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Why SAT & 
Constraints?

• Seems pretty simple

• SAT does some things well

• Constraints does other things well

• Let’s get the best of both worlds 

• But one tiny problem .... 



One tiny problem...

• SAT and Constraints are

 THE SAME THING



The SAME THING?

• How can we have talks on SAT + CP 
hybridisation

• If they are the same thing?

• And are they the same thing? 



The Same Thing?

• We’ll see definitions in a bit which show ...

• SAT is just a special case of Constraints

• It’s easy to encode Constraints to SAT

• Possibly at some cost to be explained

• But often at no cost

• Really there should be no difference, right?

• Let’s start again ... 



SAT & Constraints 
Hybrids

• 6 hours of lectures about how they are 
almost but not quite the same thing

• Watch in excitement as we discuss minor 
differences in optimisation choices

• And then shout at Pierre, Justin & Christian 
for inviting me



What’s going on?

• Of course previous slide is not true

• I hope the bit about shouting at 
organisers is not true, I know the other 
bits are false

• Best analogy to me is electroweak theory in 
physics



Electroweak Interaction

• In particle physics, the electroweak interaction is 
the unified description of two ... fundamental 
interactions of nature: electromagnetism and the 
weak interaction. Although these two forces 
appear very different at everyday low energies, 
the theory models them as two different aspects 
of the same force.

Wikipedia



SAT & Constraints

• In AI search, the constraint satisfaction problem 
is the unified description of two ... fundamental 
problems of search: boolean satisfiability and the 
constraint problem. Although these two problems 
appear very different in everyday examples, the 
theory models them as two different aspects of 
the same problem.

Me



SAT & Constraints

• SAT is a special case of Constraints

• BUT ...

• constraint solvers not great at SAT

• because they are not engineered only 
to be SAT solvers

• and doing so would make them bad at 
other constraint problems



The Real Story

• Constraint solvers are brilliant at 

• propagating complicated constraints very 
fast

• SAT solvers are brilliant at 

• propagating one very simple constraint 
even faster



Constraint Solvers

• Propagate complicated constraints like 

• all-different, global cardinality, sequence, element, table, ... 

• do so using very smart algorithms

• and very smart implementations of them

• Constraints represented implicitly

• i.e. not a list of tuples

• Constraints often tight

• e.g. in all-different only about 1/en of tuples are allowed



SAT

• Propagates exactly one constraint

• the clause

• with very smart propagation algorithm

• Constraints represented explicitly

• as list of literals in the clause

• Constraint is very loose



Constraints & SAT

• Any constraint problem can be encoded in 
SAT

• BUT

• it might not propagate as well

• it might use a lot of space

• or both

• could be prohibitively expensive



Constraints and SAT: 
the real story

• Constraints and SAT are two sides of the same coin

• So if we get a great idea in one we want to exploit 
it in the other

• This has often happened 

• both ways

• I’ll talk about some of them

• But we can’t do this simplistically

• Lots of work to get great ideas across
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Satisfiability

• What it is 

• DPLL 

• Davis Putnam Logemann Loveland

• Unit Propagation

• Why bother?



SAT solving 
in 1869

• Not a typo - 1869
• Logic Piano by William Stanley 
Jevons
• First automated reasoning 
machine in history?
• Up to 4 boolean variables
• Using truth tables

im
age w

ikipedia



Incredibly important 
historical problem

• Cook’s theorem (1971) says

• SAT is NP-complete

• One of the most important results in theoretical 
computer science

• Key amazing result is that ... 

