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Why do we care about Explanations?

Configuration as a CSP

A “product” is fully
specified by some
constraints
Several options are
available to the user
The user expresses his
preferences as constraints

Explanations
When preferences conflict:

Conflict show a set of
conflicting
preferences

Relaxation show a set of
feasible
preferences
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Why do we care about Explanations?

Debugging a CSP Model
A model represents a
reality using some
constraints
The programmer
“proposes” a model

Explanations
When the model/reality conflict:

Conflict show a set of
conflicts between
the model and
reality

Relaxation show a set of
feasible
constraints
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Classic Setting

Two Categories of Constraints
background constraints expressing the connections
between the components of the “product”, that cannot be
removed
user constraints interactively stated by the user when
deciding on options (= a query)

Consistency
A set of constraints is consistent if it admits a solution.
The background constraints are assumed to be consistent.
The “solubility” of a set of constraints refers to the number
of solutions it is consistent with.
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Terminology

Explanations
Conflict: an inconsistent subset of U: show one cause of
inconsistency.
Relaxation: a consistent subset of U: show one possible
way of recovering from it

Optimality – sort of
A relaxation is maximal when no constraint can added
while remaining consistent.
A conflict is minimal when no constraint can be removed
while remaining inconsistent.
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Example

Car configuration

Option Cost
Roof rack 500
Convertible 500
CD Player 500
Leather Seats 2600

à Convertible cars cannot
have roof racks.

User constraints
c1 Total cost ≤ 3000
c2 Roof rack
c3 Convertible
c4 CD Player
c5 Leather Seats

Relaxations: {c1c2}, {c1c5} are
consistent
Maximality: {c1c2c4} is still
consistent, but no more constraint
can be added to {c1c5}.
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Explanation by Proof

Example Problem
y = 5x1 + 4x2 + 26x3

x1 = 1
x2 = 1
x3 = 1
y ≤ 30

Proof by Propagation

Order the constraints
lexicographically:

A ∧ B =⇒ y ≥ 5
A ∧ C ∧ y ≥ 5 =⇒ y ≥ 9
A ∧ D ∧ y ≥ 9 =⇒ y ≥ 35
A ∧ E ∧ y ≥ 35 =⇒ ⊥

Explanation: {A, B, C, D, E},
which is not minimal.
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From Proofs to Checks

Proofs
Find an inconsistency
proof with minimal
explanation
Non-Decomposable: a
proof with non-minimal
explanation need not
contain a proof with
minimal explanation

Checks
Find a minimal inconsistent
subset of the constraints
Decomposable: a
non-minimal explanation
contains a minimal
explanation
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The QuickXplain Algorithm
Explanation subproblem: background B and constraints
C
Task: find minimal subset X of C s.t. B and X fail
Method: initial problems is split into subproblems
constraints may be moved from C to B constraints may be
omitted from C
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QuickXplain’s Principles

Skip rule: if B is inconsistent then X = {}
Culprit rule: if B is consistent and C = {c} then X = {c}
Decomposition rule: if B is consistent and C = C1 ∪ C2

find explanation X2 of subproblem B ∪ C1, C2 and
find explanation X1 of subproblem B ∪ X2, C1
result X is the union of X1 and X2
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How to use QuickXplain
Background: effort is reduced by putting as many
constraints as possible in the initial background
Preference order: order of constraint uniquely
characterizes the conflict found
Consistency checker: time can be traded against
minimality by an incomplete consistency checker, giving
“anytime” behaviour
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Applications of QuickXplain

Configuration: B2B, B2C find conflicts between user
requests.
Constraint model debugging isolate failing parts of the
constraint model.
Rule verification find tests that make a rule never
applicable.
Benders decomposition.
Diagnosis of ontologies.
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Proofs versus Checks

Truth Maintenance
proof-based (syntactic)
computed online
tight interaction with
problem solver
explanation needs not
be minimal
high space complexity

Consistency-based
consistency check-based
(semantic)
computed off-line
uses problem solver as
black-box
minimal (preferred)
explanation
high time complexity
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Introduction

