
Thinking Abstractly About
Constraint Modelling II

Ian Miguel
ianm@cs.st-andrews.ac.uk

Previously on the X-files…

•  When viewed abstractly, many combinatorial
 problems that we wish to tackle with constraint
 solving exhibit common features.

•  By recognising these commonly-occurring
 patterns, and

•  Developing corresponding modelling patterns
 for representing and constraining these
 combinatorial objects,

•  We can reduce effort required when modelling
 a new problem.

Previously on the X-files…

•  We saw a number of individual patterns:
•  Sequences.
•  (Multi-)Sets.
•  Relations.
•  Functions.

Previously on the X-files…
•  We saw how modelling can introduce

 equivalence classes of assignments

1 2 0 0 0 0
1 2 3 4 KisSequence 5 6

1 0 0 2 0 0
1 2 3 4 KisSequence 5 6

•  Need to be aware of this happening, know
 how to counter it.

•  Reduces the need for detection of such
 equivalences.

In This Episode

•  We will see how these individual
 patterns can be combined to model
 more complex problems.

Nesting

Nesting Overview

•  We’ve seen how to model several
 combinatorial objects.

•  Often, problems require us to find one
 combinatorial object nested inside
 another.
•  A set of sets,
•  A sequence of functions…

How Common Are Problems
 Involving Nesting?

•  Very.
•  Recall the Steiner Triple (CSPLib 44)

 problem:
•  Given n, find a set of n(n-1)/6 triples of

 elements from 1,…,n such that any pair of
 triples have at most one common element.

•  If n = 7:
•  {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7},

 3, 4, 7}, {3, 5, 6}}
•  This is a set of sets (the triples).

How Common Are Problems
 Involving Nesting?

•  Planning Problems:
•  Find a sequence of actions to transform

 an initial state into a goal state.
•  When a planning problem allows us

 actions to be performed in parallel in a
 single step, it is natural to characterise
 it as a sequence of sets of actions.

How Common Are Problems
 Involving Nesting?

•  Example: The Gripper Problem

Room A Room B

Robby

left right

1 2 3 4

•  Goal: All balls in Room B.
•  Operators: pick up, put down, move.

How Common Are Problems
 Involving Nesting?

•  Example: The Gripper Problem

Room A Room B

Robby

left right

1 2 3 4

•  Since Robby has two grippers, in a
single step of the plan he can pick
up/put down two balls.

How Common Are Problems
 Involving Nesting?

•  Example: The Gripper Problem

Room A Room B

Robby

left right

1 2 3 4

•  When Robby moves, he can’t pick
up/put down.

•  So at most 2 actions per step.

How Common Are Problems
 Involving Nesting?

•  Example: The Gripper Problem
Room A Room B

Robby

left right

1 2 3 4

•  Natural to characterise this problem
as finding a sequence of sets of
maximum cardinality 2.

How Common Are Problems
 Involving Nesting?

•  Example: Steel Mill Slab Design (CSPLib 38).
•  The mill can make σ different slab sizes.
•  Given d input orders with:

•  A colour (route through the mill).
•  A weight.

•  Pack orders onto slabs such that the total slab
 capacity is minimised, subject to:
•  Capacity constraints.
•  Colour constraints.

How Common Are Problems
 Involving Nesting?

•  Example: Steel Mill Slab Design (CSPLib 38).
•  Capacity:

•  Total weight of orders assigned to a slab cannot
 exceed slab capacity.

•  Colour:
•  Each slab can contain at most p of k total colours.
•  Reason: expensive to cut slabs up to send them to

 different parts of the mill.

How Common Are Problems
 Involving Nesting?

•  Example: Steel Mill Slab Design (CSPLib 38).
•  Slab Sizes: {1, 3, 4} (σ = 3)
•  Orders: {oa, …, oi} (d = 9)
•  Colours: {red, green, blue, orange, brown} (k = 5)
•  p = 2

2
3

1 1 1 1 1
2

1

a b c d e f g h i

How Common Are Problems
 Involving Nesting?

•  Example: Steel Mill Slab Design (CSPLib 38).
•  Slab Sizes: {1, 3, 4} (σ = 3)
•  Orders: {oa, …, oi} (d = 9)
•  Colours: {red, green, blue, orange, brown} (k = 5)
•  p = 2

•  6 Slabs:

2
3

1 1 1

1

1

1

f

g i

e

c d

b

h

a

(size 4) (size 3) (size 1) (size 1) (size 3) (size 1)

2

How Common Are Problems
 Involving Nesting?

•  Example: Steel Mill Slab Design (CSPLib 38).
•  A slab can be represented as a set of orders.
•  We must also determine the size of each slab.
•  So this problem can be characterised as a

function from sets of orders to the set of sizes.
•  The function is partial, since not all possible sets of

 orders will be mapped to a slab size.