• NP-completeness exists

• SAT a good choice as basis

• circuits encode naturally into it 



Boolean SATisfiability
• I’ll restrict attention to SAT in clause form

• We have a set of boolean variables V

• can take values true/false (or 1/0)

• A set of clauses C

• each contains a set of literals

• literal is a negated or non-negated variable

• Seek an assignment of values 0/1 to V

• such that every clause 

• contains a negated literal -x where x assigned to 0

• OR a non-negated literal x where x assigned to 1



Davis-Putnam
• The best complete algorithm for SAT is Davis-Putnam

• first work by Davis-Putnam 1961

• current version by Davis-Logemann-Loveland 1962

• variously called DP/DLL/DPLL or just Davis-Putnam

• I will present a slight variant omitting “Pure literal” rule

• A recursive algorithm 

• Two stopping cases

• an empty set of clauses is trivially satisfiable

• an empty clause is trivially unsatisfiable

• there is no way to satisfy the clause



My story about Bob 
Dylan

• And how St Andrews awarded an honorary 
degree to ...

• A key figure from the 1960s

• Whose work was inspirational

• And has affected my life in very deep ways

• And I was furious I missed the graduation



My Story about Hilary 
Putnam



My story about Don 
Loveland



Algorithm 
DPLL(clauses)

Ø1.  If clauses is empty clause set, Succeed
Ø2.  If clauses contains an empty clause, Fail
Ø3.  If clauses contains a unit clause (literal)

l return result of DPLL(clauses[literal])
l clauses[literal] means unit propagate clauses with value 

of literal
Ø4.  Else heuristically choose a variable u

l heuristically choose a value v
l 4.a.  If DPLL(clauses[u:=v]) succeeds, Succeed
l 4.b.  Else return result of DPLL(clauses[u:= not v])



unit propagation
l clauses[literal] means unit propagate clauses with value of literal

• What does this mean?

• When assigning x = 1

• For every clause in the problem

• if the clause contains  x, delete the clause

• because it is guaranteed satisfied

• if the clause contains -x, delete the literal from the clause

• because it cannot satisfy the clause

• If this results in any unit clause y (or -y)

• i.e. clause containing only the literal y (or -y)

• then assign y to 1 (or 0) and repeat



unit propagation
l clauses[literal] means unit propagate clauses with value of literal

• What does this mean?

• When assigning x = 0

• For every clause in the problem

• if the clause contains -x, delete the clause

• because it is guaranteed satisfied

• if the clause contains  x, delete the literal from the clause

• because it cannot satisfy the clause

• If this results in any unit clause y (or -y)

• i.e. clause containing only the literal y (or -y)

• then assign y to 1 (or 0) and repeat



unit propagation
l clauses[literal] means unit propagate clauses with 

value of literal

• Simple Theorem

• After unit propagation, solutions of clauses[-x] 
are exactly the solutions of clauses where x=0

• And similarly for clauses[x] and x=1

• And there are no unit clauses in clauses
[literal]



Complexity of unit 
propagation

• Naive algorithm for unit propagation of x

• Iterate through clauses

• If the clause contains x, delete it

• If the clause contains -x, delete -x

• If any clause is unit 

• Pick one, assign variable, GOTO start



Naive = very bad 
indeed

• Not always but in this case

• I have implemented this algorithm 

• ... and published papers with it

• ... which shows how much I know [knew]

• Problem?



Naive = very bad 
indeed

• Problem?

• If there are n variables, m clauses, each containing k literals

• This takes O(nmk) time

• O(mk) per assignment, up to n of them

• Shouldn’t really take more than O(mk) time total

•  Which is as good as we can possibly do

•  Though it’s important to do much better!



O(mk) unit propagation

• One way to get O(mk) unit propagation

• Index each occurrence of each literal 

• e.g. doubly linked list per literal 

• Adds O(1) only per literal, no problem

• Data clause needs is...

• Doubly linked list of literals in it

• Again adds O(1) per literal



O(mk) unit propagation

• To unit propagate assignment of x = 0

• For each element of list of literals of x

• Unstitch x from the clause it is in

• If clause unit, add assignment to the queue of unit clauses

• For each element of list of literals of -x

• Delete the clause it is in 

• Unstitch other literals in the clause from their lists

• If queue of unit clauses not empty, assign next element



O(mk) unit propagation

• To unit propagate assignment of x = 1

• For each element of list of literals of -x

• Unstitch x from the clause it is in

• If clause unit, add assignment to the queue of unit clauses

• For each element of list of literals of x

• Delete the clause it is in 

• Unstitch other literals in the clause from their lists

• If queue of unit clauses not empty, assign next element



O(mk) unit propagation

• Why is this O(mk) ? 



