
Satisfiability and
Constraints

Ian Gent
University of St Andrews

Getting my thanks in
early ...

“A project of this scope and importance
could not be achieved without the aid and
assistance of many people......

“... or rather it could but it would be dumb
to do it that way when there are so many
people around willing to give their aid.”

- Peter Schickele

• So apart from Pierre, Justin and Christian for inviting me

• and you for coming

• I want to thank ...

Thanks to ...
• Dharini

Balasubramaniam

• Jim Caldwell

• Dave Clark

• Tony Cohn

• Michelle Cope

• Joe Culberson

• Lakshitha de Silva

• Jeremy Frank

• Enrico Giunchiglia

• Pete Gregory

• Kevin Hammond

• Warwick Harvey

• Holger Hoos

• Sophie
Huczynska

• Rob Irving

• Chris Jefferson

• Bill Johnston

• Tom Kelsey

• Lars Kotthoff

• Steve Linton

• Inês Lynce

• Ewan MacIntyre

• David Manlove

• Iain McDonald

• Paul McKay

• Ian Miguel

• Neil Moore

• Massimo
Narizzano

• Peter Nightingale

• Justin Pearson

• Karen Petrie

• Patrick Prosser

• Andrea Rendl

• Colva Roney-
Dougal

• Andrew Rowley

• Josh Singer

• Alan Smaill

• Barbara Smith

• Kevin Smyth

• Kostas Stergiou

• Armando
Tacchella

• Armagan Tarim

• Neven Tomov

• Judith
Underwood

• Toby Walsh

• Wu Wei

Special thanks to...

• Chris Jefferson

• Neil Moore

• Peter Stuckey

• for letting me recycle their materials

Topics in this Series

• Why SAT & Constraints?

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo
Theories

Topics in this Series

• Why SAT & Constraints?

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo
Theories

Why SAT &
Constraints?

• Seems pretty simple

• SAT does some things well

• Constraints does other things well

• Let’s get the best of both worlds

• But one tiny problem

One tiny problem...

• SAT and Constraints are

 THE SAME THING

The SAME THING?

• How can we have talks on SAT + CP
hybridisation

• If they are the same thing?

• And are they the same thing?

The Same Thing?

• We’ll see definitions in a bit which show ...

• SAT is just a special case of Constraints

• It’s easy to encode Constraints to SAT

• Possibly at some cost to be explained

• But often at no cost

• Really there should be no difference, right?

• Let’s start again ...

SAT & Constraints
Hybrids

• 6 hours of lectures about how they are
almost but not quite the same thing

• Watch in excitement as we discuss minor
differences in optimisation choices

• And then shout at Pierre, Justin & Christian
for inviting me

What’s going on?

• Of course previous slide is not true

• I hope the bit about shouting at
organisers is not true, I know the other
bits are false

• Best analogy to me is electroweak theory in
physics

Electroweak Interaction

• In particle physics, the electroweak interaction is
the unified description of two ... fundamental
interactions of nature: electromagnetism and the
weak interaction. Although these two forces
appear very different at everyday low energies,
the theory models them as two different aspects
of the same force.

Wikipedia

SAT & Constraints

• In AI search, the constraint satisfaction problem
is the unified description of two ... fundamental
problems of search: boolean satisfiability and the
constraint problem. Although these two problems
appear very different in everyday examples, the
theory models them as two different aspects of
the same problem.

Me

SAT & Constraints

• SAT is a special case of Constraints

• BUT ...

• constraint solvers not great at SAT

• because they are not engineered only
to be SAT solvers

• and doing so would make them bad at
other constraint problems

The Real Story

• Constraint solvers are brilliant at

• propagating complicated constraints very
fast

• SAT solvers are brilliant at

• propagating one very simple constraint
even faster

Constraint Solvers

• Propagate complicated constraints like

• all-different, global cardinality, sequence, element, table, ...