The Template design problem (CSPLib 2) can be characterised
 similarly.

Nesting Inside Sequences

Nesting Inside Sequences
•  Recall how we modelled fixed-length

sequences.
•  An array of decision variables indexed

1..n. Domains are the objects to be
found.

•  Example, find a sequence of n digits:

0..9 0..9 0..9 0..9

1 2 3 4

0..9

n

…

DigitsArray

Nesting Inside Sequences
•  Assume now that we must find a sequence

 of sets, functions, relations, …
•  We can no longer use a single variable at

 each index to represent the object at that
 position.
•  Because 1 variable is not enough to represent

 our set, function or relation.

? ? ? ?

1 2 3 4

?

n

…

NestedSeqArray

Nesting Inside Sequences
•  Simple solution:

•  Extend the dimension of the array.

1 2 3 4 n

…

NestedSeqArray

E.g. 2 dimensions.
We now have a column of variables to
 represent our set, relation, function …

Nesting Inside Sequences
•  To illustrate, consider modelling a

 sequence of sets.
Room A Room B

Robby

left right

1 2 3 4

•  Returning to the Gripper problem,
 assume that we are looking for a plan
 of length n.

Nesting Inside Sequences
•  We saw before that a set of cardinality

 at most two can be used to model the
 actions performed at each step.

Room A Room B

Robby

left right

1 2 3 4

•  Need elements for moving, pick up/drop balls with each of the
 two grippers.

•  Assume we use integers 1..k to represent these actions.
•  (I’m glossing over details here).

Nesting Inside Sequences
•  So, we have a sequence of length n of sets

 of cardinality at most 2 drawn from 1..k.
•  Let’s start by looking at the occurrence

 representation:

0, 1 0, 1 0, 1 0, 1

0, 1 0, 1 0, 1 0, 1

1 2 3 4

0, 1

0, 1

n

… 1

2

…

0, 1 0, 1 0, 1 0, 1 k 0, 1 …

…

Each column
represents the
occurrence
representation
of a set.
Constraints?

Nesting Inside Sequences
•  So, we have a sequence of length n of sets

 of cardinality at most 2 drawn from 1..k.
•  Now let’s look at the explicit representation.

0..k 0..k 0..k 0..k

0..k 0..k 0..k 0..k

1 2 3 4

0..k

0..k

n

… 1

2

Each column
represents the
explicit
representation
of a set.
Constraints?

Nesting Inside Sequences
•  What if the sequence has bounded

 length?
•  Recall that in the non-nested case we

 used a dummy value:

0..n 0..n 0..n 0..n
1 2 3 4 KisSequence

Nesting Inside Sequences
•  We can use the same approach here (careful not to use the

 same dummy value as the explicit model of the inner sets).
•  Could also use auxiliary switch variables to indicate whether

 the corresponding column is part of the sequence.
•  Again, careful of introducing equivalence classes of

 assignments.

0..k 0..k 0..k 0..k

0..k 0..k 0..k 0..k

1 2 3 4

0..k

0..k

n

… 1

2

0, 1 0, 1 0, 1 0, 1 0, 1 … Switches

Nesting Inside Sets

Nesting Inside Sets

•  Being asked to find a set of some other
 object is common, so it is worth
 considering how to model this type of
 problem.

•  Now we must choose how to model the
 outer type (e.g. explicit vs occurrence
 model of sets) as well as the inner.

Nested Sets
Consider the following simple problem class:
•  Given m, n.
•  Find a cardinality-m set of sets of n digits

 such that …
•  From what we have seen so far, we have

 three possibilities:
1.  An occurrence representation.
2.  Outer: Explicit. Inner: Occurrence.
3.  Outer: Explicit. Inner: Explicit.

Nesting Inside Sets:
 Occurrence

•  Recall the occurrence representation of
 a fixed-cardinality set of digits:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1
1 3 2 4

O
0 5 6 7 8 9

•  We have an index per possible element
 of the set.

Nesting Inside Sets:
 Occurrence

Can we take the same approach here?
•  Given m, n.
•  Find a cardinality-m set of sets of n digits

 such that…
Introduce an array indexed by the possible sets of n digits!

0,1 0,1 0,1 …

This is often not feasible.
Typically, when dealing with nesting the outer layers
are represented explicitly.

(assuming n = 3)

Nesting Inside Sets:
Outer Explicit

•  Recall the explicit representation of a
 fixed-cardinality set of digits:

0..9 0..9 0..9 0..9 … 0..9
1 3 2 4 n

E

•  Similarly to the sequence example, we
 extend the dimension of E according to the
 representation we choose for the inner set.