Presenting a representative set of explanations
Joint work with Alexandre Papadopulous (4C), Boi Faltings
and Pearl Pu (EPFL)
Published at AAAI 2007
Forthcoming related paper at CP
Funded by Science Foundation Ireland
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Observations
1 Conflict: doesn’t guide the user to solving the problem
2 Single relaxation: may not satisfy the user desires
3 All relaxations: can theoretically be too large

à An Alternative Approach
show a set of relaxations
that must be representative of all possible relaxations

as a trade-off between compactness and comprehensiveness
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Explanations
Relaxation a consistent subset of U (what we keep)
Exclusion set the complement of a relaxation (what we
exclude)
Explanation a relaxation together with its corresponding
exclusion set
Conflict an inconsistent subset of U

Optimality
A relaxation is Maximal when no constraint can added
while remaining consistent
A conflict is Minimal when no constraint can be removed
while remaining inconsistent
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Example

Car configuration

Option Cost
Roof rack 500
Convertible 500
CD Player 500
Leather Seats 2600

à Convertible cars cannot
have roof racks.

User constraints
c1 Total cost ≤ 3000
c2 Roof rack
c3 Convertible
c4 CD Player
c5 Leather Seats

Relaxations: {c1c2}, {c1c5} are
consistent
Maximality: {c1c2c4} is still
consistent, but no more constraint
can be added to {c1c5}.
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Definition

Representative set of explanations

c1 c2 c3 c4 c5
7 7 3 3 3

7 3 7 3 3

3 7 3 3 7

3 3 7 3 7

3 7 7 7 3

Every constraint that can be
kept is kept at least once
Every constraint that can be
relaxed is relaxed at least
once
Minimal (setwise)
representative set of
explanations
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Complexity

Decision problems
Does a maximal relaxation contain a given constraint?
å Polynomial (in terms of number of calls to the
consistency checker)
Does a minimal exclusion set contain a given constraint?
å NP-Complete (with an oracle for the consistency
checker)
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Finding All Relaxations (D&A Bailey et. al 2005)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(1, 234) (2, 134) (3, 124) (4, 123)

(∅, 1234)

(123, 4)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(1, 234) (2, 134) (3, 124) (4, 123)

(∅, 1234)

(123, 4)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(1, 234) (2, 134) (3, 124) (4, 123)

(∅, 1234)

(123, 4)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(123, 4)

New entry points

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(1234, ∅)

3 3

(123, 4)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(123, 4)

7

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(1234, ∅)

3

(123, 4)

(1234, ∅)

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(123, 4)

7

(124, 3) (134, 2) (234, 1)

(12, 34) (13, 24) (14, 23) (23, 14) (24, 13) (34, 12)

(∅, 1234)

(3, 124) (4, 123)(1, 234) (2, 134)

(1234, ∅)

77 7

(123, 4)

Problem
Explanations:
(12, 34)
(13, 24)
(4, 123)
Conflicts:
14, 23, 24, 34
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Representative Explanations

Goal
Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice
1 Which new entry point to choose?
2 Which parent to choose?

Heuristics
1 Choose a consistent set that becomes a conflict with an

uncovered constraint
2 Add covered constraints first

Barry O’Sullivan Explanations in Constraint Programming
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Empirical Analysis

Random problems
15 variables,
One background table constraint, with varying tightness
Random assignments on the variables

Renault
Real-world problem
99 variables
2.8× 1012 solutions
30 variables randomly assigned
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Figure: Number of explanations
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Empirical Analysis
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(a) Cardinality of the sets of explanations.
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(b) Times required to generate sets of explanations.

 0

 0.2

 0.4

 0.6

 0.8

 1

0
.9

5

0
.9

0

0
.8

5

0
.8

0

0
.7

5

0
.7

0

0
.6

5

0
.6

0

0
.5

5

0
.5

0

0
.4

5

0
.4

0

0
.3

5

0
.3

0

0
.2

5

0
.2

0

0
.1

5

0
.1

0

0
.0

5

m
in

p
ro

p
o
rt

io
n

satisfiability

(c) Proportion of queries per instances in which all
constraints were involved in at least one exclusion
set.

Figure 1: Results for a series of random problems.

defined in terms of a set of user constraints that assigned a
random value to each variable such that the whole set of con-
straints was inconsistent. We plot the average results over
100 queries at each satisfiability setting in Figure 1.

