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Background AssumptionsBackground Assumptions

 A well-defined problem that can be
represented as a finite domain constraint
satisfaction or optimization problem
 no uncertainty, preferences, etc.

 A constraint solver providing:
 a systematic search algorithm
 combined with constraint propagation
 a set of pre-defined constraints
 e.g. ILOG Solver, Eclipse, SICStus Prolog, …
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Solving CSPsSolving CSPs

 Systematic search:
 choose a variable xi  that is not yet assigned

 create a choice point, i.e. a set of mutually exclusive &
exhaustive choices, e.g. xi = a v. xi  ≠ a

 try the first & backtrack to try the other if this fails

  Constraint propagation:
 add xi = a  or xi  ≠ a to the set of constraints

 re-establish local consistency on each constraint

 → remove values from the domains of future variables
that can no longer be used because of this choice

 fail if any future variable has no values left
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Representing a ProblemRepresenting a Problem

 If a CSP M = <X,D,C> represents a problem P, then every
solution of M  corresponds to a solution of P and every
solution of P can be derived from at least one solution of M

 More than one solution of M  can represent the same
solution of P, if modelling introduces symmetry

 The variables and values of M  represent entities in P
 The constraints of M  ensure the correspondence between

solutions
 The aim is to find a model M  that can be solved as quickly

as possible
 NB shortest run-time might not mean least search
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Interactions with SearchInteractions with Search
StrategyStrategy

 Whether M1 is better than M2 can depend on the search
algorithm and search heuristics

 I’m assuming the search algorithm is fixed
 We could also assume that choice points are always xi = a

v. xi  ≠ a
 Variable (and value) order still interact with the model a lot
 Is variable & value ordering part of modelling?

 I think it is, in practice

 but here I will (mostly) pretend it isn’t
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ViewpointsViewpoints

 A viewpoint is a pair <X,D>, i.e. a set of variables and their
domains

 Given a viewpoint, the constraints have to restrict the
solutions of M to solutions of P
 So the constraints are (to some extent) decided by the viewpoint

 Different viewpoints give very different models

 We can combine viewpoints - more later
 Good rule of thumb:  choose a viewpoint that allows the

constraints to be expressed easily and concisely
 will propagate well, so problem can be solved efficiently
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Example:  Magic SquareExample:  Magic Square

 Arrange the numbers 1 to 9 in a 3 x 3
square so that each row, column and
diagonal has the same sum (15)

 V1 : a variable for each cell, domain is the
numbers that can go in the cell

 V2 : a variable for each number, domain is
the cells where that number can go

672

159

834

x9x8x7

x6x5x4

x3x2x1
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Magic Square ConstraintsMagic Square Constraints

 Constraints are easy to express in V1:
 x1+x2+x3 = x4+x5+x6 = x1+x4+x7 = … = 15

 but not in V2
 e.g. one constraint says that the numbers 1,

2, 3 cannot all be in the same row, column or
diagonal

 And there are far more constraints in V2
than in V1 (78 v. 9)

672

159

834

x9x8x7

x6x5x4

x3x2x1



CP Summer School 2008 10

ConstraintsConstraints

 Given a viewpoint, the role of the constraints is:
 To ensure that the solutions of the CSP match the solutions of the

problem

 To guide the search, i.e. to ensure that as far as possible,
partial solutions that will not lead to a solution fail immediately
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Expressing the ConstraintsExpressing the Constraints

 For efficient solving, we need to know:
 the constraints provided by the constraint solver

 the level of consistency enforced on each

 the complexity of the constraint propagation algorithms

 Not very declarative!

 There is often a trade-off between time spent on
propagation and time saved on search
 which choice is best often depends on the problem
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Auxiliary VariablesAuxiliary Variables

 Often, the constraints can be expressed more
easily/more efficiently if more variables are
introduced

 Example: car sequencing (Dincbas, Simonis and
van Hentenryck, ECAI 1988)
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Car Sequencing ProblemCar Sequencing Problem

 10 cars to be made on a
production line, each
requires some options

 Stations installing options
have lower capacity than
rest of line e.g. at most 1
car out of 2 for option 1