• do so using very smart algorithms

• and very smart implementations of them

• Constraints represented implicitly

• i.e. not a list of tuples

• Constraints often tight

• e.g. in all-different only about 1/en of tuples are allowed

SAT

• Propagates exactly one constraint

• the clause

• with very smart propagation algorithm

• Constraints represented explicitly

• as list of literals in the clause

• Constraint is very loose

Constraints & SAT

• Any constraint problem can be encoded in
SAT

• BUT

• it might not propagate as well

• it might use a lot of space

• or both

• could be prohibitively expensive

Constraints and SAT:
the real story

• Constraints and SAT are two sides of the same coin

• So if we get a great idea in one we want to exploit
it in the other

• This has often happened

• both ways

• I’ll talk about some of them

• But we can’t do this simplistically

• Lots of work to get great ideas across

Topics in this Series

• Why SAT & Constraints?

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo
Theories

Satisfiability

• What it is

• DPLL

• Davis Putnam Logemann Loveland

• Unit Propagation

• Why bother?

SAT solving
in 1869

• Not a typo - 1869
• Logic Piano by William Stanley
Jevons
• First automated reasoning
machine in history?
• Up to 4 boolean variables
• Using truth tables

im
age w

ikipedia

Incredibly important
historical problem

• Cook’s theorem (1971) says

• SAT is NP-complete

• One of the most important results in theoretical
computer science

• Key amazing result is that ...

• NP-completeness exists

• SAT a good choice as basis

• circuits encode naturally into it

Boolean SATisfiability
• I’ll restrict attention to SAT in clause form

• We have a set of boolean variables V

• can take values true/false (or 1/0)

• A set of clauses C

• each contains a set of literals

• literal is a negated or non-negated variable

• Seek an assignment of values 0/1 to V

• such that every clause

• contains a negated literal -x where x assigned to 0

• OR a non-negated literal x where x assigned to 1

Davis-Putnam
• The best complete algorithm for SAT is Davis-Putnam

• first work by Davis-Putnam 1961

• current version by Davis-Logemann-Loveland 1962

• variously called DP/DLL/DPLL or just Davis-Putnam

• I will present a slight variant omitting “Pure literal” rule

• A recursive algorithm

• Two stopping cases

• an empty set of clauses is trivially satisfiable

• an empty clause is trivially unsatisfiable

• there is no way to satisfy the clause

My story about Bob
Dylan

• And how St Andrews awarded an honorary
degree to ...

• A key figure from the 1960s

• Whose work was inspirational

• And has affected my life in very deep ways

• And I was furious I missed the graduation

My Story about Hilary
Putnam

My story about Don
Loveland

Algorithm
DPLL(clauses)

Ø1. If clauses is empty clause set, Succeed
Ø2. If clauses contains an empty clause, Fail
Ø3. If clauses contains a unit clause (literal)

l return result of DPLL(clauses[literal])
l clauses[literal] means unit propagate clauses with value

of literal
Ø4. Else heuristically choose a variable u

l heuristically choose a value v
l 4.a. If DPLL(clauses[u:=v]) succeeds, Succeed
l 4.b. Else return result of DPLL(clauses[u:= not v])

unit propagation
l clauses[literal] means unit propagate clauses with value of literal

• What does this mean?

• When assigning x = 1

• For every clause in the problem

• if the clause contains x, delete the clause

• because it is guaranteed satisfied

• if the clause contains -x, delete the literal from the clause

• because it cannot satisfy the clause

• If this results in any unit clause y (or -y)

• i.e. clause containing only the literal y (or -y)

• then assign y to 1 (or 0) and repeat

unit propagation
l clauses[literal] means unit propagate clauses with value of literal

• What does this mean?

• When assigning x = 0

• For every clause in the problem

• if the clause contains -x, delete the clause

• because it is guaranteed satisfied

• if the clause contains x, delete the literal from the clause

• because it cannot satisfy the clause

• If this results in any unit clause y (or -y)

• i.e. clause containing only the literal y (or -y)

• then assign y to 1 (or 0) and repeat

unit propagation
l clauses[literal] means unit propagate clauses with

value of literal

• Simple Theorem

• After unit propagation, solutions of clauses[-x]
are exactly the solutions of clauses where x=0

• And similarly for clauses[x] and x=1

• And there are no unit clauses in clauses
[literal]

Complexity of unit
propagation

• Naive algorithm for unit propagation of x

• Iterate through clauses

• If the clause contains x, delete it

• If the clause contains -x, delete -x

• If any clause is unit

• Pick one, assign variable, GOTO start

Naive = very bad
indeed

• Not always but in this case

• I have implemented this algorithm

• ... and published papers with it

• ... which shows how much I know [knew]

• Problem?

