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Cadence 

 One of three major EDA companies 
 Established in 1988, over 4000 employees 
 Wide variety of areas and products in 

hardware design 
 Virtuoso, Encounter, Allegro… 

 We will focus on functional verification 
 Incisive platform 
 Mainly „Incisive Enterprise Specman Elite‟ (AKA „Specman‟)  
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Functional Verification 

 Why so important? 
 Prevents much costly bugs at the post-silicon level 
 Takes more than half of the effort of hardware projects 

 Formal verification 
 Attempts to prove the correctness of a given specification 
 Solvers are used to find a solution 
 Cadence tool – IFV (Incisive Formal Verifier) 

  Simulation based verification 
 Tests the hardware through simulation 
 Constraints are used to create legitimate random stimuli 
 Verification languages: SystemVerilog (IEEE 1800), e (IEEE 

1647)  
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Specman 

 Cadence’s major test bench automation 
tool 

 Developed by Verisity in the nineties 
 Being used in the biggest and most 

advanced verification environments 
 Supports all aspects of coverage-driven-

verification 
 Can be attached to any simulator 
 Uses e verification language 
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e Language (some examples) 
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//environment code 
struct data { 
    len:uint; 
    kind:[SMALL,BIG]; 
  
     keep kind == SMALL 
           => len in [10..20]; 
 
     keep kind == BIG 
          => len in [50..70]; 
}; 
 
 
 
 

//test code 
extend data { 
       keep kind == SMALL; 
}; 
 
 
 
 

 “AOP” 



 See: Hollander, Y., Morley, M., Noy, A.: The e Language: A 
Fresh Separation of Concerns. In TOOLS (38)(2001) 41-50 
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type packet_protocol: [Ethernet, IEEE]; 
struct packet { 
      protocol: packet_protocol; 
      data: list of byte; 
      
      show() is { 
           out("Packet length is ", 
           data.size(). " bytes."); 
      }; 
}; 
 
extend Ethernet packet { 
      header: Ethernet header; 
      show() is first { 
           out("I am an Ethernet packet."); 
      }; 
}; 
 
 

extend sys { 
       test_packets:list of packet; 
 
       keep test_packets.size() == 1000; 
       keep test_packets.count( 
               it.protocol == Ethernet) in [100..200];  
}; 
 
 

 Predicate Classes (Chambers 1993) 



Constraints in e 
 Declarative entities, struct members 

 keep my_field < 100; 
 keep for each in my_list {it.field1 < it.field2} 

 Can be: 
 Hard or soft 
 Reset or overriden 

 Apply to: 
 Scalar and non-scalar fields 
 Lists, pointers 

-> constraints determine the structure and not just the generated values! 

 Used for: 
 Random stimuli generation 
 Environment configuration 
 Pointer binding 
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Constraints in e (examples) 

 Arithmetic and logic constraints 
 keep soft f() => x + y == z, keep a>0 and x % a != 0  

 Global constraints 
 keep my_list.sum(it.x) == 100, keep my_list.all_different(it) 

 Bit constraints 
 ‘keep addr[1:0] == 0’, ‘keep soft num == 1<<size’  

 Distribution constraints (always soft) 
 keep soft x == {80:[1..100];10:[500..5000];10:others} 
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CSP Challenges 

 Problems are not (always) hard 
 Extensive search is usually not required 
 Backtracks typically indicate bad modeling 

  Scalability of simple problems 
 Solving a single problem many times 
 Solving many different problems 
 Problems are influenced by the state of the environment 

 Bit level mixed with word level 
 Distribution! 

 Random solution and not just a solution 
 It is hard to define and achieve the „optimal‟ distribution 
 Random stability is required 
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 Solutions 

 BDD solver 
 Bit level, predictable (“uniform”) distribution, very fast 
 Capacity problems 

 SAT solver 
 Bit level (loses high level dependencies), bad distribution 
 Translation to CNF is expensive 

 Finite Domain Solver 
 Word level 
 Non-uniform and hard-to-control distribution 
 Cheap on easy problems 
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Specman solver (IntelliGen) 

 Collects and analyzes all the 
environment's constraints 
 The environment may be huge (tens of thousands of 

variables and constraints). 

 Partitions to separate solving problems 
 Each problem is relatively small 
 Orders the partitions properly and automatically according to 

dependencies 

 Creates matching solving technology for 
each partition 
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Gen Debugger 

 Interactive GUI tool to debug constraints 
 Information is presented in user terms 

 Each problems details the relevant constraints and variables 
 Reductions show “constraints” and not “propagators” 
 Includes range information and bit information 

 Works in online and offline modes 
 Rich set of breakpoints 
 Step-by-step debugging and debugging in retrospect 
 Easy navigation between solving steps 
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