
Lazy Clause Generation!

A powerful hybrid solving approach
combining SAT and finite domain

propagation	

Overview!

•  Original Lazy Clause Generation	

–  Representing Integers	

–  Explaining Propagators	

–  Example	

	

•  Lazier Clause Generation	

–  Lazy Variables	

–  Views	

–  Lazy Explanation	

•  Global Constraints	

•  Search	

Lazy Clause Generation!

•  Repeatedly run propagators 	

•  Propagators change variable domains by:	

–  removing values 	

–  changing upper and lower bounds 	

–  fixing to a value	

•  Run until fixpoint. 	

KEY INSIGHT:	

•  Changes in domains are really the fixing of Boolean

variables representing domains.	

•  Propagation is just the generation of clauses on these

variables. 	

•  FD solving is just SAT solving: conflict analysis for

FREE!	

Representing Integers!

•  Integer x with initial domain l..u	

–  Bounds Booleans: [[x ≤ d]], l ≤ d < u	

–  Equation Booleans: [[x = d]], l ≤ d ≤ u	

•  (Efficient) Form of unary representation	

Representing Integers Exercise!

•  What domains are represented by	

1.  { [[x ≤ 6]], ¬[[x ≤ 2]] }	

2.  { [[x ≤ 9]], ¬[[x ≤ 4]], ¬[[x = 6]], ¬[[x = 8]] }	

3.  { [[x = 4]] }	

4.  { [[x ≤ 5]], ¬[[x ≤ 4]] }	

5.  { [[x ≤ 7]], ¬[[x ≤ 1]], ¬[[x = 8]] }	

6.  { [[x = 4]], [[x = 7]] }	

7.  {¬[[x ≤ 7]], [[x ≤ 1]] } 	

	

Domain Representation!

•  Need constraints to represent relationship amongst
variables (DOM(x)):	

–  [[x ≤ d]]  [[x ≤ d+1]], l ≤ d < u-1	

–  [[x = d]]  [[x ≤ d]] ∧¬ [[x ≤ d-1]] 	

•  Ensures one to one correspondence between
domains and assignments	

•  Note linear in size of domain	

Atomic Constraints!

•  Atomic constraints define changes in domain	

–  Fixing variable: x = d	

–  Changing bound: x ≤ d, x ≥ d	

–  Removing value: x ≠ d	

•  Atomic constraints are just Boolean literals	

–  x = d  [[x = d]] 	

–  x ≤ d  [[x ≤ d]], x ≥ d  ¬ [[x ≤ d-1]]	

–  x ≠ d  ¬ [[x = d]] 	

Explaining Propagation!

•  For lazy clause generation: a propagator	

–  must explain the domain changes it makes	

•  If f(D) ≠ D then propagator f returns an
explanation for the atomic constraint changes	

–  what parts of domain D forced the change	

•  Assume D(x1) = D(x2) = D(x3) = D(x4) = D(x5) =
{1..4}	

•  Example: alldifferent([x1, x2, x3, x4])	

–  D(x1) = {1} makes D(x2) = {2..4}	

–  Explanation: x1 = 1  x2 ≠ 1 	

Explaining Propagation!

•  Explanations: 	

	

 	

implications of atomic constraints	

	

 	

= clauses on the Boolean literals	

•  x1 = 1  x2 ≠ 1	

•  [[x1 = 1]]¬ [[x2 = 1]]	

•  ¬[[x1 = 1]]∨¬[[x2 = 1]]	

•  Unit propagation on the clause will cause the

change in domain!	

Explaining Propagation!

•  x2 ≤ x5 	

–  D(x2) = {2..4} enforces D(x5) = {2..4}	

–  Explanation: 2 ≤ x2  2 ≤ x5	

•  x1+x2+x3+x4 ≤ 9	

–  D(x1) = {1..4}, D(x2) = {2..4}, D(x3) = {3..4}, D(x4) =

{1..4} enforces D(x4) = {1..3}	

–  Explanation: 2 ≤ x2 ∧ 3 ≤ x3 x4 ≤ 3	

–  Note: No 1 ≤ x1 since this is universally true (initial

domains)	

Explaining Failure!

