solving exhibit common features. 

•  By recognising these commonly-occurring
 patterns, and  

•  Developing corresponding modelling patterns
 for representing and constraining these
 combinatorial objects, 

•  We can reduce effort required when modelling
 a new problem. 



Previously on the X-files… 

•  We saw a number of individual patterns: 
•  Sequences. 
•  (Multi-)Sets. 
•  Relations. 
•  Functions. 



Previously on the X-files… 
•  We saw how modelling can introduce

 equivalence classes of assignments 

1 2 0 0 0 0 
1 2 3 4 KisSequence 5 6 

1 0 0 2 0 0 
1 2 3 4 KisSequence 5 6 

•  Need to be aware of this happening, know
 how to counter it. 

•  Reduces the need for detection of such
 equivalences. 



In This Episode 

•  We will see how these individual
 patterns can be combined to model
 more complex problems. 



Nesting 



Nesting Overview 

•  We’ve seen how to model several
 combinatorial objects. 

•  Often, problems require us to find one
 combinatorial object nested inside
 another. 
•  A set of sets, 
•  A sequence of functions… 



How Common Are Problems
 Involving Nesting? 

•  Very. 
•  Recall the Steiner Triple (CSPLib 44)

 problem: 
•  Given n, find a set of n(n-1)/6 triples of

 elements from 1,…,n such that any pair of
 triples have at most one common element. 

•  If n = 7: 
•  {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7},

 3, 4, 7}, {3, 5, 6}} 
•  This is a set of sets (the triples). 



How Common Are Problems
 Involving Nesting? 

•  Planning Problems: 
•  Find a sequence of actions to transform

 an initial state into a goal state. 
•  When a planning problem allows us

 actions to be performed in parallel in a
 single step, it is natural to characterise
 it as a sequence of sets of actions. 



How Common Are Problems
 Involving Nesting? 

•  Example: The Gripper Problem 

Room A Room B 

Robby 

left right 

1 2 3 4 

•  Goal: All balls in Room B. 
•  Operators: pick up, put down, move. 



How Common Are Problems
 Involving Nesting? 

•  Example: The Gripper Problem 

Room A Room B 

Robby 

left right 

1 2 3 4 

•  Since Robby has two grippers, in a 
single step of the plan he can pick 
up/put down two balls. 



How Common Are Problems
 Involving Nesting? 

•  Example: The Gripper Problem 

Room A Room B 

Robby 

left right 

1 2 3 4 

•  When Robby moves, he can’t pick 
up/put down.  

•  So at most 2 actions per step. 



How Common Are Problems
 Involving Nesting? 

•  Example: The Gripper Problem 
Room A Room B 

Robby 

left right 

1 2 3 4 

•  Natural to characterise this problem 
as finding a sequence of sets of 
maximum cardinality 2. 



How Common Are Problems
 Involving Nesting? 

•  Example: Steel Mill Slab Design (CSPLib 38). 
•  The mill can make σ different slab sizes. 
•  Given d input orders with: 

•  A colour (route through the mill). 
•  A weight. 

•  Pack orders onto slabs such that the total slab
 capacity is minimised, subject to: 
•  Capacity constraints. 
•  Colour constraints. 



How Common Are Problems
 Involving Nesting? 

•  Example: Steel Mill Slab Design (CSPLib 38). 
•  Capacity: 

•  Total weight of orders assigned to a slab cannot
 exceed slab capacity. 

•  Colour: 
•  Each slab can contain at most p of k total colours. 
•  Reason: expensive to cut slabs up to send them to

 different parts of the mill. 



How Common Are Problems
 Involving Nesting? 

•  Example: Steel Mill Slab Design (CSPLib 38). 
•  Slab Sizes: {1, 3, 4} (σ = 3) 
•  Orders: {oa, …, oi} (d = 9)  
•  Colours: {red, green, blue, orange, brown} (k = 5) 
•  p = 2 
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How Common Are Problems
 Involving Nesting? 

