Lazy Clause Generation

A powerful hybrid solving approach
combining SAT and finite domain
propagation

Overview

Original Lazy Clause Generation
— Representing Integers

— Explaining Propagators

— Example

Lazier Clause Generation

— Lazy Variables

— Views

— Lazy Explanation
Global Constraints

Search

ra

Lazy Clause Generation

e Repeatedly run propagators

Propagators change variable domains by:
— removing values
— changing upper and lower bounds

— fixing to a value

Run until fixpoint.

KEY INSIGHT:

Changes in domains are really the fixing of Boolean
variables representing domains.

Propagation is just the generation of clauses on these
variables.

FD solving is just SAT solving: conflict analysis for
FREE!

n Representing Integers

e Integer x with initial domain /..u

— Bounds Booleans: [[x<d]], [=d<u
— Equation Booleans: [[x =d]],[<d=<u

e (Efficient) Form of unary representation

n Representing Integers Exercise

* What domains are represented by

L. {[[x=6]]l,=[[x=<2]]}
{[Mx=9]l,=[[x=<4]],=[[x=6]],=[[x=81]]}
{[lx=41]}
{[lx=5]],-[[x=<4]]}
{x=7]1,=-[lx=1]],=[[x=8]] }
{
{-

[x=4]L[lx=71]}
Lx=T7TI1Llx=1]]}

A e

n Domain Representation

* Need constraints to represent relationship amongst
variables (DOM(x)):
—[[x=<d]] = [[x=<d+1]], [<d<u-1
~[[x=d]l ®[[x=d]] A= [[x=d-1]]

* Ensures one to one correspondence between
domains and assignments

e Note linear 1n size of domain

n Atomic Constraints

e Atomic constraints define changes in domain
— Fixing variable: x =d
— Changing bound: x <d, x>d
— Removing value: x # d

e Atomic constraints are just Boolean literals
—x=d e [[x=d]]
—x<d|[[x=<d]], x=d® = [[x=<d-1]]
—xz2d® =~ [[x=d]]

Explaining Propagation

For lazy clause generation: a propagator

— must explain the domain changes it makes
It /(D) # D then propagator f returns an
explanation for the atomic constraint changes

— what parts of domain D forced the change
Assume D(x,) = D(x,) = D(x;) = D(x,) = D(x5) =
{1.4}
Example: alldifterent([x,, x,, x5, x,])

— D(x;) ={1} makes D(x,) = {2.4}

— Explanation: x, =1 = x,# 1

Explaining Propagation

Explanations:
implications of atomic constraints
= clauses on the Boolean literals
x,=1=>x,21
[[x,=1]11P=[[x,=11]]

* =[x =111V-llx,=1]]

Unit propagation on the clause will cause the
change in domain!

n Explaining Propagation

* X,< X
— D(x,) ={2.4} enforces D(x;) = {2.4}
— Explanation: 2 < x, =» 2 < x;
* x;+X,+x3+x,<9
— D(x)) ={1.4},D(x,) ={2.4},D(x;) = {3.4}, D(x,) =
{1..4} enforces D(x,) ={1..3}
— Explanation: 2 <x, A 3 <x;=?x,<3

— Note: No 1 < x; since this 1s universally true (initial
domains)

g Explaining Failure

e When f(D)(x) = {}, failure detected

* The propagator must also explain failure
e alldifferent([x,, x,, x5, x,])

— D(x;) = {3}, D(x,) = {3} gives failure

— Explanation: x; =3 A x,=3 => false
e And

— D(x;) ={1,3}, D(x;) = {1..3}, D(x3) = {1,3}, D(x,) =
{1,3} !

— Explanation: x; <3 A x;#2 A x;<3 A x;#2 A
x, <3N x,#22 = false

n Explanation Exercises

e Give the resulting domain and explanation for
each of the following examples:
— D(x)={2.4},D(x,) = {1.4}: x,+ 1 =x,
— D(x,) = D(x,) = D(x;) = D(x,) = {1..2}, alldifferent([x,,
Xny X35 X4])
— D(x;) ={23},D(x,) ={14}, D) =10,1},b <& x,=x,

— D(x;)={1.4},D(x,) ={1.4},D(x;) = {3}, D(x,) =
1.4, 2x, + x, + 3x;+ x, < 12

u Minimal Explanations

* An explanation should be as general as possible
e Question: WHY?

* Sometimes there are multiple possible
explanations, none better than others

 Example: D(x,;) = {4,6.9}, D(x,) = {1..2}:
x;+ 1 =<x,
—x;24 N\ x; 25 N x,<2 =D false
—x; =24 N x,<2 =D false
—x; 24 N x,<4 =D false
—x; 22 A\ x,<2 = false

ra

Lazy Clause Generation

Explanations are clauses

— a lazy clausal representation of the propagator!
Finite domain propagation 1s simply Boolean
satisfaction generating the clauses defining the
problem lazily
Unit propagation on the explanations replaces
finite domain propagation

Nogood generation + activity based-search for free

n Finite Domain Propagation EX.