•  We’re also going to have to be careful to
 make sure the elements of the outer set
 are distinct.

Nesting Inside Sets:
Explicit/Occurrence

•  Given m, n.
•  Find a cardinality-m set of sets of n

 digits such that…
•  Let’s consider an occurrence

 representation for the inner sets.

0,1 0,1
0,1 0,1
0,1 0,1

0,1 0,1
…

…
0,1
0,1
0,1

1 2 m

0,1
…

…

0

1

2

9

EO Constraints:
Sum(col i of EO) = n
(foreach i in 1..m)

Scalar-prod(col i of EO,
 col j of EO) ≠ n
 (foreach {i, j} in 1..m)

But what
about
equivalence
classes?

Nesting Inside Sets:
Explicit/Explicit

•  Given m, n.
•  Find a cardinality-m set of sets of n

 digits such that…
•  Let’s consider an occurrence

 representation for the inner sets.

0..9 0..9
0..9 0..9
0..9 0..9

0..9 0..9
…

…
0..9
0..9
0..9

1 2 m

0..9
…

…

1

2

3

n

EE Constraints:
Col i of EE <lex Col j of EE ∨
Col i of EE >lex Col j of EE
(foreach {i, j} in 1..m)
AllDiff on columns.

But what about equivalence
 classes?

Relations as Sets of Tuples
•  Last time we looked at a couple of ways

 of modelling relations.
•  We can also view relations as sets of

 tuples.
•  Recall our example:

•  Find a relation R between sets
A = {1, 2, 3} and B = {2, 3, 4} such that…

•  What happens when we try and model
 this from the perspective of a set of
 tuples?

Relations as Sets of Tuples:
 Occurrence

•  We have an array indexed by the
 possible tuples:

0,1 0,1 0,1 …

•  Basically same as the occurrence
 representation we came up with directly:

0, 1 0, 1 0, 1
0, 1 0, 1 0, 1
0, 1 0, 1 0, 1

1 2 3

3

4

2

A

B

Relations as Sets of Tuples:
 Explicit

•  Find a relation R between sets
A = {1, 2, 3} and B = {2, 3, 4} such that…

•  Maximum number of tuples is 9. Invoke
 our bounded-cardinality set pattern:

1..3 1..3 1..3 1..3

2..4 2..4 2..4 2..4

1 2 3 4

1

2

…

What about equivalence classes?
What if the relation allows fewer than the full 9 tuples?

The Social Golfers Problem

The Social Golfers Problem

•  In a golf club there are a number of
 golfers who wish to play together in g
 groups of size s.

•  Find a schedule of play for w weeks
 such that no pair of golfers play
 together more than once.

The Social Golfers Problem:
 Modelling

•  In each week, we need to partition the golfers
 into groups.
•  A partition is a set of sets. No pair of inner sets

 have an element in common.
•  What about the weeks?
•  A sequence? But what does the order matter?
•  A multiset.
•  In fact, there’s an implied constraint here.

 Can you see it?
•  So we can think of the problem as finding a

 multiset of partitions.

Golfers: Representing the
 Outer Multiset

•  We have seen explicit and occurrence
 representations of multisets.

•  The multiset contains complex objects
 (partitions).

•  Indexing an array by the possible
 partitions of golfers doesn’t seem
 appealing.

•  So let’s try an explicit model:

? ? ? ?

1 2 3 4

?

w

…

Golfers: The Partitions
•  In each week we want to partition the

 golfers into g groups of size s.
•  That is, a set of cardinality g of sets of

 cardinality s.
•  As per the previous discussion,

 probably sensible to represent the
 outer set explicitly.

•  The inner set could be occurrence or
 explicit. Here we’ll talk about an
 explicit/explicit representation.

Golfers: The Partitions
•  Let n = number of golfers = g * s.

1..n 1..n
1..n 1..n
1..n 1..n

1..n 1..n
…

…
1..n
1..n
1..n

1 2 g

1..n
…

…

1

2

3

s

week

Since a week is a partition, what can we say about the
 elements of week?

What about equivalence classes?

A Multiset of Partitions of
 Golfers

•  If we put week into each slot of our multiset
 representation, we obtain a 3d array:

g groups

w weeks

All domains:
{1, …, n}

Schedule NB n = g x s is no
 of golfers

We can order the weeks lexicographically to counter the
equivalence of assignments obtained by permuting the weeks.

