
Watched Literals in 
SAT and CP  



Topics in this Series

• Why SAT & Constraints? 

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo 
Theories



Legal Warning

• Watched literals may be patented

• it’s not so clear to a non-lawyer like me

• US Patent 7,418,369, August 26, 2008: 

• “Method and System for Efficient 
Implementation of Boolean Satisfiability”

• Covers Chaff, Watched Literals, VSIDS



Legal Warning
• May not be an everyday problem

• http://tinyurl.com/satpatent

• Sharad Malik says ok for noncommercial use:

• “The chaff software and related intellectual property have been 
freely available for research purposes and will continue to be 
available for free use by the research community for non-
commercial purposes. This includes the development of other 
SAT solvers with this technology as well as their research use.”

• But I don’t know if that stands up in court

• Or what happens if you put it open source code

• which then is used commercially



Patent in Constraints?

• As far as I know,  WL patent doesn’t cover 
Watched Literals in Constraints to be 
covered later

• And I know for certain that we have not 
applied for a patent for our work on it 



Patents

• Software patents arouse great passions

• I’m somewhere in the middle

• But I’m shocked they had a patent 
pending for years and never told anyone

• Please don’t do this!



Watched Literals
• Key technique in the SAT propagation algorithm

• i.e. unit propagation

• Introduced with the SAT solver Chaff

• Chaff: Engineering an Efficient SAT Solver by Moskewicz, 
Madigan, Zhao, Zhang, Malik, DAC 2001.

• though with precursors (of course) 

• Especially Head-Tail lists by Stickel/Zhang

• Carried over to Constraint Propagation in Minion

• Watched Literals for Constraint Propagation in Minion, by Gent, 
Jefferson, Miguel, CP 2006.



First key idea
• There is no work on backtracking

• Example of not restoring state on backtracking

• ensuring that when we return ...

• ... state is equivalent in vital ways but not 
identical

• This is super cute but ... 

• oversold as the key idea of WLs

• in my opinion anyway



Second key idea

• There can be no work in propagation

• If a value is deleted, we may do nothing at all

• Even though the value is in the constraint

• This is super cute and ... 

• undersold as the key idea of WLs

• in my opinion anyway

• A big difference between 0 and O(1)



Watched Literal 
Propagation in SAT

• Remember: Unit propagation fires when all 
but one literal is assigned false

• Idea: If two variables are either unassigned 
or assigned true, no need to do anything.

• So just find two variables which satisfy this 
condition.

• If can’t find two, may have to propagate or 



‘Watched Literals’

• Different from normal triggers (in 
Constraints):

• Able to move around.

• Not restored on backtrack.



Propagation Example

• a ∨ b ∨ c ∨ d

0/1 0/1 0/1 0/1

a b c d

Triggers:



Propagation Example

• a assigned false.

• Update pointer.

0 0/1 0/1 0/1

a b c d

Triggers:



Propagation Example

• a assigned false.

• Update pointer.

0 0/1 0/1 0/1

a b c d

Triggers:



Propagation Example

• Backtrack. a unassigned.

• Pointers do not move back

0/1 0/1 0/1 0/1

a b c d

Triggers:



Propagation Example

• If b is assigned true,
 pointer doesn’t move.

0/1 1 0/1 0/1

a b c d

Triggers:



Propagation Example

• If other variables assigned, nothing happens!

• Can’t emphasise enough ....

0 0/1 0/1 0

a b c d

Triggers:



Propagation Example

• NOTHING HAPPENS

• Zero work takes place

0 0/1 0/1 0

a b c d

Triggers:



Propagation Example

• The unwatched literals a/d cause no work

• Not even checking there is nothing to do

• because that would be O(1)

0 0/1 0/1 0

a b c d

Triggers:



Propagation Example

• The unwatched literals a/d cause no work

• Because there is no trigger attached to them

0 0/1 0/1 0

a b c d

Triggers:



Propagation Example

• If we cannot find something new & unassigned 
to watch...

•

0 0 0/1 0

a b c d

Triggers:



Propagation Example

• We can set the remaining literal

• i.e. do unit propagation since this clause is unit

0 0 1 0

a b c d

Triggers:



Propagation Example

• Leave triggers where they are!

0 0 1 0

a b c d

Triggers:



Propagation Example

• Triggers in the right place to continue after 
backtracking.

0 0/1 0/1 0

a b c d

Triggers:



Advantages of WL

• ZERO cost if a literal not watched.

• ZERO cost on backtrack.



Watched Literals in 
SAT

• Really come into their own on large clauses

• probably not worthwhile on 3-SAT, for example

• E.g. if I have 100 variables in clause

• I still only need to watch 2 

• and 98% of the time I will do no work

• As if my problem was 98% smaller! 

