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Introduction Motivation

Classic Setting
Terminology
Example

Why do we care about Explanations?

Configuration as a CSP Explanations

@ A “product” is fully When preferences conflict:
specified by some Conflict show a set of
constraints conflicting

@ Several options are preferences
available to the user Relaxation show a set of

@ The user expresses his feasible
preferences as constraints preferences
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Introduction Motivation

Classic Setting
Terminology
Example

Why do we care about Explanations?

Dobugging 2 CSP Mode

@ A model represents a When the model/reality conflict:
reality using some Conflict show a set of
constraints conflicts between

@ The programmer the model and
“proposes” a model reality

Relaxation show a set of
feasible
constraints
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Introduction

Motivation
Classic Setting
Terminology

Example

Classic Setting

Two Categories of Constraints

@ background constraints expressing the connections
between the components of the “product”, that cannot be

removed
@ user constraints interactively stated by the user when
deciding on options (= a query)

@ A set of constraints is consistent if it admits a solution.
@ The background constraints are assumed to be consistent.

@ The “solubility” of a set of constraints refers to the number
of solutions it is consistent with.
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Introduction

Motivation
Classic Setting
Terminology
Example

Terminology

Explanations

@ Conflict: an inconsistent subset of U: show one cause of
inconsistency.

@ Relaxation: a consistent subset of U: show one possible
way of recovering from it

Optimality — sort of

@ A relaxation is maximal when no constraint can added
while remaining consistent.

@ A conflict is minimal when no constraint can be removed
while remaining inconsistent.

Barry O’Sullivan Explanations in Constraint Programming



Introduction

Motivation

Classic Setting
Eermimljlogy
xample
Example
Car configuration
Option Cost
Roof rack 500 .
Convertible 500 w Convertible cars cannot
CD Player 500 have roof racks.
Leather Seats 2600

User constraints
Cq otal cost < 3000

c> Roof rack

c; Convertible

cs CD Player

cs Leather Seats

Relaxations: {cic.}, {cic5} are
consistent

Maximality: {cicocy} is still
consistent, but no more constraint
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Explanation by Proof
Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain
Comparison

Explanation by Proof

Example Problem Proof by Propagation

@ y =5x1 +4x> + 26x3 Order the constraints

@ x; =1 lexicographically:

@ X2 —1 @ ANB = y>5

@ x3 =1 @ ANCAYy>5 = y>9
® y<30 @ ANDANy>9 = y>35

@ ANEANY>35 = |

Explanation: {A, B,C,D, E},
which is not minimal.
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Explanation by Proof
Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain
Comparison

From Proofs to Checks

@ Find an inconsistency @ Find a minimal inconsistent
proof with minimal subset of the constraints
explanation @ Decomposable: a

@ Non-Decomposable: a non-minimal explanation
proof with non-minimal contains a minimal
explanation need not explanation
contain a proof with
minimal explanation
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Explanation by Proof

Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain

Comparison

The QuickXplain Algorithm

@ Explanation subproblem: background B and constraints
C

@ Task: find minimal subset X of C s.t. B and X fail

@ Method: initial problems is split into subproblems
constraints may be moved from C to B constraints may be
omitted from C
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Explanation by Proof

Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain

Comparison

QuickXplain’s Principles

@ Skip rule: if B is inconsistent then X = {}
@ Culprit rule: if B is consistent and C = {c} then X = {c}
@ Decomposition rule: if B is consistent and C = C; U C,

e find explanation X, of subproblem BU C;y, C, and
o find explanation X; of subproblem BU X5, C4
e result X is the union of X; and X5
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Explanation by Proof

Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain

Comparison

How to use QuickXplain

@ Background: effort is reduced by putting as many
constraints as possible in the initial background

@ Preference order: order of constraint uniquely
characterizes the conflict found

@ Consistency checker: time can be traded against
minimality by an incomplete consistency checker, giving
“anytime” behaviour
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Explanation by Proof
Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain
Comparison

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

@ Constraint model debugging isolate failing parts of the
constraint model.