Naive = very bad
indeed

• Problem?

• If there are n variables, m clauses, each containing k literals

• This takes O(nmk) time

• O(mk) per assignment, up to n of them

• Shouldn’t really take more than O(mk) time total

• Which is as good as we can possibly do

• Though it’s important to do much better!

O(mk) unit propagation

• One way to get O(mk) unit propagation

• Index each occurrence of each literal

• e.g. doubly linked list per literal

• Adds O(1) only per literal, no problem

• Data clause needs is...

• Doubly linked list of literals in it

• Again adds O(1) per literal

O(mk) unit propagation

• To unit propagate assignment of x = 0

• For each element of list of literals of x

• Unstitch x from the clause it is in

• If clause unit, add assignment to the queue of unit clauses

• For each element of list of literals of -x

• Delete the clause it is in

• Unstitch other literals in the clause from their lists

• If queue of unit clauses not empty, assign next element

O(mk) unit propagation

• To unit propagate assignment of x = 1

• For each element of list of literals of -x

• Unstitch x from the clause it is in

• If clause unit, add assignment to the queue of unit clauses

• For each element of list of literals of x

• Delete the clause it is in

• Unstitch other literals in the clause from their lists

• If queue of unit clauses not empty, assign next element

O(mk) unit propagation

• Why is this O(mk) ?

O(mk) unit propagation

• Why is this O(mk) ?

• Because it touches each literal at most once

• every time a literal is looked at

• it is deleted from the clause

• or the clause is deleted

• and either way it is never touched again

• And there are O(mk) of them

O(mk) unit propagation

• Why is this better than O(mk) - sort of ?

O(mk) unit propagation

• Why is this better than O(mk) - sort of ?

• Because we might not touch all literals

• or even a large percentage

• We only touch literals which are either

• negated or positive version of assignment

• in a clause which is deleted

• In extreme case this can be O(1)

Backtracking

• We will search millions/billions of nodes

• It’s vital to be able to backtrack efficiently

• Last algorithm has this property

• Put each d-l-l change onto stack

• On backtracking restitch them via dancing links

• O(1) work per literal change

• so in fact no extra work in big-O terms

But wait there’s more

• We’ll see later on that we can do better still!

• And not even touch every literal that is
assigned

• which is almost magical!

• This is watched literals

• and one of the areas of fruitful transfer
SAT to CP

Why bother?

• SAT is becoming more and more important

• Especially since late 90s/early 00s
revolution in solving speed

• Millions of clauses is no inhibition

• Best application area is Computer Aided
Verification

• In 2009 ...

CAV Award 2009

• “The 2009 CAV (Computer-Aided Verification)
award was presented to seven individuals who
made major advances in creating high-
performance Boolean satisfiability solvers. This
annual award recognizes a specific
fundamental contribution or series of
outstanding contributions to the CAV field.”

2009 CAV award announcement

CAV Award 2009
– Conor F. Madigan, Kateeva, Inc.

– Sharad Malik, Princeton University

– João P. Marques-Silva, University College Dublin, Ireland

– Matthew W. Moskewicz, University of California, Berkeley

– Karem A. Sakallah, University of Michigan

– Lintao Zhang, Microsoft Research

– Ying Zhao, Wuxi Capital Grou

Topics in this Series

• Why SAT & Constraints?

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo
Theories

Constraints Basics

• Definitions

• Basic Theory of Propagation

• Example (Element constraint)

• Practice

• Differences between Theory and Practice

History of Constraints

• Less long lasting and illustrious than SAT

• Oh, wait a minute ...

Constraint
solving in

1869
• Not a typo - 1869
• Logic Piano by William Stanley
Jevons
• First automated reasoning
machine in history?
• Up to 4 boolean variables
• Using truth tables

im
age w

ikipedia

History

• Ok, not really so
illustrious except by
stealing SAT’s history

• Goes back to 60s
slightly, 70s definitely

• e.g. classic paper by
Stallmann &
Sussmann, 1976

History

• Ok, not really so
illustrious except by
stealing SAT’s history

• Goes back to 60s
slightly, 70s definitely

• e.g. classic paper by
Stallmann &
Sussmann, 1976

• Yes, that Sussmann

• And that Stallmann

M
IT

 Press, creative com
m

ons
G

N
U

Definitions

• A constraint satisfaction problem contains..