•  Example: Steel Mill Slab Design (CSPLib 38). 
•  Slab Sizes: {1, 3, 4} (σ = 3) 
•  Orders: {oa, …, oi} (d = 9)  
•  Colours: {red, green, blue, orange, brown} (k = 5) 
•  p = 2 

•   6 Slabs: 
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How Common Are Problems
 Involving Nesting? 

•  Example: Steel Mill Slab Design (CSPLib 38). 
•  A slab can be represented as a set of orders. 
•  We must also determine the size of each slab. 
•  So this problem can be characterised as a 

function from sets of orders to the set of sizes. 
•  The function is partial, since not all possible sets of

 orders will be mapped to a slab size. 

The Template design problem (CSPLib 2) can be characterised
 similarly. 



Nesting Inside Sequences 



Nesting Inside Sequences 
•  Recall how we modelled fixed-length 

sequences. 
•  An array of decision variables indexed 

1..n. Domains are the objects to be 
found. 

•  Example, find a sequence of n digits: 

0..9 0..9 0..9 0..9 

1 2 3 4 

0..9 

n 

… 

DigitsArray 



Nesting Inside Sequences 
•  Assume now that we must find a sequence

 of sets, functions, relations, … 
•  We can no longer use a single variable at

 each index to represent the object at that
 position. 
•  Because 1 variable is not enough to represent

 our set, function or relation. 

? ? ? ? 

1 2 3 4 

? 

n 

… 

NestedSeqArray 



Nesting Inside Sequences 
•  Simple solution: 

•  Extend the dimension of the array. 

1 2 3 4 n 

… 

NestedSeqArray 

E.g. 2 dimensions. 
We now have a column of variables to
 represent our set, relation, function … 



Nesting Inside Sequences 
•  To illustrate, consider modelling a

 sequence of sets. 
Room A Room B 

Robby 

left right 

1 2 3 4 

•  Returning to the Gripper problem,
 assume that we are looking for a plan
 of length n. 



Nesting Inside Sequences 
•  We saw before that a set of cardinality

 at most two can be used to model the
 actions performed at each step. 

Room A Room B 

Robby 

left right 

1 2 3 4 

•  Need elements for moving, pick up/drop balls with each of the
 two grippers. 

•  Assume we use integers 1..k to represent these actions. 
•  (I’m glossing over details here). 



Nesting Inside Sequences 
•  So, we have a sequence of length n of sets

 of cardinality at most 2 drawn from 1..k. 
•  Let’s start by looking at the occurrence

 representation: 

0, 1 0, 1 0, 1 0, 1 

0, 1 0, 1 0, 1 0, 1 

1 2 3 4 

0, 1 

0, 1 

n 

… 1 

2 

… 

0, 1 0, 1 0, 1 0, 1 k 0, 1 … 

… 

Each column 
represents the 
occurrence 
representation 
of a set.  
Constraints? 



Nesting Inside Sequences 
•  So, we have a sequence of length n of sets

 of cardinality at most 2 drawn from 1..k. 
•  Now let’s look at the explicit representation. 

0..k 0..k 0..k 0..k 

0..k 0..k 0..k 0..k 

1 2 3 4 

0..k 

0..k 

n 

… 1 

2 

Each column 
represents the 
explicit 
representation 
of a set.  
Constraints? 



Nesting Inside Sequences 
•  What if the sequence has bounded

 length? 
•  Recall that in the non-nested case we

 used a dummy value: 

0..n 0..n 0..n 0..n 
1 2 3 4 KisSequence 



Nesting Inside Sequences 
•  We can use the same approach here (careful not to use the

 same dummy value as the explicit model of the inner sets). 
•  Could also use auxiliary switch variables to indicate whether

 the corresponding column is part of the sequence. 
•  Again, careful of introducing equivalence classes of

 assignments. 