@ Rule verification find tests that make a rule never
applicable.

@ Benders decomposition.
@ Diagnosis of ontologies.

Barry O’Sullivan Explanations in Constraint Programming



Explanation by Proof
Generating Minimal Conflicts From Proof-based to Consistency-based
QuickXplain Algorithm
Applications of QuickXplain
Comparison

Proofs versus Checks

Truth Maintenance Consistency-based

@ proof-based (syntactic) @ consistency check-based
@ computed online (semantic)
@ tight interaction with @ computed off-line

problem solver @ uses problem solver as
@ explanation needs not black-box

be minimal @ minimal (preferred)
@ high space complexity explanation

@ high time complexity
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Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis

Introduction

@ Presenting a representative set of explanations

@ Joint work with Alexandre Papadopulous (4C), Boi Faltings
and Pearl Pu (EPFL)

@ Published at AAAI 2007
@ Forthcoming related paper at CP
@ Funded by Science Foundation Ireland
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Single conflicts may not be enough
Example
Representative Explanations Representative Explanations

Finding All Relaxations
Empirical Analysis

Observations
@ Conflict: doesn'’t guide the user to solving the problem
@ Single relaxation: may not satisfy the user desires
© All relaxations: can theoretically be too large

w An Alternative Approach

@ show a set of relaxations
@ that must be representative of all possible relaxations

as a trade-off between compactness and comprehensiveness

Barry O’Sullivan Explanations in Constraint Programming



Single conflicts may not be enough
Example
Representative Explanations Representative Explanations

Finding All Relaxations
Empirical Analysis

Explanations

@ Relaxation a consistent subset of U (what we keep)

@ Exclusion set the complement of a relaxation (what we
exclude)

@ Explanation a relaxation together with its corresponding
exclusion set

@ Conflict an inconsistent subset of U

Optimality

@ A relaxation is Maximal when no constraint can added
while remaining consistent

@ A conflict is Minimal when no constraint can be removed
while remaining inconsistent

Barry O’Sullivan Explanations in Constraint Programming




Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations

Empirical Analysis

Example
Option Cost
Roof rack 500 .
Convertible 500 w Convertible cars cannot
CD Player 500 have roof racks.
Leather Seats 2600

User constraints
Cq otal cost < 3000

Relaxations: {ci¢co}, {cic5}) are
¢, Roof rack {cica}, {eios}

cs Convertible consistent
3 el Maximality: {cycocy) is still
cs CD Player y: {C102C4}

consistent, but no more constraint
cs; Leather Seats

Constraint Programming



Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis

Definition

Representative set of explanations

@ Every constraint that can be
kept is kept at least once

@ Every constraint that can be
relaxed is relaxed at least
once

@ Minimal (setwise)
representative set of
explanations

NN N\ X %|9
> N\ X% N\ %9
*x % \ % \|®
RSN N NN
WX X% N\ N\
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Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis

Complexity

Decision problems

@ Does a maximal relaxation contain a given constraint?
w Polynomial (in terms of number of calls to the
consistency checker)

@ Does a minimal exclusion set contain a given constraint?
w NP-Complete (with an oracle for the consistency
checker)
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Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations

Empirical Analysis

Finding All Relaxations (D&A Bailey et. al 2005)

(1234, 0)

Problem

Explanations:
(12,34)
(13,24)
(4,123)
Conflicts:

12 14,23,24,34
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Single conflicts may not be enough
Example
Representative Explanations Representative Explanations

Finding All Relaxations
Empirical Analysis

Representative Explanations

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

@ Which new entry point to choose?
© Which parent to choose?