•  When f(D)(x) = {}, failure detected	

•  The propagator must also explain failure	

•  alldifferent([x1, x2, x3, x4])	

–  D(x3) = {3}, D(x4) = {3} gives failure	

–  Explanation: x3 = 3 ∧ x4 = 3  false 	

•  And	

–  D(x1) = {1,3}, D(x2) = {1..3}, D(x3) = {1,3}, D(x4) =

{1,3} !!!!	

–  Explanation: x1 ≤ 3 ∧ x1 ≠ 2 ∧ x3 ≤ 3 ∧ x3 ≠ 2 ∧

x4 ≤ 3 ∧ x4 ≠ 2  false 	

Explanation Exercises!

•  Give the resulting domain and explanation for
each of the following examples:	

–  D(x1) = {2..4}, D(x2) = {1..4}: x1 + 1 ≤ x2 	

–  D(x1) = D(x2) = D(x3) = D(x4) = {1..2}, alldifferent([x1,

x2, x3, x4])	

–  D(x1) = {2,3}, D(x2) = {1,4}, D(b) = {0,1}, b  x1 = x2	

–  D(x1) = {1..4}, D(x2) = {1..4}, D(x3) = {3}, D(x4) =
{1..4}, 2x1 + x2 + 3x3 + x4 ≤ 12	

Minimal Explanations!

•  An explanation should be as general as possible	

•  Question: WHY?	

•  Sometimes there are multiple possible

explanations, none better than others	

•  Example: D(x1) = {4,6..9}, D(x2) = {1..2}: 	

	

 	

 	

x1 + 1 ≤ x2	

–  x1 ≥ 4 ∧ x1 ≠ 5 ∧ x2 ≤ 2  false	

–  x1 ≥ 4 ∧ x2 ≤ 2  false	

–  x1 ≥ 4 ∧ x2 ≤ 4  false	

–  x1 ≥ 2 ∧ x2 ≤ 2  false	

Lazy Clause Generation!

•  Explanations are clauses	

–  a lazy clausal representation of the propagator!	

•  Finite domain propagation is simply Boolean
satisfaction generating the clauses defining the
problem lazily	

•  Unit propagation on the explanations replaces
finite domain propagation	

•  Nogood generation + activity based-search for free	

Finite Domain Propagation Ex.!

•  D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1..4}	

•  x2 ≤ x5, alldifferent([x1, x2, x3, x4]), 	

	

x1+x2+x3+x4 ≤ 9	

x1
x2
x3
x4
x5

x1=1
1

1..4
1..4
1..4
1..4

alldiff
1

2..4
2..4
2..4
1..4

x2 ≤ x5
1

2..4
2..4
2..4
2..4

x5≤2
1

2..4
2..4
2..4

2

x2 ≤ x5
1
2

2..4
2..4
2

alldiff
1
2

3..4
3..4

2

sum≤9
1
2
3
3
2

alldiff
1
2
✖
✖
2

x5>2
1

2..4
2..4
2..4
3..4

Lazy Clause Generation Ex.!

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3
fail

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

1UIP Nogood Creation!

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3
fail

x3=3∧x4=3 false

x4=3

x3=3

x4≥3∧ x4≤3∧ x3=3 false

x4≤3

{x3≥3,x4≥3,x3≤3,x4≤3} false

x3≤3

{x2 ≥2,x3≥3,x4≥3,x3≤3}  false

x3≥3

x2 ≥2

x4≥3

{x2 ≥2, x3≥3, x4≥3}  false {x2 ≥2,x4 ≥2,x4≠2,x3≥3}  false

x4≠2 x4 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false

x3≠2 x3 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false

x2=2

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false {[[x2 ≤1]],[[x3 ≤1]],
[[x4 ≤1]],¬[[x2 =2]]}

1 UIP Nogood

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

Backjumping!

