
Lazy Clause Generation!

A powerful hybrid solving approach 
combining SAT and finite domain 

propagation	





Overview!

•  Original Lazy Clause Generation	


–  Representing Integers	


–  Explaining Propagators	


–  Example	

	



•  Lazier Clause Generation	


–  Lazy Variables	


–  Views	


–  Lazy Explanation	



•  Global Constraints	


•  Search	





Lazy Clause Generation!

•  Repeatedly run propagators 	


•  Propagators change variable domains by:	



–  removing values 	


–  changing upper and lower bounds 	


–  fixing to a value	



•  Run until fixpoint. 	


KEY INSIGHT:	


•  Changes in domains are really the fixing of Boolean 

variables representing domains.	


•  Propagation is just the generation of clauses on these 

variables. 	


•  FD solving is just SAT solving: conflict analysis for 

FREE!	





Representing Integers!

•  Integer x with initial domain l..u	


–  Bounds Booleans: [[x ≤ d]],   l ≤ d < u	


–  Equation Booleans: [[x = d]], l ≤ d ≤ u	



•  (Efficient) Form of unary representation	





Representing Integers Exercise!

•  What domains are represented by	


1.  { [[ x ≤ 6 ]], ¬[[ x ≤ 2 ]] }	


2.  { [[ x ≤ 9 ]], ¬[[ x ≤ 4 ]], ¬[[ x = 6 ]], ¬[[ x = 8 ]] }	


3.  { [[ x = 4 ]] }	


4.  { [[ x ≤ 5 ]], ¬[[ x ≤ 4 ]] }	


5.  { [[ x ≤ 7 ]], ¬[[ x ≤ 1 ]], ¬[[ x = 8 ]]  }	


6.  { [[ x = 4 ]], [[ x = 7 ]] }	


7.  {¬[[ x ≤ 7 ]], [[ x ≤ 1 ]] } 	

	





Domain Representation!

•  Need constraints to represent relationship amongst 
variables (DOM(x)):	


–  [[ x ≤ d ]]  [[ x ≤ d+1 ]],       l ≤ d < u-1	


–  [[ x = d ]]  [[ x ≤ d ]] ∧¬ [[ x ≤ d-1 ]] 	



•  Ensures one to one correspondence between 
domains and assignments	



•  Note linear in size of domain	





Atomic Constraints!

•  Atomic constraints define changes in domain	


–  Fixing variable: x = d	


–  Changing bound: x ≤ d, x ≥ d	


–  Removing value: x ≠ d	



•  Atomic constraints are just Boolean literals	


–  x = d  [[ x = d ]] 	


–  x ≤ d  [[ x ≤ d ]],   x ≥ d  ¬ [[ x ≤ d-1 ]]	


–  x ≠ d  ¬ [[ x = d ]] 	





Explaining Propagation!

•  For lazy clause generation: a propagator	


–  must explain the domain changes it makes	



•  If f(D) ≠ D then propagator f returns an 
explanation for the atomic constraint changes	


–  what parts of domain D forced the change	



•  Assume D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = 
{1..4}	



•  Example: alldifferent([x1, x2, x3, x4])	


–  D(x1) = {1} makes D(x2) = {2..4}	


–  Explanation: x1 = 1  x2 ≠ 1 	





Explaining Propagation!

•  Explanations: 	


	

 	

implications of atomic constraints	


	

 	

= clauses on the Boolean literals	



•  x1 = 1  x2 ≠ 1	


•  [[ x1 = 1 ]]¬ [[ x2 = 1 ]]	


•  ¬[[ x1 = 1 ]]∨¬[[ x2 = 1 ]]	


•  Unit propagation on the clause will cause the 

change in domain!	





Explaining Propagation!