 Find a feasible
production sequence

1/5

2/5

1/3

2/3

1/2

Capacity

222211No. of
cars

000100Option 5

001011Option 4

010001Option 3

101100Option 2

110001Option 1

654321classes
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Car Sequencing - ModelCar Sequencing - Model

 A variable for each position in the sequence, s1 , s2 , …, s10

 Value of si  is the class of car in position i
 Constraints:

 Each class occurs the correct number of times

 Option capacities are respected  - ?
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Car Sequencing Car Sequencing –– Auxiliary Auxiliary
VariablesVariables

 Introduce variables oij :
 oij = 1 iff the car in the i th slot in the sequence requires

option j

 Option 1 capacity is one car in every two:
 oi,1 + oi+1,1 ≤ 1 for   1 ≤ i < 10

 Relate the auxiliary variables to the si  variables:
 λjk = 1 if car class k requires option j

               , 1 ≤ i ≤ 10, 1 ≤ j ≤ 5
ijsij ëo =
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Global ConstraintsGlobal Constraints

 A range of global constraints is provided by any
constraint solver

 A global constraint replaces a set of simpler
constraints on a number of variables

 The solver provides an efficient propagation
algorithm (often enforcing GAC, sometimes less)

 A global constraint:
should reduce search

may reduce run-time (or may increase it)
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The AllDifferent ConstraintThe AllDifferent Constraint

 Commonest global constraint?
 allDifferent(x1, x2, …, xn) replaces the binary ≠

constraints xi ≠ xj , i ≠ j
 There are efficient GAC & BC algorithms for

allDifferent
 i.e. more efficient than GAC on a general n-ary constraint

 Usually, using allDifferent gives less search than ≠
constraints
 but is often slower

 Advice:
 use allDifferent when the constraint is tight

i.e. the number of possible values is n or not much more
 try BC rather than GAC
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Graceful Graceful LabellingLabelling of a Graph of a Graph

 A labelling f of the nodes of a
graph with q edges is graceful
if:
f assigns each node a unique label

from {0,1,..., q }

when each edge xy is labelled with
|f (x) −  f (y)|, the edge labels are all
different
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Graceful Graceful LabellingLabelling: Constraints: Constraints

 A possible CSP model has:
 a variable for each node, x1 , x2 , ..., xn each with

domain {0, 1,..., q}
 auxiliary variables for  each edge, d1 , d2 ,..., dq  each

with domain {1, 2, ..., q}
 dk = |xi −  xj| if edge k  joins nodes i and j
 x1 , x2 , ..., xn  are all different
 d1 , d2 ,..., dq  are all different
 it is cost-effective to enforce GAC on the

constraint allDifferent(d1 , d2 ,..., dq )
 but not on allDifferent(x1 , x2 , ..., xn)

 in the example, n = 9, q =16
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One Constraint is Better thanOne Constraint is Better than
Several (maybe)Several (maybe)

 If there are several constraints all with the same
scope, rewriting them as a single constraint will
lead to more propagation…
 if the same level of consistency is maintained on the

new constraint

 … more propagation means shorter run-time
 if enforcing  consistency on the new constraint can be

done efficiently
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Example: Example: nn-queens-queens

 A variable for each row, x1 , x2 , …, xn

 Values represent the columns, 1 to n
 The assignment (xi,c) means that the queen in row i  is in

column c
 Constraints for each pair of rows i, j with i < j:

xi  ≠xj

xi  − xj ≠ i − j

xi  − xj ≠ j − i
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Propagating the ConstraintsPropagating the Constraints

 A queen in row 5, column 3 conflicts
with both remaining values for x3

 But the constraints are consistent
 constraint  xi  ≠xj  thinks that (x3 ,1) can

support (x5 ,3)
 constraint xi  − xj ≠ i − j  thinks that

(x3 ,3)  can support (x5 ,3)

×

 Enforcing AC on (xi  ≠xj ) ۸ (xi  − xj ≠ i − j ) ۸ (xi  − xj≠
j − i ) would remove 3 from the domain of x5
 but how would you do it?
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SummarySummary

 The viewpoint (variables, values) largely determines what
the model looks like

 Choose a viewpoint that will allow the constraints to be
expressed easily and concisely

 Be aware of global constraints provided by the solver, and
use them if they reduce run-time

 Introduce auxiliary variables if necessary to help express
the constraints