0..k 0..k 0..k 0..k 

0..k 0..k 0..k 0..k 

1 2 3 4 

0..k 

0..k 

n 

… 1 

2 

0, 1 0, 1 0, 1 0, 1 0, 1 … Switches 



Nesting Inside Sets 



Nesting Inside Sets 

•  Being asked to find a set of some other
 object is common, so it is worth
 considering how to model this type of
 problem. 

•  Now we must choose how to model the
 outer type (e.g. explicit vs occurrence
 model of sets) as well as the inner. 



Nested Sets 
Consider the following simple problem class: 
•  Given m, n. 
•  Find a cardinality-m set of sets of n digits

 such that … 
•  From what we have seen so far, we have

 three possibilities: 
1.  An occurrence representation. 
2.  Outer: Explicit. Inner: Occurrence. 
3.  Outer: Explicit. Inner: Explicit. 



Nesting Inside Sets:
 Occurrence 

•  Recall the occurrence representation of
 a fixed-cardinality set of digits: 

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 
1 3 2 4 

O 
0 5 6 7 8 9 

•  We have an index per possible element
 of the set. 



Nesting Inside Sets:
 Occurrence 

Can we take the same approach here? 
•  Given m, n. 
•  Find a cardinality-m set of sets of n digits

 such that… 
Introduce an array indexed by the possible sets of n digits! 

0,1  0,1 0,1  … 

This is often not feasible. 
Typically, when dealing with nesting the outer layers 
are represented explicitly. 

(assuming n = 3) 



Nesting Inside Sets:  
Outer Explicit 

•  Recall the explicit representation of a
 fixed-cardinality set of digits: 

0..9 0..9 0..9 0..9 … 0..9 
1 3 2 4 n 

E 

•  Similarly to the sequence example, we
 extend the dimension of E according to the
 representation we choose for the inner set. 

•  We’re also going to have to be careful to
 make sure the elements of the outer set
 are distinct. 



Nesting Inside Sets:  
Explicit/Occurrence 

•  Given m, n. 
•  Find a cardinality-m set of sets of n

 digits such that… 
•  Let’s consider an occurrence

 representation for the inner sets. 

0,1 0,1 
0,1 0,1 
0,1 0,1 

0,1 0,1 
… 

… 
0,1 
0,1 
0,1 

1 2 m 

0,1 
… 

… 

0 

1 

2 

9 

EO Constraints: 
Sum(col i of EO) = n 
(foreach i in 1..m) 

Scalar-prod(col i of EO, 
                    col j of EO) ≠ n 
 (foreach {i, j} in 1..m) 

But what 
about 
equivalence 
classes? 



Nesting Inside Sets: 
Explicit/Explicit 

•  Given m, n. 
•  Find a cardinality-m set of sets of n

 digits such that… 
•  Let’s consider an occurrence

 representation for the inner sets. 

0..9 0..9 
0..9 0..9 
0..9 0..9 

0..9 0..9 
… 

… 
0..9 
0..9 
0..9 

1 2 m 

0..9 
… 

… 

1 

2 

3 

n 

EE Constraints: 
Col i of EE <lex Col j of EE ∨ 
Col i of EE >lex Col j of EE  
(foreach {i, j} in 1..m) 
AllDiff on columns. 

But what about equivalence
 classes? 



Relations as Sets of Tuples 
•  Last time we looked at a couple of ways

 of modelling relations. 
•  We can also view relations as sets of

 tuples. 
•  Recall our example: 

•  Find a relation R between sets 
A = {1, 2, 3} and B = {2, 3, 4} such that… 

•  What happens when we try and model
 this from the perspective of a set of
 tuples? 



Relations as Sets of Tuples:
 Occurrence 

•  We have an array indexed by the
 possible tuples: 

0,1  0,1 0,1  … 

•  Basically same as the occurrence
 representation we came up with directly: 

0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 
0, 1 0, 1 0, 1 

1 2 3 

3 

4 

2 

A 

B 



Relations as Sets of Tuples:
 Explicit 

•  Find a relation R between sets 
A = {1, 2, 3} and B = {2, 3, 4} such that… 

•  Maximum number of tuples is 9. Invoke
 our bounded-cardinality set pattern: 

1..3 1..3 1..3 1..3 

2..4 2..4 2..4 2..4 

1 2 3 4 

1 

2 

… 

What about equivalence classes? 
What if the relation allows fewer than the full 9 tuples? 



