

Modelling for Constraint Programming Barbara Smith

- **1.** Definitions, Viewpoints, Constraints
- 2. Implied Constraints, Optimization, Dominance Rules
- **3.** Symmetry, Viewpoints
- 4. Combining Viewpoints, Modelling Advice

Modelling for Constraint Programming Barbara Smith

1. Definitions, Viewpoints, Constraints

Background Assumptions

A well-defined problem that can be represented as a finite domain constraint satisfaction or optimization problem \succ no uncertainty, preferences, etc. \succ A constraint solver providing: > a systematic search algorithm combined with constraint propagation > a set of pre-defined constraints > e.g. ILOG Solver, Ecl¹ps^e, SICStus Prolog,

ELEEDS

Solving CSPs

> Systematic *search*:

- \succ choose a variable x_i that is not yet assigned
- ➤ create a *choice point*, i.e. a set of mutually exclusive & exhaustive choices, e.g. $x_i = a v \cdot x_i \neq a$
- > try the first & backtrack to try the other if this fails
- Constraint propagation:
 - > add $x_i = a$ or $x_i \neq a$ to the set of constraints
 - re-establish local consistency on each constraint
 - ightarrow ightarrow remove values from the domains of future variables that can no longer be used because of this choice
 - > fail if any future variable has no values left

CP Summer School 2008

Representing a Problem

- If a CSP M = <X,D,C> represents a problem P, then every solution of M corresponds to a solution of P and every solution of P can be derived from at least one solution of M
- More than one solution of M can represent the same solution of P, if modelling introduces symmetry
- > The variables and values of M represent entities in P
- The constraints of *M* ensure the correspondence between solutions
- > The aim is to find a model M that can be solved as quickly as possible
 - > NB shortest run-time might not mean least search

Interactions with Search Strategy

- Whether M1 is better than M2 can depend on the search algorithm and search heuristics
- > I'm assuming the search algorithm is fixed
- We could also assume that choice points are always x_i = a
 V. x_i ≠ a
- > Variable (and value) order still interact with the model a lot
- Is variable & value ordering part of modelling?
 - > I think it is, in practice
 - but here I will (mostly) pretend it isn't

Viewpoints

- A viewpoint is a pair <X,D>, i.e. a set of variables and their domains
- Given a viewpoint, the constraints have to restrict the solutions of *M* to solutions of *P*
 - > So the constraints are (to some extent) decided by the viewpoint
 - Different viewpoints give very different models
- > We can combine viewpoints more later
- Good rule of thumb: choose a viewpoint that allows the constraints to be expressed easily and concisely
 - will propagate well, so problem can be solved efficiently

Example: Magic Square

- Arrange the numbers 1 to 9 in a 3 x 3 square so that each row, column and diagonal has the same sum (15)
- V1 : a variable for each cell, domain is the numbers that can go in the cell
- V2 : a variable for each number, domain is the cells where that number can go

Magic Square Constraints

> Constraints are easy to express in *V1*:

 $> x_1 + x_2 + x_3 = x_4 + x_5 + x_6 = x_1 + x_4 + x_7 = \dots = 15$

- but not in V2
 - e.g. one constraint says that the numbers 1,
 2, 3 cannot all be in the same row, column or diagonal
- And there are far more constraints in V2 than in V1 (78 v. 9)

4	3	8
9	5	1
2	7	6

Constraints

- Given a viewpoint, the role of the constraints is:
 - To ensure that the solutions of the CSP match the solutions of the problem
 - To guide the search, i.e. to ensure that as far as possible, partial solutions that will not lead to a solution fail immediately

Expressing the Constraints

> For efficient solving, we need to know:

- the constraints provided by the constraint solver
- the level of consistency enforced on each
- the complexity of the constraint propagation algorithms
- > Not very declarative!
- There is often a trade-off between time spent on propagation and time saved on search
 - > which choice is best often depends on the problem

- Often, the constraints can be expressed more easily/more efficiently if more variables are introduced
- Example: car sequencing (Dincbas, Simonis and van Hentenryck, ECAI 1988)

UNIVERSITY OF LEEDS

Car Sequencing Problem

- 10 cars to be made on a production line, each requires some options
- Stations installing options have lower capacity than rest of line e.g. at most 1 car out of 2 for option 1
- Find a feasible production sequence

classes	1	2	3	4	5	6	Capacity
Option 1	1	0	0	0	1	1	1/2
Option 2	0	0	1	1	0	1	2/3
Option 3	1	0	0	0	1	0	1/3
Option 4	1	1	0	1	0	0	2/5
Option 5	0	0	1	0	0	0	1/5
No. of cars	1	1	2	2	2	2	

Car Sequencing - Model

- > A variable for each position in the sequence, s_1 , s_2 , ..., s_{10}
- > Value of s_i is the class of car in position i
- Constraints:
 - Each class occurs the correct number of times
 - > Option capacities are respected ?

