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Modelling for ConstraintModelling for Constraint
ProgrammingProgramming
Barbara Smith

1. Definitions, Viewpoints, Constraints
2. Implied Constraints, Optimization,

Dominance Rules
3. Symmetry, Viewpoints
4. Combining Viewpoints, Modelling Advice
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Background AssumptionsBackground Assumptions

 A well-defined problem that can be
represented as a finite domain constraint
satisfaction or optimization problem
 no uncertainty, preferences, etc.

 A constraint solver providing:
 a systematic search algorithm
 combined with constraint propagation
 a set of pre-defined constraints
 e.g. ILOG Solver, Eclipse, SICStus Prolog, …
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Solving CSPsSolving CSPs

 Systematic search:
 choose a variable xi  that is not yet assigned

 create a choice point, i.e. a set of mutually exclusive &
exhaustive choices, e.g. xi = a v. xi  ≠ a

 try the first & backtrack to try the other if this fails

  Constraint propagation:
 add xi = a  or xi  ≠ a to the set of constraints

 re-establish local consistency on each constraint

 → remove values from the domains of future variables
that can no longer be used because of this choice

 fail if any future variable has no values left
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Representing a ProblemRepresenting a Problem

 If a CSP M = <X,D,C> represents a problem P, then every
solution of M  corresponds to a solution of P and every
solution of P can be derived from at least one solution of M

 More than one solution of M  can represent the same
solution of P, if modelling introduces symmetry

 The variables and values of M  represent entities in P
 The constraints of M  ensure the correspondence between

solutions
 The aim is to find a model M  that can be solved as quickly

as possible
 NB shortest run-time might not mean least search
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Interactions with SearchInteractions with Search
StrategyStrategy

 Whether M1 is better than M2 can depend on the search
algorithm and search heuristics

 I’m assuming the search algorithm is fixed
 We could also assume that choice points are always xi = a

v. xi  ≠ a
 Variable (and value) order still interact with the model a lot
 Is variable & value ordering part of modelling?

 I think it is, in practice

 but here I will (mostly) pretend it isn’t



CP Summer School 2008 7

ViewpointsViewpoints

 A viewpoint is a pair <X,D>, i.e. a set of variables and their
domains

 Given a viewpoint, the constraints have to restrict the
solutions of M to solutions of P
 So the constraints are (to some extent) decided by the viewpoint

 Different viewpoints give very different models

 We can combine viewpoints - more later
 Good rule of thumb:  choose a viewpoint that allows the

constraints to be expressed easily and concisely
 will propagate well, so problem can be solved efficiently
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Example:  Magic SquareExample:  Magic Square

 Arrange the numbers 1 to 9 in a 3 x 3
square so that each row, column and
diagonal has the same sum (15)

 V1 : a variable for each cell, domain is the
numbers that can go in the cell

 V2 : a variable for each number, domain is
the cells where that number can go

672

159

834

x9x8x7

x6x5x4

x3x2x1
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Magic Square ConstraintsMagic Square Constraints

 Constraints are easy to express in V1:
 x1+x2+x3 = x4+x5+x6 = x1+x4+x7 = … = 15

 but not in V2
 e.g. one constraint says that the numbers 1,

2, 3 cannot all be in the same row, column or
diagonal

 And there are far more constraints in V2
than in V1 (78 v. 9)

672
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834

x9x8x7

x6x5x4

x3x2x1
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ConstraintsConstraints

 Given a viewpoint, the role of the constraints is:
 To ensure that the solutions of the CSP match the solutions of the

problem

 To guide the search, i.e. to ensure that as far as possible,
partial solutions that will not lead to a solution fail immediately
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Expressing the ConstraintsExpressing the Constraints

 For efficient solving, we need to know:
 the constraints provided by the constraint solver

 the level of consistency enforced on each

 the complexity of the constraint propagation algorithms

 Not very declarative!

