Cadence and Specman

ACP Summer School, June 2011

Reuven Naveh

Cadence

(rnaveh@cadence.com)

© 2011 Cadence Design Systems, Inc. All rights 1

p— B
C a d E n c e reserved worldwide.

Cadence

One of three major EDA companies
Established in 1988, over 4000 employees

Wide variety of areas and products in

hardware design
Virtuoso, Encounter, Allegro...

We will focus on functional verification

Incisive platform
Mainly ,Incisive Enterprise Specman Elite® (AKA ,Specman®)

cadence’

Functional Verification

Why so important?
Prevents much costly bugs at the post-silicon level
Takes more than half of the effort of hardware projects

Formal verification
Attempts to prove the correctness of a given specification
Solvers are used to find a solution
Cadence tool — IFV (Incisive Formal Verifier)

Simulation based verification

Tests the hardware through simulation
Constraints are used to create legitimate random stimuli

Verification languages: SystemVerilog (IEEE 1800), e (IEEE
1647)

cadence’

Coverage Driven Verification
Environment

Verification Environment

[~

[0 M
Stimulus
Scenarios

Automatic

Stimulus Physical Layer Rata rat'_1d

Generation ssertion

‘ Checkers
® e Ll BENY
lad, mll[—L Device T Pad !

Self Chécking

‘ Coverage
D Monitor
7™

Coverage

Specman

Cadence’s major test bench automation
tool

Developed by Verisity in the nineties

Being used in the biggest and most
advanced verification environments

Supports all aspects of coverage-driven-
verification

Can be attached to any simulator
Uses e verification language

cadence’

e Language (some examples)

. “AOP”

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.

© Predicate Classes (Chambers 1993)

= See: Hollander, Y., Morley, M., Noy, A.: The e Language: A
Fresh Separation of Concerns. In TOOLS (38)(2001) 41-50

© 2011 Cadence Design Systems, Inc. All rights reserved worldwide.

Constraints 1n e

Declarative entities, struct members
keep my field < 100;
keep for each in my_list {it.field1 < it.field2}

Can be:

Hard or soft
Reset or overriden

Apply to:
Scalar and non-scalar fields

Lists, pointers
-> constraints determine the structure and not just the generated values!

Used for:

Random stimuli generation
Environment configuration
Pointer binding

cadence’

Constraints 1n e (examples)

Arithmetic and logic constraints

keep softf() =>x+y ==z keepa>0and x % al=0
Global constraints

keep my list.sum(it.x) == 100, keep my _list.all_different(it)
Bit constraints

‘keep addr[1:0] == 0’, ‘keep soft num == 1<<size’

Distribution constraints (always soft)
keep soft x == {80:[1..100];10:[500..5000];10:0thers}

cadence’

CSP Challenges

Problems are not (always) hard

Extensive search is usually not required
Backtracks typically indicate bad modeling

Scalability of simple problems

Solving a single problem many times
Solving many different problems
Problems are influenced by the state of the environment

Bit level mixed with word level
Distribution!
Random solution and not just a solution

It is hard to define and achieve the ,optimal® distribution
Random stability is required

cadence’

10

Solutions

BDD solver

Bit level, predictable (“uniform”) distribution, very fast
Capacity problems

SAT solver

Bit level (loses high level dependencies), bad distribution
Translation to CNF is expensive

Finite Domain Solver

Word level
Non-uniform and hard-to-control distribution
Cheap on easy problems

cadence’

11

Specman solver (IntelliGen)

Collects and analyzes all the

environment's constraints

The environment may be huge (tens of thousands of
variables and constraints).

Partitions to separate solving problems

Each problem is relatively small

Orders the partitions properly and automatically according to
dependencies

Creates matching solving technology for
each partition

12

cadence’

Gen Debugger

Interactive GUI tool to debug constraints

Information is presented in user terms
Each problems details the relevant constraints and variables
Reductions show “constraints” and not “propagators”
Includes range information and bit information

Works in online and offline modes
Rich set of breakpoints
Step-by-step debugging and debugging in retrospect
Easy navigation between solving steps

13

cadence’

>Gen Debugger

-OXx

File Edit Wiew MNavigate Run Opticns
= | & IF
H 1 - -
EensTtion Preces siTvee 4y | Connected Field Set #2242 : sys.axi_evcactive_masters[0]
o:,- CFS: sys.axi_evi.active_masters[Q] |5 Variables : e ——
- CFS sys.axi_ewvi.active_masters[0) : g - -
O‘o"’ CFS: sys. axl_eve.active_masters[0].c : | Ty pe | Mame | Initial | Current : keep cnnflg.quule_nrl_pun== valueﬁnudule_nr_pnln.) at I_me
s, : O Input valuefmodule_or_part) MODULE || keep soft ordering_algorithm == NORMAL_ORDER. at line 352 in @
o‘o‘ = O Input _ config.active [-Jas-sive ACTIVE | keep ordering_algorithim | = DATA_PHASES END_TIMES &t line 393
w7 OCFSD sys.axi_evt.active_rmasters[0].c : O Input cnnfig.imer‘rezce Ep— Al 0 || keep module_or_port I= PORT == ordering_algorithm I= INTERC
% CFS sys axi_eve.active_masters[0] & Ccen l:l:lnfig.imer‘face.writ;_da_. [0.42949672... 5 B E keep imer'race.write_data_interleaving__depth ==1=> nrder:ing_algu:
& “ T ————— MODULE. POR.. | MODLLE § keep mpdule_ur__purt == PORT and |nterface.wr.lte_data._lnterlea
M'—I __ Py - - - || keep write_data_interleawing_depth >= 1 at line 4&1 in &wr_ax
Generated Tree & Gen config. ACTIVE'ordering_.... [MORMAL_OF... MNORMAL O.. keep soft write_data_interleaving_depth == 1 at line 462 in @wr_a:
= keep write_data_interleawving_depth == at line 118 in @wr_ax
= & Sy i
----- % wr_ani_exercised_check [ERR_VR_AX f-d B
O % axi_eve [AX1_0 wr_axi_env-@4] T T T e T T T T e e R T e e T B ErAERETT
»o @ emv_name [AX1_0] ¢| Yariable config.module_or_port: vr_axi_module_or_port_t
hall_path ["axi_eve_top’] General Infa] source] Past Steps] Caonstraints]
canfig [w_axi_em_config-@5] Source File: wr_axi_config.e
logger [message_logger—@a] L B
E- ® file_logger [message_logger-@7 178|-- Base unit for all agents configs.
----- % stop_the_run [TRUE] L
@ oo 120Munit wr_axi_agent_config 1ike wr_axi_config {
""" SIDp_FDndIIIDn [CYCLES) 121 -- Active or passive agent
""" @ test_time [4300] 182 active_passive: erm_active_passive_t;
----- % random_reset [FALSE] 1232
..... % num_of_requested_resets [34] 124 -- Module or port, one of:
- % reset_controller [wr_axi_reset_col 185 -- MODULE - the agent s a real one. .
L. @ psync [vr.axi_sync-@17] 186 -— FORT - the agent 1s connected to an interconnect port.
- -t | 127 module_or_port: wr_axi_module_or_port_t;
..... & 128
""" & has_synchronizer [TRUE] 189 —— Name of the containing agent
- & eync_list [{Y 190 name: wr_ax<i_intf_name_t;
- % passive_interconnects [{1 191 .
& active_interconnects [} gg keep gen (name) before {interface);
L i i . . .
! has_mulu_clock_domam [FALSE] 134 -- Interface unit, containing common felds to the master and slave connected
o & interconnects [{ 195 —— through dt.
}*J A4 ' - -

[Ready

14

