

Modelling for Constraint Programming Barbara Smith

4. Combining Viewpoints, Modelling Advice

CP Summer School 2008

Which Viewpoint to Choose?

- Sometimes one viewpoint is clearly better, e.g. if we can't express the constraints easily in one
- But different perspectives often allow different expression of the constraints and different implied constraints
 - can be hard to decide which is better
- We don't need to choose one viewpoint we can use two (or more) at once
- We need channelling constraints to link the variables

Combining Viewpoints: Permutation Problems

- > Dual viewpoints of a permutation problem with variables $x_1, x_2, ..., x_n$ and $d_1, d_2, ..., d_n$
- Combine them using the channelling constraints

$$\succ (x_i = j) \equiv (d_j = i)$$

- The channelling constraints are sufficient to ensure that x₁, x₂, ..., x_n are all different
 - but might be beneficial to have a specific allDifferent constraint as well and enforce GAC

Combining Viewpoints: Integer & Set Variables

In a nurse rostering problem, we can allocate shifts to nurses or nurses to shifts

- First viewpoint:
 - > an integer variable n_{ii} for each nurse *i* and day *j*
 - \succ its value is the shift that nurse *i* works on day *j*
- Second viewpoint:
 - > a set variable S_{kj} for each shift k and day j
 - \succ its value is the set of nurses that work shift k on day j

> Channelling constraints: $(n_{ij} = k) \equiv (i \in S_{kj})$

The Golomb Ruler Problem

- \succ A Golomb ruler with *m* marks consists of
 - \blacktriangleright a set of *m* integers $0 = x_1 < x_2 < ... < x_m$
 - > the m(m-1)/2 differences $x_i x_i$ are all different
 - > Objective: find a ruler with minimum length x_m
- First viewpoint: variables x₁, x₂,..., xm
 x_j x_i ≠ x_l x_k for all distinct pairs
 x₁ < x₂ < ... < xm
- > Second viewpoint: variables d_{ij} , $1 \le i \le j \le m$
 - > allDifferent($d_{11}, d_{12}, ..., d_{m-1,m}$)
 - A $_{ik} = d_{ij} + d_{jk}$ for 1 ≤ i < j < k ≤ m
 </p>
- > Channelling constraints: $d_{ij} = x_j x_i$

Constraints in Combined Viewpoints

- It is safe to combine two complete models of a problem, with channelling constraints
- But often unnecessary and inefficient
- If some constraints are more easily expressed in one viewpoint, we don't need them in both
 - e.g. nurse rostering
 - constraints on nurse availability are stated in the `nurse' viewpoint
 - constraints on work requirements (e.g. no. of nurses required for each shift) are stated in the 'shift' viewpoint
- > or if they propagate better in one viewpoint
 - ▶ e.g. $x_j x_i \neq x_l x_k$ v. allDifferent($d_{11}, d_{12}, ..., d_{m-1,m}$) in the Golomb ruler problem

- We need to choose a set of variables such that an assignment to each one, satisfying the constraints, will give a complete solution to the problem
- Assume we pass the search variables to the search algorithm in a list or array
 - > the order defines a static variable ordering
 - > though we can still use a dynamic ordering

- When a model combines two (or more) viewpoints of a problem, which variables should drive the search?
- Assigning values to either set of variables would be sufficient to solve the problem
 - ven if we did not express the problem constraints on those variables
 - the channelling constraints ensure that we can assign values to one set of variables but define the constraints in the other viewpoint, if we want

Search Variables – Permutation Problems

- We can use both sets of variables as search variables
 - e.g. use a dynamic variable order e.g. variable with smallest domain in either viewpoint
 - combines variable and value ordering: the dual variable with smallest domain corresponds (in the other viewpoint) to the value occurring in fewest domains

SONET Problem: Viewpoints

- > Whether a given node is on a given ring:
 - > $x_{ij} = 1$ if node *i* is on ring *j*
- > Which ring(s) each node is on:

> N_i = set of rings node *i* is on

Which nodes are on each ring

 \succ R_i = set of nodes on ring j

In principle, any of these viewpoints could be the basis of a complete CSP model

► channelling constraints $(x_{ij} = 1) \equiv (i \in R_j) \equiv (j \in N_i)$

> There are also auxiliary variables

> n_i = the number of rings each node is on (= $|N_i|$)

Possible Choices

- Use just one set of variables, e.g. x_{ij} the others are just for constraint propagation
- Use two (or more) sets of variables (of the same type) e.g. R_j, N_i
 - interleave them in a sensible (static) order
 - or use a dynamic ordering applied to both sets of variables
- Use an incomplete set of variables first, to reduce the search space before assigning a complete set
 - > e.g. decide how many rings each node is on (search variables n_i) and then which rings each node is on (x_{ij})
 - another strategy adds assigning the objective variable first see earlier

Automating Modelling

There are lots of choices to make in modelling a problem as a CSP

- b difficult even with experience
- Can it be automated?
 - some initial steps so far
 - e.g. systems that propose models given a highlevel specification
 - descriptions of common patterns in modelling

Advice from the Folklore

Reduce the number of variables

- if we only use one viewpoint:
 - a model which needs fewer variables to describe the solutions to the problem is likely to be a better model
 - e.g. an integer model is probably better than a Boolean model
- But only if the variables allow the constraints to be expressed in a way that propagates well
 - artificially reducing the number of variables by inventing a single variable to replace a pair of variables will not give a better model

Advice from the Folklore 2

Reduce the number of constraints

- One viewpoint in the magic squares problem has far more constraints than the other
- rewriting a set of constraints in a more compact form is likely to be beneficial, *if* the resulting constraints can propagate efficiently
 - > e.g. combine constraints with the same scope
 - use a global constraint to replace a set of constraints
- But simply conjoining constraints for the sake of reducing their number will not give a better model if the new constraints cannot propagate efficiently

More Advice

Add more variables

- auxiliary variables to allow constraints to be expressed
- new viewpoints allowing a different perspective on the problem
- Add more constraints
 - implied constraints
 - channelling constraints to link new variables
- > Check empirically
 - that a change does reduce run-time

Conclusion

- Aim for a rich model
 - > multiple viewpoints
 - > auxiliary variables
 - implied constraints
- Understand the problem as well as you can
 - build that insight into the model
 - the better you can understand a problem, the better you can solve it

THE END