Consider the size of the representative set of explanations
(Figure 1(a)). For most settings of satisfiability we observe
a significant gap between the total number of exclusions, as
found by the Bailey and Stuckey algorithm, and the num-
ber of representative explanations found by our algorithm.
We noted that in the vast majority of cases, the set of expla-
nations was already almost always (set-wise) minimal, and
were already representative.

From Figure 1(b) we can see that the difference between
algorithms in terms of running time mimics the difference in
the size of the sets of explanations they generate. Note that
REPRESENTATIVEXPLAIN can avoid enumerating all relax-
ations if all user constraints are involved in at least one ex-

clusion. We refer to instances in which this occurs as “true”
instances. As we highlighted before, we can hope for a po-
tentially large decrease in the execution time on these “true”
instances. Figure 1(c) confirms this, as we see that the dif-
ference in running times tends to decrease as the proportion
of “true” instances decreases.

To analyse this behaviour more deeply on pure “false” in-
stances, we ran a second kind of experiment. We used ex-
actly the same process for generating random instances be-
fore, and just added a trivially satisfied constraint to each
instance, so that it belongs to all maximal relaxations. The
results are presented in Figure 2. On these instances we can-
not hope to be much faster than a full enumeration of all
maximal relaxations. We measured two different times: the
time when the last relaxation has been found by REPRESEN-
TATIVEXPLAIN and the time when it terminates, i.e. the
time to find a representative set of explanations and the time
to also prove representativeness, respectively. Here again,
the results are positive. We observe that we actually find a
representative set much faster than it takes to find all relax-
ations. However, unexpectedly, REPRESENTATIVEXPLAIN
can terminate a little quicker than the baseline algoritm.
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Figure 2: Average times for finding all relaxations, a repre-
sentative set of explanations and the last explanation.

We also ran experiments on a real-world problem, the
Renault Megane car configuration problem (Amilhastre,
Fargier, & Marquis 2002). This problem is defined by 99
variables and has 2.8 × 1012 solutions. We extracted four
problem instances of this problem by restricting it in the fol-
lowing way. We ordered the variables by increasing domain
size. Then, by a dichotomic search, we instantiated the vari-
ables with the largest domain sizes in order to reduce the
number of solutions to a more reasonable level for an inter-
active application, while still honouring the real world struc-
ture of the problem. The restricted instances of the problem
provided four possible sets of background constraints, re-
ducing the number of solutions by a factor of 106, 107, 108

and 109 in each case. We compiled each instance into an
automaton, similar to that presented in (Amilhastre, Fargier,
& Marquis 2002). The user’s set of constraints was gener-
ated by randomly assigning 30 of the remaining uninstanti-
ated problem variables. The results of this experiment are
presented in Table 5; the instances are labelled by the re-
duction factor in the number of solutions as compared with
the original Renault problem. For each instance of the back-
ground constraint we computed explanations for 15 incon-

Figure: Running timesBarry O’Sullivan Explanations in Constraint Programming
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Empirical Analysis

Renault instance

Baseline REPRESENTATIVEXPLAIN

Instance time #exps time last time all #exps
renault 106 474.76 17 318.87 618.76 3
renault 107 263.95 11 125.51 324.71 3
renault 108 205.82 8 97.98 232.32 3
renault 109 293.00 12 139.67 350.51 3

Table: Running times for the Renault instances

Barry O’Sullivan Explanations in Constraint Programming
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Introduction

Automatically reformulating constraints for explanation
Joint work with Hadrien Cambazard
Google Best Paper at AICS 2007, published in Constraints
Forthcoming paper at CP
Funded by Science Foundation Ireland

Barry O’Sullivan Explanations in Constraint Programming
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Motivation

Many problems involve large arity table constraints
Spreadsheets, databases, catalogues, etc.
Algorithms such as QuickXplain are constraint-centred
Large arity constraints can “hide” the conflict, and result in
useless explanations

Barry O’Sullivan Explanations in Constraint Programming
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Example

The following problem is defined in terms of three 4-ary
constraints

Barry O’Sullivan Explanations in Constraint Programming
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Example