Heuristics

@ Choose a consistent set that becomes a conflict with an
uncovered constraint

@ Add covered constraints first



Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis

Empirical Analysis

Random problems

@ 15 variables,
@ One background table constraint, with varying tightness
@ Random assignments on the variables

@ Real-world problem

@ 99 variables

@ 2.8 x 102 solutions

@ 30 variables randomly assigned

Barry O’Sullivan Explanations in Constraint Programming



Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis
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Single conflicts may not be enough
Example

Representative Explanations
Finding All Relaxations

Empirical Analysis

Representative Explanations

Behaviour
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Representative Explanations

Empirical Analysis

time - milli-seconds (logscale)
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100

Single conflicts may not be enough
Example

Representative Explanations
Finding All Relaxations

Empirical Analysis

Bailey & Stuckey
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Single conflicts may not be enough
Example

Representative Explanations Representative Explanations
Finding All Relaxations
Empirical Analysis

Empirical Analysis

Renault instance

Baseline REPRESENTATIVEXPLAIN
Instance time  #exps | timelast time all #exps
renault 108 | 474.76 17 318.87 618.76 3
renault 107 | 263.95 11 125.51  324.71 3
renault 108 | 205.82 8 97.98 232.32 3
renault 10° | 293.00 12 139.67 350.51 3

Table: Running times for the Renault instances

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Introduction

@ Automatically reformulating constraints for explanation

@ Joint work with Hadrien Cambazard

@ Google Best Paper at AICS 2007, published in Constraints
@ Forthcoming paper at CP

@ Funded by Science Foundation Ireland

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Motivation

@ Many problems involve large arity table constraints
@ Spreadsheets, databases, catalogues, etc.
@ Algorithms such as QuickXplain are constraint-centred

@ Large arity constraints can “hide” the conflict, and result in
useless explanations

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Example

The following problem is defined in terms of three 4-ary
constraints

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Example

...but it might be possible to reformulate to focus on binary
conflicts

Barry O’Sullivan Explanations in Constraint Programming



Motivation
Example
Functional Dependencies

Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Functional Dependencies

We exploit functional dependencies, usually used to normalize
database tables, to reformulate constraints

x1 x2 x3 x4
0 0 0 4
0 4 2 4
1 0 0 2
2 2 3 2
2 4 1 3

X3 --> x2 : X3 determines x2

X2

{x1,x2} --> x4

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Reformulation Approach

The basic procedure is as follows:

x1 | x2 | x3 | x4 x1|x2|x4 x1|x2|x3
0 0 0 4 0]0]4 0]0[0
0 4 2 4 0|4]|4 042
1Jolo]2 {x1,x2} --> x4 [1]o]2] [1]o]o
2 2 3 2 ; 212]2 212|3
2 4 1 3 21413 214 |1
Normal forms in l X3 --> X2
data base : 3NF, —Tala el [elhe
BCNF 0lole olol| olo
0l2]4 1/0 211
ni 1102 2|1
M|n|ma_l_ Tt =1 [z
decomposition AAE 23] |2]3
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Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Properties of the Reformulation

The reformulation we obtain has some nice properties:
Lossless: the set of solutions is preserved

Propagation: pruning is equivalent in the reformulation as the
original

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

What is a Good Reformulation?

Two criteria:
Arity: for explanations we want to minimize the maximum
arity of the constraints in the reformulation

Memory Size: we might want to minimize the memory footprint
of the reformulation

Barry O’Sullivan Explanations in Constraint Programming



Motivation

Example

Functional Dependencies
Automated Reformulation for Explanation Properties of the Reformulation

Evaluation

Functional Dependencies in Real Constraints

‘ Data—set]#tuples arity| #dependencies|#constraints min.arity max.arit,y‘ Lime(s)\
camera| 113 8 41 4 5 5 0.20
laptop| 403 | 10 54 4 5 6 0.57 ‘
renault R80| 342 10 3 2 8 0.00
renault R104| 164 9 11 6 2 4 0.02 ‘
travel RO| 1470 9 7 4 4 6 0.00 \

Barry O’Sullivan Expl.