 There is often a trade-off between time spent on
propagation and time saved on search
 which choice is best often depends on the problem
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Auxiliary VariablesAuxiliary Variables

 Often, the constraints can be expressed more
easily/more efficiently if more variables are
introduced

 Example: car sequencing (Dincbas, Simonis and
van Hentenryck, ECAI 1988)
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Car Sequencing ProblemCar Sequencing Problem

 10 cars to be made on a
production line, each
requires some options

 Stations installing options
have lower capacity than
rest of line e.g. at most 1
car out of 2 for option 1

 Find a feasible
production sequence

1/5

2/5

1/3

2/3

1/2

Capacity

222211No. of
cars

000100Option 5

001011Option 4

010001Option 3

101100Option 2

110001Option 1

654321classes
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Car Sequencing - ModelCar Sequencing - Model

 A variable for each position in the sequence, s1 , s2 , …, s10

 Value of si  is the class of car in position i
 Constraints:

 Each class occurs the correct number of times

 Option capacities are respected  - ?
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Car Sequencing Car Sequencing –– Auxiliary Auxiliary
VariablesVariables

 Introduce variables oij :
 oij = 1 iff the car in the i th slot in the sequence requires

option j

 Option 1 capacity is one car in every two:
 oi,1 + oi+1,1 ≤ 1 for   1 ≤ i < 10

 Relate the auxiliary variables to the si  variables:
 λjk = 1 if car class k requires option j

               , 1 ≤ i ≤ 10, 1 ≤ j ≤ 5
ijsij ëo =
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Global ConstraintsGlobal Constraints

 A range of global constraints is provided by any
constraint solver

 A global constraint replaces a set of simpler
constraints on a number of variables

 The solver provides an efficient propagation
algorithm (often enforcing GAC, sometimes less)

 A global constraint:
should reduce search

may reduce run-time (or may increase it)
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The AllDifferent ConstraintThe AllDifferent Constraint

 Commonest global constraint?
 allDifferent(x1, x2, …, xn) replaces the binary ≠

constraints xi ≠ xj , i ≠ j
 There are efficient GAC & BC algorithms for

allDifferent
 i.e. more efficient than GAC on a general n-ary constraint

 Usually, using allDifferent gives less search than ≠
constraints
 but is often slower

 Advice:
 use allDifferent when the constraint is tight

i.e. the number of possible values is n or not much more
 try BC rather than GAC
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Graceful Graceful LabellingLabelling of a Graph of a Graph

 A labelling f of the nodes of a
graph with q edges is graceful
if:
f assigns each node a unique label

from {0,1,..., q }

when each edge xy is labelled with
|f (x) −  f (y)|, the edge labels are all
different
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Graceful Graceful LabellingLabelling: Constraints: Constraints

 A possible CSP model has:
 a variable for each node, x1 , x2 , ..., xn each with

domain {0, 1,..., q}
 auxiliary variables for  each edge, d1 , d2 ,..., dq  each

with domain {1, 2, ..., q}
 dk = |xi −  xj| if edge k  joins nodes i and j
 x1 , x2 , ..., xn  are all different
 d1 , d2 ,..., dq  are all different
 it is cost-effective to enforce GAC on the

constraint allDifferent(d1 , d2 ,..., dq )
 but not on allDifferent(x1 , x2 , ..., xn)

 in the example, n = 9, q =16
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One Constraint is Better thanOne Constraint is Better than
Several (maybe)Several (maybe)

 If there are several constraints all with the same
scope, rewriting them as a single constraint will
lead to more propagation…
 if the same level of consistency is maintained on the

new constraint

 … more propagation means shorter run-time
 if enforcing  consistency on the new constraint can be

done efficiently
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Example: Example: nn-queens-queens

 A variable for each row, x1 , x2 , …, xn

 Values represent the columns, 1 to n
 The assignment (xi,c) means that the queen in row i  is in

column c
 Constraints for each pair of rows i, j with i < j:

xi  ≠xj

xi  − xj ≠ i − j

xi  − xj ≠ j − i
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Propagating the ConstraintsPropagating the Constraints

 A queen in row 5, column 3 conflicts
with both remaining values for x3

 But the constraints are consistent
 constraint  xi  ≠xj  thinks that (x3 ,1) can

support (x5 ,3)
 constraint xi  − xj ≠ i − j  thinks that

(x3 ,3)  can support (x5 ,3)

×

 Enforcing AC on (xi  ≠xj ) ۸ (xi  − xj ≠ i − j ) ۸ (xi  − xj≠
j − i ) would remove 3 from the domain of x5
 but how would you do it?
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SummarySummary

 The viewpoint (variables, values) largely determines what
the model looks like

 Choose a viewpoint that will allow the constraints to be
expressed easily and concisely

 Be aware of global constraints provided by the solver, and
use them if they reduce run-time

 Introduce auxiliary variables if necessary to help express
the constraints