...but it might be possible to reformulate to focus on binary
conflicts

Barry O’Sullivan Explanations in Constraint Programming
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Functional Dependencies

We exploit functional dependencies, usually used to normalize
database tables, to reformulate constraints

Barry O’Sullivan Explanations in Constraint Programming
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Reformulation Approach

The basic procedure is as follows:
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Properties of the Reformulation

The reformulation we obtain has some nice properties:
Lossless: the set of solutions is preserved

Propagation: pruning is equivalent in the reformulation as the
original

Barry O’Sullivan Explanations in Constraint Programming
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What is a Good Reformulation?

Two criteria:
Arity: for explanations we want to minimize the maximum

arity of the constraints in the reformulation
Memory Size: we might want to minimize the memory footprint

of the reformulation

Barry O’Sullivan Explanations in Constraint Programming
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Functional Dependencies in Real Constraints
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Improved Explanations
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Introduction

Personalized Telecom Feature Subscription

This is joint work between:
David Lesaint (BT)
Deepak Mehta, Barry O’Sullivan, Luis Quesada and Nic
Wilson (4C)
Funded by IRCSET Enterprise Partnership
Forthcoming papers in 2008: AAAI/IAAI, ECAI/PAIS, and
CP.
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Introduction

Context-Aware Personalized
Services

Rule

Time
Location

Device

Skill

Activity

Role

Media

Context

Service

Event

Busy

NoAnswer

Answer

Alerting

VoiceMail

Forward
Hold

SMS

Email
ScreenReturn

New

User intentions
If I am in a meeting, divert
calls to my mobile
If I am out of the office,
play an announcement and
text me on my mobile.
bar international calls at
off-peak time in my
department.
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Call Control Features

Call control features are the building blocks to achieve
personalization.
Each feature can be seen as an increment of the basic
functionality.

Catalogue of Features

CFBCall Forwarding on Busy

FMFind Me

NTNumber Translation

OCLOriginating Call Logging

OCS

CT

CFU

Acronym

Originating Call Screening

Call Terminate

Call Forwarding Unconditional

Feature
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Feature Interactions

Features may modify or influence one another.
There are desirable interactions as well as undesirable
interactions.

Call
Terminate

y

X Call
Forward

y

Ycaller = x
callee = y



caller = x
callee = y



caller = x
callee = y



The creation of a personalized service is subject to
integrity constraints.
The integrity constraints are precedence relations that
avoid undesirable behaviors.
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User Preferences

When a set of features are put together by a user many
different behavioral options for his personalized service
might exist.
A user will need to choose among these options by
providing his/her preferences in terms of precedence
relations between features.

Barry O’Sullivan Explanations in Constraint Programming



Introduction
Generating Minimal Conflicts
Representative Explanations

Automated Reformulation for Explanation
Application: Telecoms Feature Subscription

Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Approaches: CP, Weighted MaxSAT, Integer Linear Programming

User Preferences: Example

Let us suppose that a person subscribes to three features:
Originating call screening, Number translation and Originating
call logging.

screen on the dialed number and log every call attempt

Call
Logging

x

X
Call

Screening
x

Ycaller = x
callee = y



caller = x
callee = y



caller = x
callee = y

Number 
Translation

x
caller = x
callee = y

 3

screen on the dialed number and log only the successful
call

Call
Screening

x
X

Call
Logging

x
Ycaller = x

callee = y


caller = x
callee = y



caller = x
callee = y

Number 
Translation

x
caller = x
callee = y

 3
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User Preferences: Example

screen on the translated number and log every call attempt

Call
Logging

x
X

Number 
Translation

x
Ycaller = x

callee = y


caller = x
callee = y



caller = x
callee = y

Call
Screening

x
caller = x
callee = y

 3

screen on the translated number and log only the
successful call

Number 
Translation

x
X

Call 
Screening

x
Ycaller = x

callee = y


caller = x
callee = y



caller = x
callee = y

Call
Logging

x
caller = x
callee = y

 3
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Consistent Feature Subscription

A subscription is consistent if it satisfies the integrity
constraint and the precedence relations.
The goal is to find a consistent subscription that is optimal
with respect to user defined precedence relations.
If no consistent subscription can be found, then the goal is
to find the best relaxation of the feature subscription.
Finding the best relaxation of an inconsistent subscription
is NP-Hard.
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Approaches

We model and solve our feature subscription configuration
problem using three different approaches:

Constraint Programming
Satisfiability (SAT)
Integer Linear Programming (ILP).