•  x2 ≤ x5 	


–  D(x2) = {2..4} enforces D(x5) = {2..4}	


–  Explanation: 2 ≤ x2  2 ≤ x5	



•   x1+x2+x3+x4 ≤ 9	


–  D(x1) = {1..4}, D(x2) = {2..4}, D(x3) = {3..4}, D(x4) = 

{1..4} enforces D(x4) = {1..3}	


–  Explanation: 2 ≤ x2 ∧ 3 ≤ x3 x4 ≤ 3	


–  Note: No 1 ≤ x1 since this is universally true (initial 

domains)	





Explaining Failure!

•  When f(D)(x) = {},  failure detected	


•  The propagator must also explain failure	


•  alldifferent([x1, x2, x3, x4])	



–  D(x3) = {3}, D(x4) = {3} gives failure	


–  Explanation: x3 = 3 ∧ x4 = 3  false 	



•  And	


–  D(x1) = {1,3}, D(x2) = {1..3}, D(x3) = {1,3}, D(x4) = 

{1,3} !!!!	


–  Explanation:  x1 ≤ 3 ∧ x1 ≠ 2 ∧ x3 ≤ 3 ∧ x3 ≠ 2 ∧ 

x4 ≤ 3 ∧ x4 ≠ 2  false  	





Explanation Exercises!

•  Give the resulting domain and explanation for 
each of the following examples:	


–  D(x1) = {2..4}, D(x2) = {1..4}:  x1 + 1 ≤ x2 	


–  D(x1) = D(x2) = D(x3) = D(x4) = {1..2}, alldifferent([x1, 

x2, x3, x4])	


–  D(x1) = {2,3}, D(x2) = {1,4}, D(b) = {0,1}, b  x1 = x2	



–  D(x1) = {1..4}, D(x2) = {1..4}, D(x3) = {3}, D(x4) = 
{1..4}, 2x1 + x2 + 3x3 + x4 ≤ 12	





Minimal Explanations!

•  An explanation should be as general as possible	


•  Question: WHY?	


•  Sometimes there are multiple possible 

explanations, none better than others	


•  Example: D(x1) = {4,6..9}, D(x2) = {1..2}:  	


	

 	

 	

x1 + 1 ≤ x2	



–  x1 ≥ 4 ∧ x1 ≠ 5 ∧ x2 ≤ 2  false	


–  x1 ≥ 4 ∧ x2 ≤ 2  false	


–  x1 ≥ 4 ∧ x2 ≤ 4  false	


–  x1 ≥ 2 ∧ x2 ≤ 2  false	





Lazy Clause Generation!

•  Explanations are clauses	


–  a lazy clausal representation of the propagator!	



•  Finite domain propagation is simply Boolean 
satisfaction generating the clauses defining the 
problem lazily	



•  Unit propagation on the explanations replaces 
finite domain propagation	



•  Nogood generation + activity based-search for free	





Finite Domain Propagation Ex.!

•  D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1..4}	


•  x2 ≤ x5, alldifferent([x1, x2, x3, x4]), 	


	

x1+x2+x3+x4 ≤ 9	



x1 
x2 
x3 
x4 
x5 

x1=1 
1 

1..4 
1..4 
1..4 
1..4 

alldiff 
1 

2..4 
2..4 
2..4 
1..4 

x2 ≤ x5 
1 

2..4 
2..4 
2..4 
2..4 

x5≤2 
1 

2..4 
2..4 
2..4 

2 

x2 ≤ x5 
1 
2 

2..4 
2..4 
2 

alldiff 
1 
2 

3..4 
3..4 

2 

sum≤9 
1 
2 
3 
3 
2 

alldiff 
1 
2 
✖ 
✖ 
2 

x5>2 
1 

2..4 
2..4 
2..4 
3..4 



Lazy Clause Generation Ex.!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 



1UIP Nogood Creation!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

x3=3∧x4=3 false 

x4=3 

x3=3 

x4≥3∧ x4≤3∧ x3=3 false 

x4≤3 

{x3≥3,x4≥3,x3≤3,x4≤3} false 

x3≤3 

{x2  ≥2,x3≥3,x4≥3,x3≤3}  false 

x3≥3 

x2  ≥2 

x4≥3 

{x2  ≥2, x3≥3, x4≥3}  false {x2  ≥2,x4 ≥2,x4≠2,x3≥3}  false 

x4≠2 x4 ≥2 

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false 

x3≠2 x3 ≥2 

{x2  ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false 

x2=2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false {[[x2 ≤1]],[[x3 ≤1]], 
[[x4 ≤1]],¬[[x2 =2]]}  