• We can handle problems with many large clauses

• Which links with explanations & learning

• since those clauses are often big



Watched Literals in 
SAT

• A key technique in modern SAT solvers

• Sadly, under analysed 

• Everyone uses them

• Everyone thinks why they work well

• But few to no experiments showing really 
why



Porting to Constraints
• Nothing too deep 

• Have trigger on literals instead of variables (or bounds)

• trigger = event that causes propagator to be called

• literal = variable/value pair, e.g. x=7

• Allow triggers to move during search

• can lead to horrible bugs without huge caution

• Care in coming up with correct sets of watches

• for each constraint we want to use



• What do we need 
to watch?

• Enough to support 
every value

Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• Start with Index

• M[1] = 1



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• Start with Index

• M[2] = 2



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• Start with Index

• M[3] = 3



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• We’ve supported 
every value of Index

• And 1,2,3 of Result

• And some of M



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• We’ve supported 
many values

• Are we done? 

• Almost ... 



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• Must support ... 

• Result = 4



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need 
to watch?

• Enough to support 
every value

• Must support ... 

• Result = 4

• M[2] = 4



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need to 
watch?

• Enough to support 
every value

• We’ve supported every 
value of Index

• And Result

• And some of M 



Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• What do we need to 
watch?

• Enough to support 
every value

• We’ve supported every 
value of Index

• And Result

• And ALL of M



All of M? 
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• How have we 
supported all of M?

• Many values are 
unwatched

• M[Index] = Result

• While there’s two 
values of Index ... 

• All values of M are 
possible



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens 
when literals get 
deleted? 



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens when 
literals get deleted? 

• Nothing ... 

• ... for supports where all 
watched literals still there

• even though domain of 
every variable involved 
has changed



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens when 
literals get deleted? 

• Nothing ... 

• ... if the literals were 
not watched

• Huge difference 
between Nothing 
and O(1)



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens 
when literals get 
deleted? 



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens when 
literals get deleted? 

• Very little ... 

• if values being supported 
have been deleted

• We don’t even move 
watches

• when we backtrack they 
will come back to life



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• What happens when 
literals get deleted?

• Real work ...

• ... If deleted literal was 
watching active support

• ... we must find new 
support (watches)

• or we will remove values 



• Result = 2? 

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work ...

• ... i.e. provide new 
watches

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Remove 2 from 
domain of Result

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Remove 2 from 
domain of Result



Watching literals... 
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1? 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• Remove 1 from 
domain of Index

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No. 

• Remove 1 from 
domain of Index

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No. 

• Remove 1 from 
domain of Index

 



Key advantage
• If M is vector of size m

• so Index domain is size m

• And M[i], Result have domain size n

• Then we need to watch O(m+n) literals

• one for each value of Index, Result

• But there are O(mn) literals in M

• so we often do nothing

• Best way to propagate GAC for element

M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4



Key disadvantage

• Fairly heavyweight infrastructure

• for operations right in the inner loop of 
the solver

• Only worthwhile if we win big

• So not if we end up watching most literals

• Can be faster not to do GAC for element



Another advantage
• We can win on space in search

• which can be critical if search is big

• and data structures are big

• Because we don’t have to backtrack triggers

• the constraint need put nothing on the backtrack stack

• memory required for current state of triggers

• also covers all previous states on this branch

• i.e. space used by moved triggers reclaimable immediately

• This can be a bigger issue than it sounds



Another Disadvantage

• Constraints get less state, because search 
may be deeper or higher than when last 
called.

• Often leads to theoretically worse 
behaviour.

• Though in practice this doesn’t often 
matter much



Looping Example

• If triggers backtrack, there is no need to ever 
loop around from d back to a, as one pass is 
enough.

0/1 0/1 0/1 0/1

a b c d

Triggers:



My story about Tom Kelsey
0 0 2 2 2 2 2 7 7 7 
0 0 2 2 2 2 3 7 7 7 
2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 
4 4 2 2 2 2 2 2 2 2 
5 5 2 2 2 2 2 3 3 3 
5 5 2 2 2 2 2 3 2 3 
2 2 2 2 2 2 2 2 2 2 
5 5 2 2 2 2 3 3 2 3 
4 4 2 2 2 4 4 2 4 2

• An example of a semigroup

• mathematicians study these 

• various algebraic 
constraints

• Enumerated by Minion

• Distler/Kelsey/Kotthoff

• 72.9 CPU years

• 50,000 found per CPU 
second



Not a panacea

• I find WL’s in CP super cool and fun

• and sometimes much faster

• But they are not a universal cure 

• Typically use in constraint which is 

• not too tight (lots of allowed tuples)

• lots of cases where not all vars in support

• Part of a mixed system of triggers