An important advantage of CP is its expressiveness for
capturing the constraints arising in this telecommunication
domain.
Non trivial improvements to the CP model are required for
it to be competitive with the SAT approach we used.
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Context-dependent Consistent Feature Subscription

Context-aware telecommunication services involves
researching and developing methods for providing
context-dependent consistent feature subscriptions to
end-users by resolving various issues such as:

feature interaction management,
representation and handling of context information from a
service configuration perspective,
identifying the main context dimensions,
conflict-resolution mechanisms, and
the management of priorities and preferences.
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An example of context-dependent conflict

X Ycaller = x
callee = y

 

Call
Forward
 (mobile)

Y

caller = x
callee = y

Office phone

Lunch time

X Ycaller = x
callee = y

 

 Announcement 
on

Forbidden

Y

caller = x
callee = y

Office phone

At home

X Ycaller = x
callee = y

 

?
Y

caller = x
callee = y

Office phone

At home,
Lunch time
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Feature Subscription: Input

A source subscription set S. It is a subset of the source
features defined in the catalog.
A target subscription set T . It is a subset of the target
features defined in the catalog.
A set of constraints CS defined over the set S in the
catalog, e.g. precedence constraint, incompatibility
constraint etc.
A set of constraints CT defined over the target subscription
set T .
A set of user preferences PS defined over the source
subscription set S.
A set of user preferences PT defined over the target
subscription set T .
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Feature Subscription: Zones

A source zone is a sequence of features available in the
source subscription set.
A target zone is a sequence of features available in the
target subscription set.
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Consistent Feature Subscription

A feature subscription is consistent iff it satisfies the following:
The source zone is consistent with the constraints defined
in the set CS.
The target zone is consistent with the constraints defined
in the set CT .
For every reversible feature f , f is a part of the source zone
iff f is a part of the target zone.
For every reversible feature f1 and f2, f1 precedes f2 in
the source zone iff f2 precedes f1 in the target zone.
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What is the problem?

The problem is to find a consistent feature subscription
that is optimal with respect to user defined preferences.
If the feature subscription is inconsistent then we have to
find a maximally preferred relaxation of the feature
subscription.
We can relax the problem by dropping features and/or by
discarding user precedence relations.
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An example of a feature subscription (I)

Catalog

 <<<<F8

> <<<<F7
>> <<<F6

>>> <<F5

>>> <>F4
>>>><> F3
F8F7F6F5F4F3

 >>>>F7
< >>>F6
<< >>F5
<<< >F2
<<<< F1
F7F6F5F2F1

source 
catalogue

target 
catalogue

Feature Subscription Input
S = {F2, F5, F6}
CS = {F2 < F5, F2 < F6, F5 < F6}
PS = {}
T = {F4, F5, F6, F8}
CT = {F4 > F5, F4 > F6, F5 > F6,

F5 > F8, F6 > F8}
PT = {F4 > F8}
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An example of a feature subscription (II)

S = {F2, F5, F6}
CS = {F2 < F5, F2 < F6, F5 < F6}
PS = {}
T = {F4, F5, F6, F8}
CT = {F4 > F5, F4 > F6, F5 > F6,

F5 > F8, F6 > F8}
PT = {F4 > F8}

Consistent Subscription

target
zone

F5

F4 F5 F6

F2

F8

F6
source
zone
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Composition of source and target catalog (I)

F3 F4 F5 F6 F7 F8
F3 <> > > > >
F4 <> > > >
F5 < < > > >
F6 < < < > >
F7 < < < < >
F8 < < < <

F1 F2 F5 F6 F7
F1 < < < <
F2 > < < <
F5 > > < <
F6 > > > <
F7 > > > >

F1 F2 F3 F4 F5 F6 F8
<

F3 <> < < < <

F6 > > > > > < <

F8 > > > >

F4 <> < < <
<

<

<

<

>

>

F7
F1 <

>

<

>

>

<
F2 > < <

F5 > > <

F7 > > >

Source-only 
Reversible
Target-only

source catalogue

target catalogue

Composition of source 
and target catalogue
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Composition of source and target catalog (II)