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false

alldiff x2 ≤ x5

x2 ≠2 x2 ≥3

x2 ≤ x5

x5 ≥3

•  Backtrack to second
last level in nogood	

•  Nogood will propagate	

•  Note stronger domain

than usual backtracking	

•  D(x2) = {3..4}	

Whats Really Happening!

•  A high level “Boolean” model of the problem	

•  Clausal representation of the Boolean model is

generated “as we go” 	

•  All generated clauses are redundant and can be

removed at any time 	

•  We can control the size of the active “Boolean”

model	

Lazy Clause Generation Exercise!

•  Given constraints: b1 ∨ b2, b1x1 ≤ x6, b2x1
≥ 4, x1 + x2 + x3 + x4 ≤ 11, x4 ≥ x5, x3 ≥ x5, x5 +
x6 ≤ 8	

•  D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = D(x6) =
{1..5}	

•  Assume decisions in order: x6 ≥ 4, x5 ≥ 2, x2 ≥ 4	

•  Build the implication graph, determine the 1UIP

nogood. Show the result after backjumping!	

Comparing Versus SAT!

•  For some models we can generate all possible
explanation clauses before commencement	

–  usually this is too big	

•  Open Shop Scheduling (tai benchmark suite)	

–  averages	

Time	

 Solve only	

 Fails	

 Max Clauses	

SAT	

 318	

 89	

 3597	

 13.17	

LCG	

 62	

 6651	

 1.0	

Strengths + Weaknesses!

•  Strengths	

–  High level modelling 	

–  Learning avoids repeating the same subsearch 	

–  Strong autonomous search 	

–  Programmable search 	

–  Specialized global propagators (but requires work)	

•  Weaknesses	

–  Optimization by repeated satisfaction search 	

–  Overhead compared to FD when nogoods are useless	

Lazy Variable Creation!
•  Many Boolean variables are never used 	

•  Create them on demand 	

•  Array encoding	

–  Create bounds variables initially x ≤ d 	

–  Only create equality variables x = d on demand 	

–  Add x ≥ d ∧ x ≤ d → x = d	

•  List encoding	

–  Create bounds variables on demand x ≤ d	

–  Add x≤d' → x≤d, x≤d → x≤d'' where d' (d'') is next

lowest (highest) existing bound	

–  At most 2× bounds clauses 	

–  Create equality variables on demand as before	

Lazy Variable Creation!

List versus array	

•  List always works! 	

•  Array may require too many Boolean variables	

•  Implementation complexity 	

•  List hampers learning	

•  Tai open shop scheduling: 15x15 (average of 10

problems)	

Time	

Array	

 13.38	

List	

 56.66	

Views (Schulte + Tack 2005)!

•  View is a pseudo variable defined by a “bijective”
function to another variable	

–  x = αy + β 	

–  x = bool2int(y) 	

–  x = ¬y	

•  The view variable x, does not exist, operations on
it are mapped to y 	

•  More important for lazy clause generation	

–  Reduce Boolean variable representation 	

–  Improve nogoods (reduce search)	

Views!

•  Operations on x = αy + β	

•  Lower bound (similar for upper bound) 	

–  lb(x) = α lb(y) + β , when α > 0	

–  lb(x) = α ub(y) + β , when α < 0	

•  Set lower bound	

–  setlb(x,d) = setlb(y, ceil((d – β) / α))) , when α > 0	

–  setlb(x,d) = setub(y, floor((d – β) / α))) , when α < 0	

•  Difficulties	

–  reasoning about idempotence can be tricky	

Advantages of Views!

•  Constrained path covering problems:	

•  A view to implement array lookups, versus no

view	

•  Average over 5 instances	

Time	

 Fails	

views	

 0.71	

 950	

no views	

 1.12	

 1231	

Explanation Deletion!