Automated Reformulation for Explanation

Improved Explanations

straint arty

con

constrant anty

A
.
original (best) A
reformulation (best) @
original (avg)
reformulation (avg) |
4 6 8 10 12 14 16

#variables in the explas

(a) camera (low)

a
.
original (best) A
roformulation (best) @
original (avg)
reformulation (avg) |
4 6 8 10 12 14 16

#variables in the explanat

(c) renault (low)

arry O’Sulliva

3

Motivation

Example

Functional Dependencies
Properties of the Reformulation
Evaluation

#variables in th

(b) camera (high)v

#variables in the explanason

(d) renault (high)




Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Introduction

@ Personalized Telecom Feature Subscription

@ This is joint work between:
e David Lesaint (BT)
o Deepak Mehta, Barry O’Sullivan, Luis Quesada and Nic
Wilson (4C)
e Funded by IRCSET Enterprise Partnership
e Forthcoming papers in 2008: AAAI/IAAI, ECAI/PAIS, and
CP.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Introduction

Context-Aware Personalized User intentions

Services @ If I am in a meeting, divert
calls to my mobile

@ If I am out of the office,
play an announcement and
text me on my mobile.

@ bar international calls at

N
Alerting

NoAnswer

Busy

Ren i eren off-peak time in my
Mall voiceMail
Ses department.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Call Control Features

@ Call control features are the building blocks to achieve
personalization.

@ Each feature can be seen as an increment of the basic
functionality.

Catalogue of Features

Feature Acronym
Call Forwarding Unconditional CFU
Call Terminate CcT
Number Translation NT
Find Me FM
Call Forwarding on Busy CFB
Originating Call Logging ocL
Originating Call Screening ocs

Barry O’Sullivan Expl in Constraint Programmi



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Feature Interactions

@ Features may modify or influence one another.

@ There are desirable interactions as well as undesirable
interactions.

@) Call @,
2 caller = x gt o] caller = x caller = x| V||
callee = y | SrMINATE™ jlee = y callee = y
[0) Y o 2}

@ The creation of a personalized service is subject to
integrity constraints.

@ The integrity constraints are precedence relations that
avoid undesirable behaviors.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

User Preferences

@ When a set of features are put together by a user many
different behavioral options for his personalized service
might exist.

@ A user will need to choose among these options by
providing his/her preferences in terms of precedence
relations between features.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

User Preferences: Example

Let us suppose that a person subscribes to three features:
Originating call screening, Number translation and Originating
call logging.

@ screen on the dialed number and log every call attempt

o | | X | caller = x ‘ cal ‘ ller = x| g ller = x L oy ‘ ler = x| V|| g54
= caler = ing |—<eler = X scrcening _caller = anslation._caller x
Callee = y ‘ "°99X ‘ Calle = y % Callee = y ‘ % ] callee = y
(o] o 2] (3]

@ screen on the dialed number and log only the successful
call

cal Numb
= || X |cater = x J M| cater = Logging —_caller = x erod_caller = x_| v|| g%
callee = y | callee =y o callee = y % Callee = y
(] o 2] 3]

Barry O’Sullivan Explanations in Constraint Programming



Application: Telecoms Feature Subscription

Context-Aware Personalized Services

User Preferences over Subscriptions

Consistent Feature Subscription

Computing Explanations

Approaches: CP, Weighted MaxSAT, Integer Linear Programming

User Preferences: Example

@ screen on the translated number and log every call attempt

@ screen on the translated number and log only the

successful call

caller LN“"‘"‘

caller = x

s

e =y ‘

o
callee = y

e

Barry O’Sullivan

Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Consistent Feature Subscription

@ A subscription is consistent if it satisfies the integrity
constraint and the precedence relations.

@ The goal is to find a consistent subscription that is optimal
with respect to user defined precedence relations.

@ If no consistent subscription can be found, then the goal is
to find the best relaxation of the feature subscription.

@ Finding the best relaxation of an inconsistent subscription
is NP-Hard.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Approaches

@ We model and solve our feature subscription configuration
problem using three different approaches:

e Constraint Programming
e Satisfiability (SAT)
e Integer Linear Programming (ILP).