F4 F5F2 F6 F8

F1 F2 F3 F4 F5 F6 F8
<

F3 <> < < < <

F6 > > > > > < <

F8 > > > >

F4 <> < < <
<

<

<

<

>

>

F7
F1 <

>

<

>

>

<
F2 > < <

F5 > > <

F7 > > >

User Subscription: Input

P = {F4 < F8}

F = {F2, F4, F5, F6, F8}
C = {F2 < F5, F2 < F6, F5 < F6, 

F4 < F5, F4 < F6, F5 < F6, 
F5 < F8, F6 < F8}

catalogue

Barry O’Sullivan Explanations in Constraint Programming



Introduction
Generating Minimal Conflicts
Representative Explanations

Automated Reformulation for Explanation
Application: Telecoms Feature Subscription

Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Composition of source and target catalog (III)

F5F2 F6source
zone

target
zone F4 F5 F6 F8

F4 F5F2 F6 F8

F1 F2 F3 F4 F5 F6 F8
<

F3 <> < < < <

F6 > > > > > < <

F8 > > > >

F4 <> < < <
<

<

<

<

>

>

F7
F1 <

>

<

>

>

<
F2 > < <

F5 > > <

F7 > > >

User Subscription: Input

P = {F4 < F8}

F = {F2, F4, F5, F6, F8}
C = {F2 < F5, F2 < F6, F5 < F6, 

F4 < F5, F4 < F6, F5 < F6, 
F5 < F8, F6 < F8}

catalogue
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Feature Subscription

The input of the feature subscription problem can now be
simplified as follows:

a set of features F from the catalog,
a set of constraints C defined over F from the catalog, and
a set of user precedence relations P.

A feature subscription is consistent iff a total order can be
established on the features in F by satisfying the
constraints in C.
The problem is to find a consistent subscription that is
optimal with respect to user defined precedences.
If no consistent subscription can be found, then the
problem is to find the best relaxation of the feature
subscription, which is consistent.
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Computing Minimal Conflicts

Constraints are added step by step until a failure is
detected.
The last constraint added participates in at least one
minimal conflict.
Example: {c1, c2, c3, c4, c5} is not satisfiable because c1 is
not compatible with c5.

step activated constraint result partial conflict
1 c1 no fail {}
2 c1 c2 no fail {}
3 c1 c2 c3 no fail {}
4 c1 c2 c3 c4 no fail {}
5 c1 c2 c3 c4 c5 fail {c5}
6 c5 no fail {c1}
7 c1 fail {c1, c5}
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Approaches for Computing Minimal Conflicts (I)

QuickXplain
Computes only one conflict.
Follows a Divide and Conquer approach.
Time complexity: O(n log(k + 1)).

De la Banda et al’s, or Bailey and Stuckey’s approaches.
Computes all the minimal conflicts.
Explores the subsets of the given set of constraints in a
smart way.
Avoids subsets of satisfiable sets and supersets of conflicts.
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Approaches for Computing Minimal Conflicts (II)

Dualize and Advance
Computes both all the minimal conflicts and all maximal
relaxations.
Relies on the notion of hitting sets.
Both time and space complexities are exponential in term of
the number of constraints.
It is not suitable when the number of conflicts is too high.

Backtrack Search
Computes all the minimal conflicts.
Avoids subsets of satisfiable sets and supersets of conflicts.
Time complexity is exponential but space complexity is
linear.
It is suitable when the number of conflicts is too high.
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Branch and Bound (I)

Branch and Bound is a general algorithmic method for
finding optimal solutions.
We use it to find the best relaxation of an inconsistent
feature subscription.
It is basically an enumeration approach in a fashion that
prunes the non-promising search space.
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Modeling the problem as a COP(I)

Variables and Domains.
We associate each feature fi ∈ F (the set of selected
features) with two variables:

bfi is a Boolean variable. It is set to 1 or 0 depending on
whether fi is included in the consistent subscription or not.
pfi is a position variable. It represents the position of fi . The
domain of pfi is the set of available positions.