• V, a set of variables

• each with domain D, a set of integers

• C, a set of constraints

• What is a constraint?

History
• Key work in 70s and 80s

• Consistency in Networks of Relations, Mackworth, 77

• Backtrack free search, Freuder, 82

• But didn’t really come into its own until the 90s

• development of powerful commercial solvers

• and powerful propagation algorithms

Constraint

• A constraint acts on a subset of V

• The constraint defines

• For each tuple <x1,x2,...,xn>

• with each xi in current domain of vi

• whether the tuple is allowed or not

Solution

• Solution to a constraint satisfaction is ...

• An assignment of a value to each variable

• from its current domain

• such that

• the tuple thus defined for each constraint

• is allowed

The usual stuff...

• Every paper starts with this stuff

• unless we’ve run out of space ...

• But I’ve added one variant

• “The constraint defines”

• not “The constraint is”

• Because we only rarely list the tuples

Constraints and SAT
• Nowhere have I said that ...

• constraints have a limited arity

• variables can’t be boolean

• Which means we can have

• a 0/1 variable for each SAT variable

• A k-ary constraint for each k-clause

• With the set of allowed tuples being

• all but the single tuple disallowed by the clause

• But it does not need to be stored in this hideous way

• So yes, SAT is just a special case of Constraints

SAT and Constraints

• We can encode Constraints into SAT

• e.g. have one SAT variable for each value of each
variable in the Constraint problem

• some clauses to say exactly one value is allowed

• Have one clause for each disallowed tuple in each
constraint

• Bingo, any solution to SAT problem is solution to
Constraint problem

No big surprise
• Whole point of NP-completeness is encoding between problems

• But these are really close encodings...

• SAT just is a Constraint Problem

• Encoding into SAT is very natural

• Though not ideal in some ways

• E.g. exponential blowup if constraint represented implicitly

• Encodings is another rich area

• More from Constraints to SAT this time

• And some rather cool encodings

• which can actually be seen as encoding algorithms

Constraint propagator

• propagates an individual constraint

• deducing values which can be removed

• because ...

• just based on this constraint

• and current state of the domains

• no allowed tuple involves that value

Constraint propagator
• Works in one of 2 ways

• The table constraint

• actually have the list of allowed tuples

• GAC-Schema, GAC2001, ... propagates it

• All other constraints

• a specialised function propagates it

• deduces which values can be removed

• using special purpose algorithm

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1 1..4 1..4

Index 1

Result 1

M[1] = 1

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 2 1..4 1..4

Index 1

Result 2

M[1] = 2

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 3 1..4 1..4

Index 1

Result 3

M[1] = 3

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 4 1..4 1..4

Index 1

Result 4

M[1] = 4

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1 1..4

Index 2

Result 1

M[2] = 1

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 2 1..4

Index 2

Result 2

M[2] = 2

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 3 1..4

Index 2

Result 3

M[2] = 3

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 4 1..4

Index 2

Result 4

M[2] = 4

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 1

Index 3

Result 1

M[3] = 1

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 2

Index 3

Result 2

M[3] = 2

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 3

Index 3

Result 3

M[3] = 3

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 4

Index 3

Result 4

M[3] = 4

Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 4

Index 3

Result 4

M[3] = 4

M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result

Elementary Example
• This is the element

constraint

• Very useful expressively

• e.g. function application

• f(g(i)) = z

• i constant

• z variable

• Arrays F,G for f, g
element(F,G[i],z)

One in 116,179,193,109,431
0 0 2 2 2 2 2 7 7 7
0 0 2 2 2 2 3 7 7 7
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
4 4 2 2 2 2 2 2 2 2
5 5 2 2 2 2 2 3 3 3
5 5 2 2 2 2 2 3 2 3
2 2 2 2 2 2 2 2 2 2
5 5 2 2 2 2 3 3 2 3
4 4 2 2 2 4 4 2 4 2

• An example of a semigroup

• mathematicians study these

• various algebraic
constraints

• Enumerated by Minion

• Distler/Kelsey/Kotthoff

• 72.9 CPU years

• 50,000 found per CPU
second

M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result

Elementary Example

• No propagation
possible

• Every value in
some solution of
the constraint

• So let’s remove
some values

Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

• No propagation
possible

• Every value in
some solution of
the constraint

• So let’s remove
some values

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 4?