@ An important advantage of CP is its expressiveness for
capturing the constraints arising in this telecommunication
domain.

@ Non trivial improvements to the CP model are required for
it to be competitive with the SAT approach we used.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Context-dependent Consistent Feature Subscription

Context-aware telecommunication services involves
researching and developing methods for providing
context-dependent consistent feature subscriptions to
end-users by resolving various issues such as:

@ feature interaction management,

@ representation and handling of context information from a
service configuration perspective,

@ identifying the main context dimensions,
@ conflict-resolution mechanisms, and
@ the management of priorities and preferences.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

An example of context-dependent conflict

int Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Feature Subscription: Input

@ A source subscription set S. It is a subset of the source
features defined in the catalog.

@ A target subscription set T. It is a subset of the target
features defined in the catalog.

@ A set of constraints Cg defined over the set S in the
catalog, e.g. precedence constraint, incompatibility
constraint etc.

@ A set of constraints Cr defined over the target subscription
set T.

@ A set of user preferences Pg defined over the source
subscription set S.

@ A set of user preferences Pr defined over the target
subscription set T.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Feature Subscription: Zones

@ A source zone is a sequence of features available in the
source subscription set.

@ Atarget zone is a sequence of features available in the
target subscription set.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Consistent Feature Subscription

A feature subscription is consistent iff it satisfies the following:

@ The source zone is consistent with the constraints defined
in the set Cs.

@ The target zone is consistent with the constraints defined
in the set Cr.

@ For every reversible feature f, f is a part of the source zone
iff f is a part of the target zone.

@ For every reversible feature f1 and 2, f1 precedes f2 in
the source zone iff 2 precedes f1 in the target zone.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

What is the problem?

@ The problem is to find a consistent feature subscription
that is optimal with respect to user defined preferences.

@ If the feature subscription is inconsistent then we have to
find a maximally preferred relaxation of the feature
subscription.

@ We can relax the problem by dropping features and/or by
discarding user precedence relations.

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

An example of a feature subscription (I)

Catalog Feature Subscription Input

n::l"lFf?m S ={F2,F5,F6}

@ Cs={F2< F5,F2< F6,F5 < F6}
@ Ps={}
°
°

T ={F4,6F5,F6,F8}
Cr={F4> F5,F4 > F6,F5 > FB6,
F5 > F8,F6 > F8}

Pr = {F4 > F8}

target

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

An example of a feature subscription (ll)

S = {F2,F5,F6}

Cs = {F2 < F5,F2 < F6,F5 < F6}

Ps = {}

T = {F4,F5, F6, F8}

Cr={F4 > F5,F4 > F6,F5 > FB6,
F5 > F8,F6 > F8)

o Pr={F4> F8}

Consistent Subscription

| source i
: zone F2 =
target |

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Composition of source and target catalog (I)

source catalogue

F1]F2[ F5 [ F6
<[ <<

Composition of source
and target catalogue

2| F3| F4 [F5 [ F6 | F7 |F8

target catalogue
F3 [ F4]F5

Source-ont:

Targ

t-only

Barry O’Sulliva



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Composition of source and target catalog (l1)

catalogue

User Subscription: Input
F ={F2, F4, F5, F6, F8}
C={F2<F5,F2<F6, F5<F6,

F4 <F5, F4 <F6, F5 < F6,
F5 < F8, F6 < F8}

P = {F4 < F8}

FL1|F2|F3|F4 |F5




Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations

Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Composition of source and target catalog (lll)

catalogue

4 |F5 User Subscription: Input
F ={F2, F4, F5, F6, F8}
C={F2<F5, F2<F6, F5 <F6,

F4 <F5, F4 <F6, F5 < F6,
F5 < F8, F6 < F8}

P = {F4 < F8}

target
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Feature Subscription

@ The input of the feature subscription problem can now be

simplified as follows:
e a set of features F from the catalog,
e a set of constraints C defined over F from the catalog, and
e a set of user precedence relations P.