•  Explanations only really needed for nogood
learning 	

–  Forward add explanations as they are generated 	

–  Backward delete explanations as we backtrack past

them	

•  Smaller set of clauses	

•  Can hamper search “Reprioritization” 	

Tai open shop scheduling (times):	

But worse on other benchmarks	

15x15	

 20x20	

deletion	

 13.38	

 39.96	

no
deletion	

20.58	

 95.88	

Lazy Explanation!

•  Explanations only needed for nogood learning	

–  Forward record propagator causing each atomic

constraint 	

–  Backward ask propagator to explain atomic constraint

(if required)	

•  Standard for SAT extensions (MiniSAT 1.14) and

SAT Modulo Theories (SMT)	

•  Only create needed explanations!	

•  Harder implementation	

Advantages of Lazy Explanation!

•  Social Golfers Problems: 	

–  using a regular propagator 	

–  each explanation as expensive as running entire

propagator	

•  Surprisingly not as advantageous as it seems	

Times	

 Reasons	

 Fails	

lazy explanation	

 2.38	

 14387	

 2751	

eager explanation	

 4.92	

 78177	

 5126	

Lazy Explanation Example!

x1=1

x2 ≠1

x3 ≠1

x4 ≠1

x2 ≥2

x3 ≥2

x4 ≥2

x5 ≥2 x5≤2 x5=2

x2 ≤2 x2=2

x3≠2

x4≠2

x3≥3

x4≥3

x3≤3

x4≤3

x3=3

x4=3
fail

x3=3∧x4=3 false

x4=3

x3=3

x4≥3∧ x4≤3∧ x3=3 false

x4≤3

{x3≥3,x4≥3,x3≤3,x4≤3} false

x3≤3

{x2 ≥2,x3≥3,x4≥3,x3≤3}  false

x3≥3

x2 ≥2

x4≥3

{x2 ≥2, x3≥3, x4≥3}  false {x2 ≥2,x4 ≥2,x4≠2,x3≥3}  false

x4≠2 x4 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x3≠2,x4≠2}  false

x3≠2 x3 ≥2

{x2 ≥2,x3 ≥2,x4 ≥2,x2=2,x3≠2}  false

x2=2

{x2 ≥2, x3 ≥2, x4 ≥2, x2 =2}  false

alldiff x2 ≤ x5 x2 ≤ x5 alldiff sum≤9 alldiff

Dashed Box: will be
explained by
propagator above

Note 4 literals remain
unexplained

x5 ≥2

x4 ≠1

x3 ≠1

x2 ≠1

The Globality of Explanation!

•  Nogoods extract global information from the
problem	

•  Can overcome weaknesses of local propagators	

•  Example: 	

–  D(x1)=D(x2)={0..100000}, x2 ≥x1∧(b⇔x1 >x2)	

–  Set b = true and 200000 propagations later failure.	

•  A global difference logic propagator immediately
sets b = false!	

•  Lazy clause generation learns b = false after
200000 propagations 	

–  But never tries it again!	

Globals by Decomposition!

•  Globals defined by decomposition 	

–  Don’t require implementation	

–  Automatically incremental 	

–  Allow partial state relationships to be “learned” 	

–  Much more attractive with lazy clause generation	

•  When propagation is not hampered, and size does
not blowout: 	

–  can be good enough!	

Which Decomposition?!