• Result = 4?

• Could be ...

• M[2] = 4

• Index = 2

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

• None of three
possible ways
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

• None of three
possible ways
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

• None of three
possible ways
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

• None of three
possible ways
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2?

• None of three
possible ways
work

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Result = 2?

• None of three
possible ways
work

• Remove 2 from
domain of Result

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Result = 2?

• None of three
possible ways
work

• Remove 2 from
domain of Result

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

• Remove 1 from
domain of Index

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

• Remove 1 from
domain of Index

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No.

• No value of M[1] is
the same as a value
of Result.

• Remove 1 from
domain of Index

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.

• Because M[2] =
Result

• Result can’t be 1

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.

• Remove 1 from
domain of M[2]

Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.

• Remove 1 from
domain of M[2]

Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.

• Remove 1 from
domain of M[2]

Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• No.

• Because M[2] =
Result

• Result can’t be 3

Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• Remove 3 from
domain of M[2]

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• Remove 3 from
domain of M[2]

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• Remove 3 from
domain of M[2]

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we
have ...

• assigned Result = 4

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we
have ...

• assigned Result = 4

• assigned Index = 2

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we
have ...

• assigned Result = 4

• assigned Index = 2

• assigned M[2]=4

Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we
have ...

• assigned Result = 4

• assigned Index = 2

• assigned M[2]=4

And proved that all values
of M[1] and M[3] are ok.

Handbook of Constraint Programming 169
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 6

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

A global constraint is a constraint that captures a relation between a non-fixed number
of variables. An example is the constraint alldifferent(x1, . . . , xn), which specifies
that the values assigned to the variables x1, . . . , xn must be pairwise distinct. Typically, a
global constraint is semantically redundant in the sense that the same relation can be ex-
pressed as the conjunction of several simpler constraints. Having shorthands for frequently
recurring patterns clearly simplifies the programming task. What may be less obvious is
that global constraints also facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in the best case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search space without enumerating them. For
example, if the CSP contains the constraint x + y = 3 and both x and y are set to 1, we
can conclude that regardless of the values assigned to other variables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is called filtering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in the domain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, then it is also useless with respect
to the whole CSP, but not vice versa. In other words, filtering separately with respect

Some Key Constraints
• table (list of tuples)

• sum

• knapsack

• element

• all-different

• global cardinality constraint

• gcc with costs

Handbook of Constraint Programming 169
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 6

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

A global constraint is a constraint that captures a relation between a non-fixed number
of variables. An example is the constraint alldifferent(x1, . . . , xn), which specifies
that the values assigned to the variables x1, . . . , xn must be pairwise distinct. Typically, a
global constraint is semantically redundant in the sense that the same relation can be ex-
pressed as the conjunction of several simpler constraints. Having shorthands for frequently
recurring patterns clearly simplifies the programming task. What may be less obvious is
that global constraints also facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in the best case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search space without enumerating them. For
example, if the CSP contains the constraint x + y = 3 and both x and y are set to 1, we
can conclude that regardless of the values assigned to other variables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is called filtering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in the domain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, then it is also useless with respect
to the whole CSP, but not vice versa. In other words, filtering separately with respect

Some Key Constraints
• cumulative (for

scheduling)

• regular (language
membership)

• circuit

• soft all different

• And there are a few
more ...

343 more ...

http://www.emn.fr/z-info/sdemasse/gccat/index.html

Propagator algorithms

• A specialised propagator

• Built into a modern constraint solver

• Can make more deductions than naive
method

• Can be highly optimised

• Interact with other constraints via
propagation

“Can be highly optimised”

 1

 2

 5

 10

 20

 50

 100

 200

 500

 1000

 2000

 0.01 0.1 1 10 100 1000 10000

Instance Families
contrived

golomb

langford

quasigroup

n queens

QWH

social golfers

sports scheduling

 1

 2

 5

 10

 20

 50

 100

 200

 500

 1000

 2000

 0.01 0.1 1 10 100 1000 10000

Instance Families
contrived

golomb

langford

quasigroup

n queens

QWH

social golfers

sports scheduling

• all-different examples again

• x-axis is secs to solve

• using good implementation of
all-different propagator

• y-axis is speedup factor

• using best optimisations

• We can solve hard problems more
than 1,000 times faster

• doing exactly the same
propagation

Ian P. Gent and Ian Miguel and Peter Nightingale,
Generalised Arc Consistency for the AllDifferent Constraint: An Empirical Survey,
Artificial Intelligence, Volume 172 number 18 pages 1973-2000.

