
© 2011 Cadence Design Systems, Inc. All rights
reserved worldwide.

1

Cadence and Specman
 ACP Summer School, June 2011

Reuven Naveh

Cadence

(rnaveh@cadence.com)

Cadence

 One of three major EDA companies
 Established in 1988, over 4000 employees
 Wide variety of areas and products in

hardware design
 Virtuoso, Encounter, Allegro…

 We will focus on functional verification
 Incisive platform
 Mainly „Incisive Enterprise Specman Elite‟ (AKA „Specman‟)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
2

Functional Verification

 Why so important?
 Prevents much costly bugs at the post-silicon level
 Takes more than half of the effort of hardware projects

 Formal verification
 Attempts to prove the correctness of a given specification
 Solvers are used to find a solution
 Cadence tool – IFV (Incisive Formal Verifier)

 Simulation based verification
 Tests the hardware through simulation
 Constraints are used to create legitimate random stimuli
 Verification languages: SystemVerilog (IEEE 1800), e (IEEE

1647)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
3

Coverage Driven Verification
Environment

Verification Environment

Automatic
Stimulus

Generation
Data and
Assertion
Checkers

Physical Layer

Device

Coverage
Monitor

Stimulus
Scenarios

stimulus
Scenarios

Stimulus
Scenarios

Generation Self Checking

Coverage

Specman

 Cadence’s major test bench automation
tool

 Developed by Verisity in the nineties
 Being used in the biggest and most

advanced verification environments
 Supports all aspects of coverage-driven-

verification
 Can be attached to any simulator
 Uses e verification language

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
5

e Language (some examples)

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
6

//environment code
struct data {
 len:uint;
 kind:[SMALL,BIG];

 keep kind == SMALL
 => len in [10..20];

 keep kind == BIG
 => len in [50..70];
};

//test code
extend data {
 keep kind == SMALL;
};

 “AOP”

 See: Hollander, Y., Morley, M., Noy, A.: The e Language: A
Fresh Separation of Concerns. In TOOLS (38)(2001) 41-50

 © 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
7

type packet_protocol: [Ethernet, IEEE];
struct packet {
 protocol: packet_protocol;
 data: list of byte;

 show() is {
 out("Packet length is ",
 data.size(). " bytes.");
 };
};

extend Ethernet packet {
 header: Ethernet header;
 show() is first {
 out("I am an Ethernet packet.");
 };
};

extend sys {
 test_packets:list of packet;

 keep test_packets.size() == 1000;
 keep test_packets.count(
 it.protocol == Ethernet) in [100..200];
};

 Predicate Classes (Chambers 1993)

Constraints in e
 Declarative entities, struct members

 keep my_field < 100;
 keep for each in my_list {it.field1 < it.field2}

 Can be:
 Hard or soft
 Reset or overriden

 Apply to:
 Scalar and non-scalar fields
 Lists, pointers

-> constraints determine the structure and not just the generated values!

 Used for:
 Random stimuli generation
 Environment configuration
 Pointer binding

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
8

Constraints in e (examples)

 Arithmetic and logic constraints
 keep soft f() => x + y == z, keep a>0 and x % a != 0

 Global constraints
 keep my_list.sum(it.x) == 100, keep my_list.all_different(it)

 Bit constraints
 ‘keep addr[1:0] == 0’, ‘keep soft num == 1<<size’

 Distribution constraints (always soft)
 keep soft x == {80:[1..100];10:[500..5000];10:others}

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
9

CSP Challenges

 Problems are not (always) hard
 Extensive search is usually not required
 Backtracks typically indicate bad modeling

 Scalability of simple problems
 Solving a single problem many times
 Solving many different problems
 Problems are influenced by the state of the environment

 Bit level mixed with word level
 Distribution!

 Random solution and not just a solution
 It is hard to define and achieve the „optimal‟ distribution
 Random stability is required

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
10

 Solutions

 BDD solver
 Bit level, predictable (“uniform”) distribution, very fast
 Capacity problems

 SAT solver
 Bit level (loses high level dependencies), bad distribution
 Translation to CNF is expensive

 Finite Domain Solver
 Word level
 Non-uniform and hard-to-control distribution
 Cheap on easy problems

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
11

Specman solver (IntelliGen)

 Collects and analyzes all the
environment's constraints
 The environment may be huge (tens of thousands of

variables and constraints).

 Partitions to separate solving problems
 Each problem is relatively small
 Orders the partitions properly and automatically according to

dependencies

 Creates matching solving technology for
each partition

 © 2011 Cadence Design Systems, Inc. All rights reserved worldwide.

12

Gen Debugger

 Interactive GUI tool to debug constraints
 Information is presented in user terms

 Each problems details the relevant constraints and variables
 Reductions show “constraints” and not “propagators”
 Includes range information and bit information

 Works in online and offline modes
 Rich set of breakpoints
 Step-by-step debugging and debugging in retrospect
 Easy navigation between solving steps

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
13

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.
14