•  alldifferent decompositions	

–  diseq: O(n2) disequalities	

–  bnd: bounds consistent decomposition	

–  bnd+: Bound consistent decomposition	

•  replacing x ≥ d ∧ x ≤ d by x = d	

–  gcc: based on global cardinality constraint	

•  Quasi-group completion 25x25 (average of

examples solved by all)	

diseq	

 bnd	

 bnd+	

 gcc	

Time	

 Fails	

 Time	

 Fails	

 Time	

 Fails	

 Time	

 Fails	

131	

 1426080	

 757	

 9317	

 129	

 1144	

 4.3	

 1010	

Explanation for Globals!
•  Globals are better than decomposition	

–  More efficient 	

–  Stronger propagation	

•  Instrument global constraint to also explain its
propagations 	

–  regular: expensive each explanation as much as

propagation 	

–  cumulative: choices in how to explain	

•  Implementation complexity	

•  Can’t learn partial state	

•  More efficient + stronger propagation + control of

explanation	

Explaining cumulative!

f

d

c

e

ba

source sink

0 2

a
b

4 6 8 10 12 14

cd
e

f

16 18 20

Explaining cumulative!
Explaining Failure	

•  Compulsory parts are

too high:	

•  Naïve: just use current

bounds:	

	

2 ≤ sb ≤ 3 ∧ 2 ≤ se ≤ 4
∧ 0 ≤ sf ≤ 4  false	

•  Pointwise: pick a point
(4) and loosen bounds:	

	

0 ≤ sb ≤ 4 ∧ 0 ≤ se ≤ 4
∧ 0 ≤ sf ≤ 4  false	

Stronger Explanation 	

0 2 4 6 8 10 12 14

a

b

c
d

e

f

16 18 20

a
b

e
c

f

f

Explaining cumulative!
Explaining propagation:	

•  f cant start before 10	

•  Naïve explanation	

	

2 ≤ sb ≤ 3 ∧ 2 ≤ se ≤ 4 ∧
8 ≤ sc ≤ 9  10 ≤ sf	

•  Pointwise explanation:	

–  f cant start before 5

because of b and e	

–  0 ≤ sb ≤ 4 ∧ 0 ≤ se ≤ 4
 5 ≤ sf	

	

–  f cant start before 10
because of c	

–  8 ≤ sc ≤ 9 ∧ 5 ≤ sf 
10 ≤ sf 	

	

0 2 4 6 8 10 12 14

a

b

c
d

e

f

16 18 20

a
b

e
c

Search!

•  Contrary to SAT folklore 	

–  Activity based search can be terrible 	

–  Nogoods work excellently with programmed search	

•  Constrained path covering problems	

Time	

 Fails	

lcg + VSIDS	

 >361.89	

 >30,000	

lcg + programmed	

 0.71	

 950	

programmed	

 >240.2	

 >10,000	

Activity-based search!

•  An excellent default search! 	

•  Weak at the beginning (no meaningful activities)	

•  Need hybrid approachs	

–  Hot Restart:	

•  Start with programmed search to “initialize” meaningful

activities. 	

•  Switch to activity-based after restart	

–  Alternating	

•  Start with programmed search, switch to activity-based on

restart	

•  Switch search type on each restart	

•  Much more to explore in this direction	

Lazy Clause Generation in MiniZinc!

•  mzn –b lazy will invoke our original lazy clause
generation solver	

•  mzn2fzn –I <ChuffedGlobalsDir> model.mzn!
!fzn_geoff model.fzn!
	

invokes our latest lazy clause generation solver	

•  Try them out on some models you have previously
created in the subject!	

Summary!
•  Lazy Clause Generation	

–  High level modelling 	

–  Strong nogood creation 	

–  Effective autonomous search (but also programmed

search)	

–  Global Constraints	

•  Defines state-of-the-art for: 	

–  Resource constrained project scheduling (minimize

makespan) 	

–  Set constraint problems 	

–  Nonagrams (regular constraints)	

•  Usually 1-2 order of magnitude speedup on FD
problem	

Exercise 1: Explaining abs!

•  Write pseudo-code for the absolute value
propagator: x = abs(y)	

–  use lb(v), ub(v) and dom(v) to access the domain of

variable v 	

–  use setlb(v,d), setub(v,d), setdom(v,S) to set the

domain of v (you can assume these update
monotonically e.g. dom(setdom(v,S)) = S intersect dom
(v))	

•  Now modify the pseudo-code to explain each
change of domain.	