The Social Golfers Problem 



The Social Golfers Problem 

•  In a golf club there are a number of
 golfers who wish to play together in g
 groups of size s. 

•  Find a schedule of play for w weeks
 such that no pair of golfers play
 together more than once. 



The Social Golfers Problem:
 Modelling 

•  In each week, we need to partition the golfers
 into groups. 
•  A partition is a set of sets. No pair of inner sets

 have an element in common. 
•  What about the weeks? 
•  A sequence? But what does the order matter? 
•  A multiset. 
•  In fact, there’s an implied constraint here.

 Can you see it? 
•  So we can think of the problem as finding a 

 multiset of partitions. 



Golfers: Representing the
 Outer Multiset 

•  We have seen explicit and occurrence
 representations of multisets. 

•  The multiset contains complex objects
 (partitions). 

•  Indexing an array by the possible
 partitions of golfers doesn’t seem
 appealing. 

•  So let’s try an explicit model: 

? ? ? ? 

1 2 3 4 

? 

w 

… 



Golfers: The Partitions 
•  In each week we want to partition the

 golfers into g groups of size s. 
•  That is, a set of cardinality g of sets of

 cardinality s. 
•  As per the previous discussion,

 probably sensible to represent the
 outer set explicitly. 

•  The inner set could be occurrence or
 explicit. Here we’ll talk about an
 explicit/explicit representation. 



Golfers: The Partitions 
•  Let n = number of golfers = g * s. 

1..n 1..n 
1..n 1..n 
1..n 1..n 

1..n 1..n 
… 

… 
1..n 
1..n 
1..n 

1 2 g 

1..n 
… 

… 

1 

2 

3 

s 

week 

Since a week is a partition, what can we say about the 
  elements of week? 

What about equivalence classes? 



A Multiset of Partitions of
 Golfers 

•  If we put week into each slot of our multiset
 representation, we obtain a 3d array: 

g groups 

w weeks 

All domains: 
{1, …, n} 

Schedule NB n = g x s is no
 of golfers 

We can order the weeks lexicographically to counter the 
equivalence of assignments obtained by permuting the weeks. 



A Multiset of Partitions of
 Golfers 

•  Need to ensure no pair of golfers meet
 more than once. 

g groups 

w weeks 

All domains: 
{1, …, n} 

Schedule NB n = g x s is no
 of golfers 

Equivalently: size of intersection of each pair of groups is at
 most 1. Invoking our intersection pattern: 

1..n Intersection 

0, 1 Switches 

Sum of switches
 is at most 1 

1 

1 



Social Golfers 

•  Solution to the instance with 3 groups (size 3)
 over 3 weeks: 

[1, 2, 3] [4, 5, 6] [7, 8, 9] 

[1,4,7] [2,5,8] [3,6,9] 

[1,5,9] [2,6,7] [3,4,8] 

3 groups, size 3 

3 weeks 

We’ve missed an equivalence class! Can you spot it? 
Hint: we saw something similar in the BIBD. 



Nesting Summary 

•  Modelling problems involving nested
 combinatorial objects can be quite tricky. 

•  Using the patterns we’ve been looking at can
 help you to do it systematically. 

•  It can also help in spotting equivalence
 classes of assignments as you introduce
 them. 
•  Which can be substantially cheaper than trying to

 detect them after the fact. 



The Golomb Ruler
 Challenge 

And Finally: 



The Golomb Ruler Problem 
•  NB This is a type of Graceful Graph. 
•  Given: 

•  A positive integer n. 
•  Find:  

•  A set of n integer ticks on a ruler of length
 m. 