@ A feature subscription is consistent iff a total order can be
established on the features in F by satisfying the
constraints in C.

@ The problem is to find a consistent subscription that is
optimal with respect to user defined precedences.

@ If no consistent subscription can be found, then the
problem is to find the best relaxation of the feature
subscription, which is consistent.

Barry O’Sullivan Explanations in Constraint Programming
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Computing Minimal Conflicts

@ Constraints are added step by step until a failure is
detected.

@ The last constraint added participates in at least one
minimal conflict.

@ Example: {cy, ¢2, C3, C4, C5} is not satisfiable because ¢y is
not compatible with cs.

step activated constraint result partial conflict
1 2] no fail {}

2 cy Co no fail {}

3 Cy Gy C3 no fail {}

4 C{ CpC3Cq no fail {}

5 C{ Co C3C4Cs fail {cs5}

6 cs no fail {cy}

7 ¢ fail {c1, 65}

Barry O’Sullivan Explanations in Constraint Programming
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Approaches for Computing Minimal Conflicts (1)

@ QuickXplain
e Computes only one conflict.
e Follows a Divide and Conquer approach.
e Time complexity: O(nlog(k + 1)).
@ De la Banda et al’s, or Bailey and Stuckey’s approaches.
e Computes all the minimal conflicts.
e Explores the subsets of the given set of constraints in a

smart way.
e Avoids subsets of satisfiable sets and supersets of conflicts.

Barry O’Sullivan Explanations in Constraint Programming
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Approaches for Computing Minimal Conflicts (I1)

@ Dualize and Advance
e Computes both all the minimal conflicts and all maximal
relaxations.
o Relies on the notion of hitting sets.
e Both time and space complexities are exponential in term of
the number of constraints.
e It is not suitable when the number of conflicts is too high.
@ Backtrack Search
e Computes all the minimal conflicts.
@ Avoids subsets of satisfiable sets and supersets of conflicts.
e Time complexity is exponential but space complexity is
linear.
o It is suitable when the number of conflicts is too high.

Barry O’Sullivan Explanations in Constraint Programming
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Branch and Bound (l)

@ Branch and Bound is a general algorithmic method for
finding optimal solutions.

@ We use it to find the best relaxation of an inconsistent
feature subscription.

@ |t is basically an enumeration approach in a fashion that
prunes the non-promising search space.

Barry O’Sullivan Explanations in Constraint Programming
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Modeling the problem as a COP(I)

@ Variables and Domains.
e We associate each feature f; € F (the set of selected
features) with two variables:
@ bf; is a Boolean variable. It is set to 1 or 0 depending on
whether f; is included in the consistent subscription or not.
@ pf; is a position variable. It represents the position of fi. The
domain of pf; is the set of available positions.
e We associate a Boolean variable bp; with each user
precedence relation p; = f; < f; in P (the set of user
precedence relations).

Barry O’Sullivan Explanations in Constraint Programming
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Modeling the problem as a COP(lI)

@ Constraints
e Precedence constraints in catalog

b, A by — (pf, < pf)
e Precedence constraints defined by the user (Preference)
by — (b A bfy A (pf; < pf))
e Incompatibility constraints in catalog

bf; # bf,

Barry O’Sullivan Explanations in Constraint Programming
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Modeling the problem as a COP(lII)

@ Obijective Function
The objective is to maximize:

> " bfi x whi+ > bpy x wpj
feF p;EP

Barry O’Sullivan Expl
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Partial Weighted MaxSAT (I)

@ Boolean Satisfiability Problem (SAT) is a decision problem
whose instance is a Boolean expression written using only
A, V, =, variables and parenthesis.

@ The problem is to decide whether there is an assignment
of true and false values to the variables that will make the
expression true.

@ The expression is normally written in Conjunctive Normal
Formlike (pvgqVvr)A(gvwVs)A..(rVivaQ).