1 UIP Nogood 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 



Backjumping!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false 

alldiff x2 ≤ x5 

x2 ≠2 x2  ≥3 

x2 ≤ x5 

x5 ≥3 

•  Backtrack to second 
last level in nogood	



•  Nogood will propagate	


•  Note stronger domain 

than usual backtracking	


•  D(x2) = {3..4}	





Whats Really Happening!

•  A high level “Boolean” model of the problem	


•  Clausal representation of the Boolean model is 

generated “as we go” 	


•  All generated clauses are redundant and can be 

removed at any time 	


•  We can control the size of the active “Boolean” 

model	





Lazy Clause Generation Exercise!

•  Given constraints: b1 ∨ b2, b1x1 ≤ x6, b2x1 
≥ 4, x1 + x2 + x3 + x4 ≤ 11, x4 ≥ x5, x3 ≥ x5, x5 + 
x6 ≤ 8	



•  D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = D(x6) = 
{1..5}	



•  Assume decisions in order: x6 ≥ 4, x5 ≥ 2, x2 ≥ 4	


•  Build the implication graph, determine the 1UIP 

nogood. Show the result after backjumping!	





Comparing Versus SAT!

•  For some models we can generate all possible 
explanation clauses before commencement	


–  usually this is too big	



•  Open Shop Scheduling (tai benchmark suite)	


–  averages	



Time	

 Solve only	

 Fails	

 Max Clauses	


SAT	

 318	

 89	

 3597	

 13.17	


LCG	

 62	

 6651	

 1.0	





Strengths + Weaknesses!

•  Strengths	


–  High level modelling 	


–  Learning avoids repeating the same subsearch 	


–  Strong autonomous search 	


–  Programmable search 	


–  Specialized global propagators (but requires work)	



•  Weaknesses	


–  Optimization by repeated satisfaction search 	


–  Overhead compared to FD when nogoods are useless	





Lazy Variable Creation!
•  Many Boolean variables are never used 	


•  Create them on demand 	


•  Array encoding	



–  Create bounds variables initially x ≤ d 	


–  Only create equality variables x = d on demand 	


–  Add x ≥ d ∧ x ≤ d → x = d	



•  List encoding	


–  Create bounds variables on demand x ≤ d	


–   Add x≤d' → x≤d, x≤d → x≤d'' where d' (d'') is next 

lowest (highest) existing bound	


–  At most 2× bounds clauses 	


–  Create equality variables on demand as before	





Lazy Variable Creation!

List versus array	


•  List always works! 	


•  Array may require too many Boolean variables	


•  Implementation complexity 	


•  List hampers learning	


•  Tai open shop scheduling: 15x15 (average of 10 

problems)	



Time	


Array	

 13.38	


List	

 56.66	





Views (Schulte + Tack 2005)!

•  View is a pseudo variable defined by a “bijective” 
function to another variable	


–  x = αy + β 	


–  x = bool2int(y) 	


–  x = ¬y	



•  The view variable x, does not exist, operations on 
it are mapped to y 	



•  More important for lazy clause generation	


–  Reduce Boolean variable representation 	


–  Improve nogoods (reduce search)	





Views!

•  Operations on x = αy + β	


•  Lower bound (similar for upper bound) 	



–  lb(x) = α lb(y) + β , when α > 0	


–  lb(x) = α ub(y) + β , when α < 0	



•  Set lower bound	


–  setlb(x,d) = setlb(y, ceil((d – β) / α))) , when α > 0	


–  setlb(x,d) = setub(y, floor((d – β) / α))) , when α < 0	



•  Difficulties	


–  reasoning about idempotence can be tricky	





Advantages of Views!