* D(xy) =D(x,) =D(x;) =D(xy) =D(x5) =11.4}
* X, < x,,alldifferent([x,, x,, x5, x,4]),

X1 +X+x3+x, <9

=1 alldiff x,<xg| x>2 x,<xs alldiff sum=<9 alldiff
x, 1 I I I I I I I

X, 1.4 2.4 24|24 2 2 2 2
x; 1.4 2.4 2.4 24 24 3.4 3 %
x, 1.4 2.4 24| 24 2.4 34 3 %
xs 1.4 1.4 24|34 2 2 2 2

n Lazy Clause Generation Ex.

alldiff x=xs | %=X alldiff sum<9 alldiff

% fail

TUIP Nogood Creation

alldiff x=xs | %=X alldiff sum<9 alldiff

> fail

1 UIP Nogood

5D x.SD xS0 x.= L, <1]L[Lx; <11,
{x,>2, x;>2, x,>2, x,=2} =D false o, SZI]],—-[[szz]]}

X522 " X5<2 ||—> X5=2

| A

n Backjumping

alldiff *»=xs »<=x e Backtrack to second
last level in nogood

\ * Nogood will propagate

PR NPT S e Note stronger domain
w21 o .2 M than usual backtracking
e D(x,)={3.4}
Xy F x, =2
=4 v
X522 X5 >3

{x,>2, x;>2, x,>2, x,=2} =» false

Whats Really Happening

A high level “Boolean” model of the problem

Clausal representation of the Boolean model is
generated “as we go”

All generated clauses are redundant and can be
removed at any time

We can control the size of the active “Boolean”
model

g Lazy Clause Generation Exercise

e Given constraints: b1 V b2,bl1<x] <x6,b2x]
>4 xI +x2+x3+x4<11l,x4=x5,x3=x5,x5+
x6 <8

e D(x])=D(x2) = D(x3) = D(x4) = D(x5) = D(x6) =
1.5}

e Assume decisions in order: x6 >4, x5=>2,x2=>4

e Build the implication graph, determine the 1UIP
nogood. Show the result after backjumping!

g Comparing Versus SAT

* For some models we can generate all possible
explanation clauses before commencement
— usually this 1s too big

* Open Shop Scheduling (tai benchmark suite)

— averages

Time Solve only Fails Max Clauses
318 89 3597

62 6651 1.0

n Strengths + Weaknesses

e Strengths
— High level modelling
— Learning avoids repeating the same subsearch
— Strong autonomous search
— Programmable search

— Specialized global propagators (but requires work)

e Weaknesses

— Optimization by repeated satisfaction search
— Overhead compared to FD when nogoods are useless

n Lazy Variable Creation

 Many Boolean variables are never used
e Create them on demand

* Array encoding
— Create bounds variables initially x < d
— Only create equality variables x = d on demand
—~ Addx=d Ax=<d—x=d
e List encoding
— Create bounds variables on demand x < d

— Add x=d' — x=d, x<d — x=d" where d' (d") 1s next
lowest (highest) existing bound

— At most 2x bounds clauses

— Create equality variables on demand as before

n Lazy Variable Creation

List versus array

e List always works!

e Array may require too many Boolean variables
 Implementation complexity

e List hampers learning

e Tai open shop scheduling: 15x15 (average of 10
problems)

Time
Array 13.38
List 56.66

n Views (Schulte + Tack 2005)

* View 1s a pseudo variable defined by a “bijective”
function to another variable
—x=ay+f
— x = bool2int(y)
_x=-y
e The view variable x, does not exist, operations on
it are mapped to y

e More important for lazy clause generation
— Reduce Boolean variable representation

— Improve nogoods (reduce search)

g Views

e Operations on x = oy + 3
e Lower bound (similar for upper bound)
- Ib(x) = a Ib(y) + B , when & >0
- Ib(x) = a ub(y) + p , when a <0
e Set lower bound
- setlb(x,d) = setlb(y, ceil((d —) / a))) , when o > 0
- setlb(x,d) = setub(y, floor((d — 3) / @))) , when a. < 0
e Difficulties

— reasoning about idempotence can be tricky

g Advantages of Views

e Constrained path covering problems:
* A view to implement array lookups, versus no
view

e Average over S Instances

views

no views

n Explanation Deletion

* Explanations only really needed for nogood
learning
— Forward add explanations as they are generated

— Backward delete explanations as we backtrack past
them

e Smaller set of clauses

e Can hamper search “Reprioritization”

15x15 20x20

Tai open shop scheduling (times):

deletion

no
deletion

But worse on other benchmarks

u Lazy Explanation

* Explanations only needed for nogood learning

— Forward record propagator causing each atomic
constraint

— Backward ask propagator to explain atomic constraint
(if required)

e Standard for SAT extensions (MinmiSAT 1.14) and
SAT Modulo Theories (SMT)