@ Partial Weighted MaxSAT is an extension of SAT which
includes the notions of hard and soft clauses.

@ The idea is to find an assignment that maximizes the cost.
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Partial Weighted MaxSAT (1)

The Feature Subscription Problem can be modeled as a Partial
Weighted MaxSAT problem as follows:
@ Precedence constraints in the catalog:
pj € C
(T, (=bf; v —bf; v bpj)) € Satinst
@ The precedence relation is transitive:
{pj, p} € CUP
(T, (—bpj vV ~bpy v bpi)) € Satinst
@ The precedence relation is antisymmetric:
pj€ CUP pj€ CUP
(T, (bpj Vv bpj)) € Satlnst (T, (—bp; v —bp;)) € Satinst

Barry O’Sullivan Explanations in Constraint Programming
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Partial Weighted MaxSAT (ll1)

@ Each feature is associated with its weight:
(wh, f) € F
(wf;, (bfy)) € Satlnst
@ Each user precedence relation is associated with its
weight:

(wpj, py) € P
(wpjj, (bpj)) € Satlnst
@ A user precedence relation is only satisfied if its features
are included:
(wpj, pj) € P (wpj, pj) € P
(T, (bf; v —bpj)) € Satlnst (T, (bf; vV ~bp;)) € Satinst

Barry O’Sullivan Explanations in Constraint Programming
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Integer Linear Programming (1)

@ Maximize

> wihibfi+ ) wpjbp;

fieF p;jeP
@ Catalog Precedence Constraint

bf; 4 bf; — Cj < 1
pfi — pfi+nx* Cj > 1

pfi — pfi+nx Cj < n—1

@ Catalog incompatibility constraint
bf; 4 bf; < 1
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Integer Linear Programming (I1)

@ User Precedence Preference
bfi — P; >0
bfi — P; >0
pf; — pfi + nx Pj > 1
pf; — pfi+nx Py <n—1

Barry O’Sullivan Expl
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Some Empirical Results

Random catalogue = (50,250, {<, >})

User Subscription SAT CPLEX CP CP+

(10,5,4,{<}) #Nodes 26 0 11 13
(value=27) Time 0.78 0.06 0.04 0.06
(20,10,4,{<}) #Nodes 670 1 65 38
(value=57) Time 3.01 0.06 0.18 0.12
(30,20,4,{<}) #Nodes 1,848 29,668 66,835 11,629
(value=85) Time 9.36 59.61 18.92 2.65
(40,40,4,{<}) #Nodes | 47,502 | 1,565,793 | 50,274,725 | 1,091,194
(value=117) Time 66.01 9,101.01 18,562.25 409.86

Barry O’Sullivan Explanations in Constraint Programming



Context-Aware Personalized Services
User Preferences over Subscriptions
Consistent Feature Subscription
Computing Explanations
Application: Telecoms Feature Subscription Approaches: CP, Weighted MaxSAT, Integer Linear Programming

Explanations in Constraint Programming

Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science
University College of Cork, Ireland

email: b.osullivan@cs.ucc.ie

ACP Summer School 2008

rry O’Sullivan i i int Programming



	Introduction
	Motivation
	Classic Setting
	Terminology
	Example

	Generating Minimal Conflicts
	Explanation by Proof
	From Proof-based to Consistency-based
	QuickXplain Algorithm
	Applications of QuickXplain
	Comparison

	Representative Explanations
	Single conflicts may not be enough
	Example
	Example
	Representative Explanations
	Finding All Relaxations
	Empirical Analysis

	Automated Reformulation for Explanation
	Motivation
	Example
	Functional Dependencies
	Properties of the Reformulation
	Evaluation

	Application: Telecoms Feature Subscription
	Context-Aware Personalized Services
	User Preferences over Subscriptions
	Consistent Feature Subscription
	Computing Explanations
	Approaches: CP, Weighted MaxSAT, Integer Linear Programming