•  Constrained path covering problems:	


•  A view to implement array lookups, versus no 

view	


•  Average over 5 instances	



Time	

 Fails	


views	

 0.71	

 950	


no views	

 1.12	

 1231	





Explanation Deletion!

•  Explanations only really needed for nogood 
learning 	


–  Forward add explanations as they are generated 	


–  Backward delete explanations as we backtrack past 

them	


•  Smaller set of clauses	


•  Can hamper search “Reprioritization” 	


Tai open shop scheduling (times):	



But worse on other benchmarks	



15x15	

 20x20	


deletion	

 13.38	

 39.96	


no 
deletion	



20.58	

 95.88	





Lazy Explanation!

•  Explanations only needed for nogood learning	


–  Forward record propagator causing each atomic 

constraint 	


–  Backward ask propagator to explain atomic constraint 

(if required)	


•  Standard for SAT extensions (MiniSAT 1.14) and 

SAT Modulo Theories (SMT)	


•  Only create needed explanations!	


•  Harder implementation	





Advantages of Lazy Explanation!

•  Social Golfers Problems: 	


–  using a regular propagator 	


–  each explanation as expensive as running entire 

propagator	



•  Surprisingly not as advantageous as it seems	



Times	

 Reasons	

 Fails	


lazy explanation	

 2.38	

 14387	

 2751	


eager explanation	

 4.92	

 78177	

 5126	





Lazy Explanation Example!

x1=1 

x2 ≠1 

x3 ≠1 

x4 ≠1 

x2  ≥2 

x3 ≥2 

x4 ≥2 

x5 ≥2 x5≤2 x5=2 

x2 ≤2 x2=2 

x3≠2 

x4≠2 

x3≥3 

x4≥3 

x3≤3 

x4≤3 

x3=3 

x4=3 
fail 

x3=3∧x4=3 false 

x4=3 

x3=3 

x4≥3∧ x4≤3∧ x3=3 false 

x4≤3 

{x3≥3,x4≥3,x3≤3,x4≤3} false 

x3≤3 

{x2  ≥2,x3≥3,x4≥3,x3≤3}  false 

x3≥3 

x2  ≥2 

x4≥3 

{x2  ≥2, x3≥3, x4≥3}  false {x2  ≥2,x4 ≥2,x4≠2,x3≥3}  false 

x4≠2 x4 ≥2 

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false 

x3≠2 x3 ≥2 

{x2  ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false 

x2=2 

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false 

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff 

Dashed Box: will be 
explained by 
propagator above 

Note 4 literals remain 
unexplained 

x5 ≥2 

x4 ≠1 

x3 ≠1 

x2 ≠1 



The Globality of Explanation!

•  Nogoods extract global information from the 
problem	



•  Can overcome weaknesses of local propagators	


•  Example: 	



–  D(x1)=D(x2)={0..100000}, x2 ≥x1∧(b⇔x1 >x2)	


–  Set b = true and 200000 propagations later failure.	



•  A global difference logic propagator immediately 
sets b = false!	



•  Lazy clause generation learns b = false after 
200000 propagations 	


–  But never tries it again!	





Globals by Decomposition!

•  Globals defined by decomposition 	


–  Don’t require implementation	


–  Automatically incremental 	


–  Allow partial state relationships to be “learned” 	


–  Much more attractive with lazy clause generation	



•  When propagation is not hampered, and size does 
not blowout: 	


–  can be good enough!	





Which Decomposition?!