•  Such that: 
•  All inter-tick distances are distinct. 

•  Minimising: 
•   m. 



Modelling the Golomb Ruler 

•  All inter-tick distances are distinct: 

0..n2 0..n2 0..n2 0..n2 … 0..n2 

1 3 2 4 n 

T 

•  T[j] – T[i] ≠ T[k] – T[l] 
  for each {i, j}, {k, l} drawn from 1..n, 
  such that {i, j} ≠ {k, l}, i < j, k < l 
  again, exploiting ascending order. 

•  Objective: 
•  Minimise(T[n]) 
  Again, exploiting ascending order. 



Modelling the Golomb Ruler 

•  A Challenge: 
•  Can you see how to model this problem

 using the occurrence representation? 
•  This does require a little sleight of

 hand… 



Golomb Ruler: 
Occurrence Model 

•  Recall that in our explicit model, the
 elements of the set are 0..n2. 

0..n2 0..n2 0..n2 0..n2 … 0..n2 

1 3 2 4 n 

T 

•  Invoking our occurrence representation
 pattern, we begin with an array O
 indexed 0..n2: 

0,1 0,1 0,1 0,1 … 0,1 

0 2 1 3 n2 

O 



Golomb Ruler: 
Occurrence Model 

•  How can we express the distinct
 distances constraint? 

•  Consider a partial assignment: 

1 1 0,1 0,1 … 0,1 

0 2 1 3 n2 

O 

•  We now know that no other pair of
 adjacent variables can be assigned 1. 

•  How can we express these constraints? 



Golomb Ruler: 
Occurrence Model 

•  Consider an array O1, which contains
 the same variables as O, shifted one
 position right. 

0,1 0,1 0,1 0,1 … 0,1 

0 2 1 3 n2 

O 

0,1 0,1 0,1 … 0,1 

2 1 3 n2 

O1 

… 



Golomb Ruler: 
Occurrence Model 

•  Now let’s assign some variables: 

1 1 1 0,1 … 0,1 

0 2 1 3 n2 

O 

1 1 1 … 0,1 

2 1 3 n2 

O1 

•  Whereas: 

1 1 0,1 1 0, 1 … 0,1 

0 2 1 3 n2 

O 

… 0,1 

2 1 3 n2 

O1 

Scalar product: 2 

Scalar product: 1 

1 1 0,1 1 

4 

4 



Golomb Ruler: 
Occurrence Model 

•  Now consider adding one such array per
 difference: 

0,1 0,1 0,1 0,1 … 0,1 

0 2 1 3 n2 

O 

0,1 0,1 0,1 … 0,1 

2 1 3 n2 

O1 

0,1 0,1 … 0,1 

2 3 n2 

O2 

… 

Constrain the scalar
 product with O to be
 at most 1. 



Golomb Ruler: 
Occurrence Model 

•  (Perhaps) you’re thinking: 
•  That’s a lot of extra variables! 

•  In fact, we’ve introduced no extra
 variables. 

•  Just re-used existing variables in new
 arrays. 



Golomb Ruler: 
Occurrence Model 

•  But what about the objective? 

0,1 0,1 0,1 0,1 … 0,1 

0 2 1 3 n2 

O 

•  Tricky because we are trying to minimise the
 index of the last “1” assignment. 
•  One way is to solve a series of problems,
 increasing the size of O. 

•  As soon as we have a solution, it is
 optimal. 



Golomb Ruler: Discussion 
•  Most constraint models of this problem for

 the literature focus on the explicit
 representation of the set. 

•  Build on this model by adding auxiliary
 variables and implied constraints. 
•  Barbara M. Smith, Kostas Stergiou, Toby Walsh: Using Auxiliary

 Variables and Implied Constraints to Model Non-Binary Problems.
 AAAI/IAAI 2000: 182-187 

•  Distributed effort to find large GRs looks
 more like this occurrence model. 
•  The power of bit-shifting. 