A Multiset of Partitions of
 Golfers

•  Need to ensure no pair of golfers meet
 more than once.

g groups

w weeks

All domains:
{1, …, n}

Schedule NB n = g x s is no
 of golfers

Equivalently: size of intersection of each pair of groups is at
 most 1. Invoking our intersection pattern:

1..n Intersection

0, 1 Switches

Sum of switches
 is at most 1

1

1

Social Golfers

•  Solution to the instance with 3 groups (size 3)
 over 3 weeks:

[1, 2, 3] [4, 5, 6] [7, 8, 9]

[1,4,7] [2,5,8] [3,6,9]

[1,5,9] [2,6,7] [3,4,8]

3 groups, size 3

3 weeks

We’ve missed an equivalence class! Can you spot it?
Hint: we saw something similar in the BIBD.

Nesting Summary

•  Modelling problems involving nested
 combinatorial objects can be quite tricky.

•  Using the patterns we’ve been looking at can
 help you to do it systematically.

•  It can also help in spotting equivalence
 classes of assignments as you introduce
 them.
•  Which can be substantially cheaper than trying to

 detect them after the fact.

The Golomb Ruler
 Challenge

And Finally:

The Golomb Ruler Problem
•  NB This is a type of Graceful Graph.
•  Given:

•  A positive integer n.
•  Find:

•  A set of n integer ticks on a ruler of length
 m.

•  Such that:
•  All inter-tick distances are distinct.

•  Minimising:
•  m.

Modelling the Golomb Ruler

•  All inter-tick distances are distinct:

0..n2 0..n2 0..n2 0..n2 … 0..n2

1 3 2 4 n

T

•  T[j] – T[i] ≠ T[k] – T[l]
 for each {i, j}, {k, l} drawn from 1..n,
 such that {i, j} ≠ {k, l}, i < j, k < l
 again, exploiting ascending order.

•  Objective:
•  Minimise(T[n])
 Again, exploiting ascending order.

Modelling the Golomb Ruler

•  A Challenge:
•  Can you see how to model this problem

 using the occurrence representation?
•  This does require a little sleight of

 hand…

Golomb Ruler:
Occurrence Model

•  Recall that in our explicit model, the
 elements of the set are 0..n2.

0..n2 0..n2 0..n2 0..n2 … 0..n2

1 3 2 4 n

T

•  Invoking our occurrence representation
 pattern, we begin with an array O
 indexed 0..n2:

0,1 0,1 0,1 0,1 … 0,1

0 2 1 3 n2

O

Golomb Ruler:
Occurrence Model

•  How can we express the distinct
 distances constraint?

•  Consider a partial assignment:

1 1 0,1 0,1 … 0,1

0 2 1 3 n2

O

•  We now know that no other pair of
 adjacent variables can be assigned 1.

•  How can we express these constraints?

Golomb Ruler:
Occurrence Model

•  Consider an array O1, which contains
 the same variables as O, shifted one
 position right.

0,1 0,1 0,1 0,1 … 0,1

0 2 1 3 n2

O

0,1 0,1 0,1 … 0,1

2 1 3 n2

O1

…

Golomb Ruler:
Occurrence Model

•  Now let’s assign some variables:

1 1 1 0,1 … 0,1

0 2 1 3 n2

O

1 1 1 … 0,1

2 1 3 n2

O1

•  Whereas:

1 1 0,1 1 0, 1 … 0,1

0 2 1 3 n2

O

… 0,1

2 1 3 n2

O1

Scalar product: 2

Scalar product: 1

1 1 0,1 1

4

4

Golomb Ruler:
Occurrence Model

•  Now consider adding one such array per
 difference:

0,1 0,1 0,1 0,1 … 0,1

0 2 1 3 n2

O

0,1 0,1 0,1 … 0,1

2 1 3 n2

O1

0,1 0,1 … 0,1

2 3 n2

O2

…

Constrain the scalar
 product with O to be
 at most 1.

Golomb Ruler:
Occurrence Model

•  (Perhaps) you’re thinking:
•  That’s a lot of extra variables!

•  In fact, we’ve introduced no extra
 variables.

•  Just re-used existing variables in new
 arrays.

Golomb Ruler:
Occurrence Model

•  But what about the objective?

0,1 0,1 0,1 0,1 … 0,1

0 2 1 3 n2

O

•  Tricky because we are trying to minimise the
 index of the last “1” assignment.
•  One way is to solve a series of problems,
 increasing the size of O.

•  As soon as we have a solution, it is
 optimal.

Golomb Ruler: Discussion
•  Most constraint models of this problem for

 the literature focus on the explicit
 representation of the set.

•  Build on this model by adding auxiliary
 variables and implied constraints.
•  Barbara M. Smith, Kostas Stergiou, Toby Walsh: Using Auxiliary

 Variables and Implied Constraints to Model Non-Binary Problems.
 AAAI/IAAI 2000: 182-187

•  Distributed effort to find large GRs looks
 more like this occurrence model.
•  The power of bit-shifting.