Car Sequencing – Auxiliary Variables

- > Introduce variables o_{ij} :
 - > $o_{ij} = 1$ iff the car in the *i* th slot in the sequence requires option *j*
- > Option 1 capacity is one car in every two:

 \succ Relate the auxiliary variables to the s_i variables:

- A range of global constraints is provided by any constraint solver
- A global constraint replaces a set of simpler constraints on a number of variables
- The solver provides an efficient propagation algorithm (often enforcing GAC, sometimes less)
- > A global constraint:
 - *> should* reduce search

> may reduce run-time (or may increase it)

The AllDifferent Constraint

- Commonest global constraint?
- > allDifferent($x_1, x_2, ..., x_n$) replaces the binary \neq constraints $x_i \neq x_i$, $i \neq j$
- There are efficient GAC & BC algorithms for allDifferent
 - \succ i.e. more efficient than GAC on a general *n*-ary constraint
- Usually, using allDifferent gives less search than ≠ constraints
 - but is often slower
- > Advice:
 - use allDifferent when the constraint is tight
 - \geq i.e. the number of possible values is *n* or not much more
 - ➢ try BC rather than GAC

Graceful Labelling of a Graph

- A labelling f of the nodes of a graph with q edges is graceful if:
 - >f assigns each node a unique label
 from {0,1,..., q }
 - ▶ when each edge xy is labelled with |f(x) - f(y)|, the edge labels are all different

Graceful Labelling: Constraints

> A possible CSP model has: \succ a variable for each node, $x_1, x_2, ..., x_n$ each with domain $\{0, 1, ..., q\}$ > auxiliary variables for each edge, d_1 , d_2 ,..., d_q each with domain $\{1, 2, ..., q\}$ \succ $d_k = |x_i - x_j|$ if edge k joins nodes i and j $\succ x_1, x_2, ..., x_n$ are all different \succ d_1 , d_2 ,..., d_a are all different it is cost-effective to enforce GAC on the constraint allDifferent(d_1 , d_2 ,..., d_a) \succ but not on all Different($x_1, x_2, ..., x_n$)

 \succ in the example, n = 9, q = 16

One Constraint is Better than Several (maybe)

- If there are several constraints all with the same scope, rewriting them as a single constraint will lead to more propagation...
 - if the same level of consistency is maintained on the new constraint
- > ... more propagation means shorter run-time
 - if enforcing consistency on the new constraint can be done efficiently

Example: *n*-queens

- > A variable for each row, $x_1, x_2, ..., x_n$
- > Values represent the columns, 1 to *n*
- The assignment (x_i, c) means that the queen in row *i* is in column *c*
- > Constraints for each pair of rows *i*, *j* with i < j:

$$\begin{array}{l} \searrow x_i \neq x_j \\ \bigtriangledown x_i - x_j \neq i - j \\ \bigtriangledown x_i - x_i \neq j - i \end{array}$$

Propagating the Constraints

- > A queen in row 5, column 3 conflicts with both remaining values for x_3
- But the constraints are consistent
 - ➤ constraint $x_i \neq x_j$ thinks that $(x_3, 1)$ can support $(x_5, 3)$
 - Constraint $x_i x_j \neq i j$ thinks that (x₃,3) can support (x₅,3)

- ► Enforcing AC on $(x_i \neq x_j) \land (x_i x_j \neq i j) \land (x_i x_j \neq j i)$ would remove 3 from the domain of x_5
 - but how would you do it?

Summary

- The viewpoint (variables, values) largely determines what the model looks like
- Choose a viewpoint that will allow the constraints to be expressed easily and concisely
- Be aware of global constraints provided by the solver, and use them if they reduce run-time
- Introduce auxiliary variables if necessary to help express the constraints