“Can be highly optimised”

One thing leads to
another...

• Key feature of propagation

• Value removal in one constraint

• means more can be removed by a second

• and more by a third constraint

• and now more by the first constraint

• and now more by a fourth ...

One thing leads to
another...

• Looks like this might go on forever...

• but it won’t.

• Propagation will terminate

• And either prove there is no solution

• in which case we backtrack

• Or succeed

• typically a key consistency property holds

• and we have to branch search

Key Consistency
Properties

• GAC

• “Generalised Arc consistency”

• or “Domain consistency

• for any arity constraints

• there’s an allowed tuple involving every value

• i.e. all values in relevant domain

• tuple allowed by constraint

Communicating
Constraints

• To have one thing lead to another ...

• We have to propagate effect of one constraint to other
constraints ...

• Done by a propagation Queue

• When one value gets removed

• We put this information on the queue

• When we pop off the queue

• We notify any constraints that need to know

• They propagate and either do nothing or remove more values

Constraints Basics II:
Practice

“In theory there’s no difference between
theory and practice.

In practice there is.”

 Jan L.A. van de Snepscheut

or maybe Yogi Berra

Misconceptions about
propagation

• Perhaps not too damaging

• But can lead to wrong mental model

• leading to bad practice

• and bad research

• And anyway, reality is far more interesting

• I’ve hidden a lot of straw men

First Misconception

• I couldn’t bring myself to put it up even as straw man

• Constraints almost never lists of tuples

• As in “the usual stuff”

• Only when using the table constraint

• though it’s an important constraint

• If you don’t know this ...

• ... then you might get complexity wrong

• since you don’t need to read the table to propagate

Second misconception

• Levels of consistency matter

• Very often we go for GAC

• Or Bounds Consistency or something
else

• But not if the tradeoff is better elsewhere

• And we don’t care if we don’t know what
consistency it achieves

Third Misconception

• GAC algorithms establish GAC

• Not if there are repeated variables

• e.g. all-different(x,y,z,x)

• GAC algorithms almost always pretend
there are no repeated variables

• And repeated variables can’t be banned

All that really matters

• Propagators should not remove values in
some allowed tuple

• Propagators should fail if ...

• all their variables are assigned

• i.e. domains are now singleton {x}

• and the resulting tuple is not allowed

Fourth Misconception
• There is a constraint queue

• Almost never single list operated as queue

• Might use a number of queues

• or some more complex ordering

• E.g. “staging” in all-different

• do the binary not-equals first

• only later do more expensive propagator

• vital to optimising run time

Fifth Misconception

• Constraint solvers have 354 propagators

• Or at least a good number from catalog

• Of the 11 “key constraints” I listed

• Minion has 4 of them

• Very few constraints that most solvers have

Sixth Misconception

• There’s only five misconceptions ...

Interlude

• Be careful what you say in your bio ...

“On a good day he can juggle five balls, and
on a very good day figure out some way to
get juggling into a technical talk.”

What has juggling
got to do with
propagation?

What has juggling
got to do with
propagation?

Almost nothing

What has juggling
got to do with
propagation?

but not quite...

It’s dealing with
some pretty

hard constraints

In this case gravity ...

You can have
constraints with

different numbers of
variables ...

This one has five variables

You can have
constraints with

different numbers of
variables ...

This one has five variables

No really, it does...

You can have
constraints with

different numbers of
variables ...

This one has three variables

You might have to
deal with different
kinds of variables

Which makes the propagation
different

Different
constraints interact

with each other
restricting solutions

 One hand can’t be used

And only three variables can be
solved (by me)

One thing leads
to another ...

You throw a ball ...
And then you have to catch it ...

But to catch it ...
You have to throw the next ball ...
And then you have to catch it ...

But to catch it ...

It looks like it
might go on
forever ...

But it won’t!
It is guaranteed to stop ...

either with success or failure

