
© 2011 Cadence Design Systems, Inc. All rights
reserved worldwide.

1

Cadence and Specman
 ACP Summer School, June 2011

Reuven Naveh

Cadence

(rnaveh@cadence.com)

Cadence

 One of three major EDA companies
 Established in 1988, over 4000 employees
 Wide variety of areas and products in

hardware design
 Virtuoso, Encounter, Allegro…

 We will focus on functional verification
 Incisive platform
 Mainly „Incisive Enterprise Specman Elite‟ (AKA „Specman‟)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
2

Functional Verification

 Why so important?
 Prevents much costly bugs at the post-silicon level
 Takes more than half of the effort of hardware projects

 Formal verification
 Attempts to prove the correctness of a given specification
 Solvers are used to find a solution
 Cadence tool – IFV (Incisive Formal Verifier)

 Simulation based verification
 Tests the hardware through simulation
 Constraints are used to create legitimate random stimuli
 Verification languages: SystemVerilog (IEEE 1800), e (IEEE

1647)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
3

Coverage Driven Verification
Environment

Verification Environment

Automatic
Stimulus

Generation
Data and
Assertion
Checkers

Physical Layer

Device

Coverage
Monitor

Stimulus
Scenarios

stimulus
Scenarios

Stimulus
Scenarios

Generation Self Checking

Coverage

Specman

 Cadence’s major test bench automation
tool

 Developed by Verisity in the nineties
 Being used in the biggest and most

advanced verification environments
 Supports all aspects of coverage-driven-

verification
 Can be attached to any simulator
 Uses e verification language

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
5

e Language (some examples)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
6

//environment code
struct data {
 len:uint;
 kind:[SMALL,BIG];

 keep kind == SMALL
 => len in [10..20];

 keep kind == BIG
 => len in [50..70];
};

//test code
extend data {
 keep kind == SMALL;
};

 “AOP”

 See: Hollander, Y., Morley, M., Noy, A.: The e Language: A
Fresh Separation of Concerns. In TOOLS (38)(2001) 41-50

 © 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
7

type packet_protocol: [Ethernet, IEEE];
struct packet {
 protocol: packet_protocol;
 data: list of byte;

 show() is {
 out("Packet length is ",
 data.size(). " bytes.");
 };
};

extend Ethernet packet {
 header: Ethernet header;
 show() is first {
 out("I am an Ethernet packet.");
 };
};

extend sys {
 test_packets:list of packet;

 keep test_packets.size() == 1000;
 keep test_packets.count(
 it.protocol == Ethernet) in [100..200];
};

 Predicate Classes (Chambers 1993)

Constraints in e
 Declarative entities, struct members

 keep my_field < 100;
 keep for each in my_list {it.field1 < it.field2}

 Can be:
 Hard or soft
 Reset or overriden

 Apply to:
 Scalar and non-scalar fields
 Lists, pointers

-> constraints determine the structure and not just the generated values!

 Used for:
 Random stimuli generation
 Environment configuration
 Pointer binding

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
8

Constraints in e (examples)

 Arithmetic and logic constraints
 keep soft f() => x + y == z, keep a>0 and x % a != 0

 Global constraints
 keep my_list.sum(it.x) == 100, keep my_list.all_different(it)

 Bit constraints
 ‘keep addr[1:0] == 0’, ‘keep soft num == 1<<size’

 Distribution constraints (always soft)
 keep soft x == {80:[1..100];10:[500..5000];10:others}

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
9

CSP Challenges

 Problems are not (always) hard
 Extensive search is usually not required
 Backtracks typically indicate bad modeling

 Scalability of simple problems
 Solving a single problem many times
 Solving many different problems
 Problems are influenced by the state of the environment

 Bit level mixed with word level
 Distribution!

 Random solution and not just a solution
 It is hard to define and achieve the „optimal‟ distribution
 Random stability is required

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
10

 Solutions

 BDD solver
 Bit level, predictable (“uniform”) distribution, very fast
 Capacity problems

 SAT solver
 Bit level (loses high level dependencies), bad distribution
 Translation to CNF is expensive

 Finite Domain Solver
 Word level
 Non-uniform and hard-to-control distribution
 Cheap on easy problems

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
11

Specman solver (IntelliGen)

 Collects and analyzes all the
environment's constraints
 The environment may be huge (tens of thousands of

variables and constraints).

 Partitions to separate solving problems
 Each problem is relatively small
 Orders the partitions properly and automatically according to

dependencies

 Creates matching solving technology for
each partition

 © 2011 Cadence Design Systems, Inc. All rights reserved worldwide.

12

Gen Debugger

 Interactive GUI tool to debug constraints
 Information is presented in user terms

 Each problems details the relevant constraints and variables
 Reductions show “constraints” and not “propagators”
 Includes range information and bit information

 Works in online and offline modes
 Rich set of breakpoints
 Step-by-step debugging and debugging in retrospect
 Easy navigation between solving steps

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
13

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
14