We associate a Boolean variable bpij with each user
precedence relation pij ≡ fi < fj in P (the set of user
precedence relations).
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Modeling the problem as a COP(II)

Constraints
Precedence constraints in catalog

bfi ∧ bfj → (pfi < pfj)

Precedence constraints defined by the user (Preference)

bpij → (bfi ∧ bfj ∧ (pfi < pfj))

Incompatibility constraints in catalog

bfi 6= bfj
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Modeling the problem as a COP(III)

Objective Function
The objective is to maximize:∑

fi∈F

bfi × wfi +
∑
pij∈P

bpij × wpij
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Partial Weighted MaxSAT (I)

Boolean Satisfiability Problem (SAT) is a decision problem
whose instance is a Boolean expression written using only
∧, ∨, ¬, variables and parenthesis.
The problem is to decide whether there is an assignment
of true and false values to the variables that will make the
expression true.
The expression is normally written in Conjunctive Normal
Form like (p ∨ q ∨ r) ∧ (q ∨ w ∨ s) ∧ ...(r ∨ t ∨ q).
Partial Weighted MaxSAT is an extension of SAT which
includes the notions of hard and soft clauses.
The idea is to find an assignment that maximizes the cost.
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Partial Weighted MaxSAT (II)

The Feature Subscription Problem can be modeled as a Partial
Weighted MaxSAT problem as follows:

Precedence constraints in the catalog:

pij ∈ C
〈>, (¬bfi ∨ ¬bfj ∨ bpij)〉 ∈ SatInst

The precedence relation is transitive:

{pij , pjk} ⊆ C ∪ P
〈>, (¬bpij ∨ ¬bpjk ∨ bpik )〉 ∈ SatInst

The precedence relation is antisymmetric:

pij ∈ C ∪ P
〈>, (bpij ∨ bpji)〉 ∈ SatInst

pij ∈ C ∪ P
〈>, (¬bpij ∨ ¬bpji)〉 ∈ SatInst
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Partial Weighted MaxSAT (III)

Each feature is associated with its weight:

〈wfi , fi〉 ∈ F
〈wfi , (bfi)〉 ∈ SatInst

Each user precedence relation is associated with its
weight:

〈wpij , pij〉 ∈ P
〈wpij , (bpij)〉 ∈ SatInst

A user precedence relation is only satisfied if its features
are included:

〈wpij , pij〉 ∈ P
〈>, (bfi ∨ ¬bpij)〉 ∈ SatInst

〈wpij , pij〉 ∈ P
〈>, (bfj ∨ ¬bpij)〉 ∈ SatInst
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Integer Linear Programming (I)

Maximize ∑
fi∈F

wfibfi +
∑
pij∈P

wpijbpij

Catalog Precedence Constraint

bfi + bfj − Cij ≤ 1

pfi − pfj + n ∗ Cij ≥ 1

pfi − pfj + n ∗ Cij ≤ n − 1

Catalog incompatibility constraint

bfi + bfj ≤ 1
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Integer Linear Programming (II)

User Precedence Preference

bfi − Pij ≥ 0

bfj − Pij ≥ 0

pfi − pfj + n ∗ Pij ≥ 1

pfi − pfj + n ∗ Pij ≤ n − 1
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Some Empirical Results

Random catalogue = 〈50, 250, {<, >}〉

User Subscription SAT CPLEX CP CP+
〈10, 5, 4, {<}〉 #Nodes 26 0 11 13
(value=27) Time 0.78 0.06 0.04 0.06
〈20, 10, 4, {<}〉 #Nodes 670 1 65 38
(value=57) Time 3.01 0.06 0.18 0.12
〈30, 20, 4, {<}〉 #Nodes 1,848 29,668 66,835 11,629
(value=85) Time 9.36 59.61 18.92 2.65
〈40, 40, 4, {<}〉 #Nodes 47,502 1,565,793 50,274,725 1,091,194
(value=117) Time 66.01 9,101.01 18,562.25 409.86
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