•  alldifferent decompositions	


–  diseq: O(n2) disequalities	


–  bnd: bounds consistent decomposition	


–  bnd+: Bound consistent decomposition	



•  replacing x ≥ d ∧ x ≤ d by x = d	



–  gcc: based on global cardinality constraint	


•  Quasi-group completion 25x25 (average of 

examples solved by all)	


diseq	

 bnd	

 bnd+	

 gcc	



Time	

 Fails	

 Time	

 Fails	

 Time	

 Fails	

 Time	

 Fails	


131	

 1426080	

 757	

 9317	

 129	

 1144	

 4.3	

 1010	





Explanation for Globals!
•  Globals are better than decomposition	



–  More efficient 	


–  Stronger propagation	



•  Instrument global constraint to also explain its 
propagations 	


–  regular: expensive each explanation as much as 

propagation 	


–  cumulative: choices in how to explain	



•  Implementation complexity	


•  Can’t learn partial state	


•  More efficient + stronger propagation + control of 

explanation	





Explaining cumulative!

f

d

c

e

ba

source sink

0 2

a
b

4 6 8 10 12 14

cd
e

f

16 18 20



Explaining cumulative!
Explaining Failure	


•  Compulsory parts are 

too high:	


•  Naïve: just use current 

bounds:	


	

2 ≤ sb ≤ 3 ∧ 2 ≤ se ≤ 4 
∧ 0 ≤ sf ≤ 4  false	



•  Pointwise: pick a point 
(4) and loosen bounds:	


	

0 ≤ sb ≤ 4 ∧ 0 ≤ se ≤ 4 
∧ 0 ≤ sf ≤ 4  false	



Stronger Explanation 	



0 2 4 6 8 10 12 14

a

b

c
d

e

f

16 18 20

a
b

e
c

f

f



Explaining cumulative!
Explaining propagation:	


•  f cant start before 10	


•  Naïve explanation	


	

2 ≤ sb ≤ 3 ∧ 2 ≤ se ≤ 4 ∧ 
8 ≤ sc ≤ 9  10 ≤ sf	



•   Pointwise explanation:	


–  f cant start before 5 

because of b and e	


–  0 ≤ sb ≤ 4 ∧ 0 ≤ se ≤ 4 
 5 ≤ sf	

	



–  f cant start before 10 
because of c	



–  8 ≤ sc ≤ 9 ∧ 5 ≤ sf   
10 ≤ sf 	

	



0 2 4 6 8 10 12 14

a

b

c
d

e

f

16 18 20

a
b

e
c



Search!

•  Contrary to SAT folklore 	


–  Activity based search can be terrible 	


–  Nogoods work excellently with programmed search	



•  Constrained path covering problems	



Time	

 Fails	


lcg + VSIDS	

 >361.89	

 >30,000	


lcg + programmed	

 0.71	

 950	


programmed	

 >240.2	

 >10,000	





Activity-based search!

•  An excellent default search! 	


•  Weak at the beginning (no meaningful activities)	


•  Need hybrid approachs	



–  Hot Restart:	


•  Start with programmed search to “initialize” meaningful 

activities. 	


•  Switch to activity-based after restart	



–  Alternating	


•  Start with programmed search, switch to activity-based on 

restart	


•  Switch search type on each restart	



•  Much more to explore in this direction	





Lazy Clause Generation in MiniZinc!

•  mzn –b lazy will invoke our original lazy clause 
generation solver	



•  mzn2fzn –I <ChuffedGlobalsDir> model.mzn!
!fzn_geoff model.fzn!
	

invokes our latest lazy clause generation solver	



•  Try them out on some models you have previously 
created in the subject!	





Summary!
•  Lazy Clause Generation	



–  High level modelling 	


–  Strong nogood creation 	


–  Effective autonomous search (but also programmed 

search)	


–  Global Constraints	



•  Defines state-of-the-art for: 	


–  Resource constrained project scheduling (minimize 

makespan) 	


–  Set constraint problems 	


–  Nonagrams (regular constraints)	



•  Usually 1-2 order of magnitude speedup on FD 
problem	





Exercise 1: Explaining abs!

•  Write pseudo-code for the absolute value 
propagator: x = abs(y)	


–  use lb(v), ub(v) and dom(v) to access the domain of 

variable v 	


–  use setlb(v,d), setub(v,d), setdom(v,S) to set the 

domain of v (you can assume these update 
monotonically e.g. dom(setdom(v,S)) = S intersect dom
(v))	



•  Now modify the pseudo-code to explain each 
change of domain.	