* Only create needed explanations!

e Harder implementation

g Advantages of Lazy Explanation

e Social Golfers Problems:

— using a regular propagator

— each explanation as expensive as running entire
propagator

Times Reasons Fails
lazy explanation 2.38 14387 2751
eager explanation 492 18177 5126

e Surprisingly not as advantageous as it seems

Lazy Explanation Example

alldiff x=xs | x<x; alldiff sum<9 alldiff
x,=1

— N
X) #1 X5 >2 N X5 <2 > X2:2

x; #1 X322

X323 .X3S3 —> .X3:3
>fail

x,.=3 x,<3 x,=3
/_/"X/
X5>2 " X5<2 ||—> X5=2

— Note 4 literals remain
unexplained

{x,>2, x;>2, x,>2, x,=2} =» false

The Globality of Explanation

Nogoods extract global information from the
problem

Can overcome weaknesses of local propagators
Example:

— D(x;)=D(x,)={0..100000}, x, =x, A (b<x, >x,)

— Set b = true and 200000 propagations later failure.

A global difference logic propagator immediately
sets b = false!

Lazy clause generation learns b = false after
200000 propagations

— But never tries 1t again!

u Globals by Decomposition

* Globals defined by decomposition
— Don’t require implementation
— Automatically incremental
— Allow partial state relationships to be “learned”
— Much more attractive with lazy clause generation

* When propagation 1s not hampered, and size does
not blowout:

— can be good enough!

n Which Decomposition?

e alldifferent decompositions
— diseq: O(n?) disequalities
— bnd: bounds consistent decomposition

— bnd+: Bound consistent decomposition
e replacingx>=d A x<dbyx=d

— gcc: based on global cardinality constraint

e Quasi-group completion 25x25 (average of
examples solved by all)

diseq bnd bnd+ gce
Time Fails Time Fails Time Fails Time Fails
131 1426080 757 9317 129 1144 4.3 1010

Explanation for Globals

Globals are better than decomposition

— More efficient

— Stronger propagation
Instrument global constraint to also explain its
propagations

— regular: expensive each explanation as much as

propagation

— cumulatiwve: choices in how to explain
Implementation complexity
Can’t learn partial state

More efficient + stronger propagation + control of
explanation

Explaining cumulative

\ \\\
source \\\\\\\\\\\\\\\\\\\\D sink

—
-

Explaining cumulative

Explaining Failure

e Compulsory parts are
too high:

e Naive: just use current
bounds:
2<sb<3 N2=<se<4
A 0 <sf<4=> false

e Pointwise: pick a point
(4) and loosen bounds:
O<sb<4 ANO=<se<4
A 0 <sf<4=> false

Stronger Explanation

Explaining cumulative
Explaining propagation:
e fcant start before 10
* Naive explanation

2<shb<3 AN2<se<4 A
8<sc<9=>»10=<sf

e Pointwise explanation:

— f cant start before 5
because of b and e

—0<shb<4 ANO<se<4
> 5=<sf

— f cant start before 10
because of ¢

~8<sc<9AS<sf =D
10 < sf

n Search

e Contrary to SAT folklore

— Activity based search can be terrible
— Nogoods work excellently with programmed search

e Constrained path covering problems

leg + VSIDS >361.89 >30,000

Icg + programmed 0.71 950
programmed >240.2 >10,000

g Activity-based search

* An excellent default search!
* Weak at the beginning (no meaningful activities)

e Need hybrid approachs
— Hot Restart:

e Start with programmed search to “initialize”” meaningful
activities.

e Switch to activity-based after restart
— Alternating

e Start with programmed search, switch to activity-based on
restart

e Switch search type on each restart

 Much more to explore 1n this direction

g Lazy Clause Generation in MiniZinc

e mzn -b lazy will invoke our original lazy clause

generation solver
e mznZ2fzn -l <ChuffedGlobalsDir> model.mzn

fzn_geoff model.fzn
invokes our latest lazy clause generation solver

e Try them out on some models you have previously
created in the subject!

g Summary

e Lazy Clause Generation
— High level modelling
— Strong nogood creation

— Effective autonomous search (but also programmed
search)

— Global Constraints
e Defines state-of-the-art for:

— Resource constrained project scheduling (minimize
makespan)

— Set constraint problems

— Nonagrams (regular constraints)

e Usually 1-2 order of magnitude speedup on FD
problem

g Exercise 1: Explaining abs

e Write pseudo-code for the absolute value
propagator: x = abs(y)

— use Ib(v), ub(v) and dom(v) to access the domain of
variable v

— use setlb(v,d), setub(v,d), setdom(v,S) to set the
domain of v (you can assume these update
monotonically e.g. dom(setdom(v,S)) = § intersect dom

(v))
 Now modify the pseudo-code to explain each
change of domain.