O(mk) unit propagation

• Why is this O(mk) ? 

• Because it touches each literal at most once 

• every time a literal is looked at 

• it is deleted from the clause 

• or the clause is deleted

• and either way it is never touched again

• And there are O(mk) of them



O(mk) unit propagation

• Why is this better than O(mk) - sort of ? 



O(mk) unit propagation

• Why is this better than O(mk) - sort of ? 

• Because we might not touch all literals 

• or even a large percentage

• We only touch literals which are either

• negated or positive version of assignment

• in a clause which is deleted

• In extreme case this can be O(1) 



Backtracking

• We will search millions/billions of nodes

• It’s vital to be able to backtrack efficiently

• Last algorithm has this property

• Put each d-l-l change onto stack 

• On backtracking restitch them via dancing links

• O(1) work per literal change

• so in fact no extra work in big-O terms



But wait there’s more

• We’ll see later on that we can do better still!

• And not even touch every literal that is 
assigned 

• which is almost magical! 

• This is watched literals

• and one of the areas of fruitful transfer 
SAT to CP



Why bother?

• SAT is becoming more and more important

• Especially since late 90s/early 00s 
revolution in solving speed

• Millions of clauses is no inhibition

• Best application area is Computer Aided 
Verification

• In 2009 ... 



CAV Award 2009

• “The 2009 CAV (Computer-Aided Verification) 
award was presented to seven individuals who 
made major advances in creating high-
performance Boolean satisfiability solvers. This 
annual award recognizes a specific 
fundamental contribution or series of 
outstanding contributions to the CAV field.”

2009 CAV award announcement



CAV Award 2009
– Conor F. Madigan, Kateeva, Inc.

– Sharad Malik, Princeton University

– João P. Marques-Silva, University College Dublin, Ireland

– Matthew W. Moskewicz, University of California, Berkeley

– Karem A. Sakallah, University of Michigan

– Lintao Zhang, Microsoft Research

– Ying Zhao, Wuxi Capital Grou



Topics in this Series
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• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints
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Constraints Basics

• Definitions

• Basic Theory of Propagation

• Example (Element constraint)

• Practice

• Differences between Theory and Practice



History of Constraints

• Less long lasting and illustrious than SAT

• Oh, wait a minute ... 



Constraint 
solving in 

1869
• Not a typo - 1869
• Logic Piano by William Stanley 
Jevons
• First automated reasoning 
machine in history?
• Up to 4 boolean variables
• Using truth tables

im
age w

ikipedia



History

• Ok, not really so 
illustrious except by 
stealing SAT’s history

• Goes back to 60s 
slightly, 70s definitely

• e.g. classic paper by 
Stallmann & 
Sussmann, 1976



History

• Ok, not really so 
illustrious except by 
stealing SAT’s history

• Goes back to 60s 
slightly, 70s definitely

• e.g. classic paper by 
Stallmann & 
Sussmann, 1976

• Yes, that Sussmann

• And that Stallmann

M
IT

 Press, creative com
m

ons
G

N
U



Definitions

• A constraint satisfaction problem contains..

• V, a set of variables

• each with domain D, a set of integers

• C, a set of constraints

• What is a constraint? 



History
• Key work in 70s and 80s

• Consistency in Networks of Relations, Mackworth, 77

•  Backtrack free search, Freuder, 82

• But didn’t really come into its own until the 90s

• development of powerful commercial solvers

• and powerful propagation algorithms



Constraint

• A constraint acts on a subset of  V

• The constraint defines 

• For each tuple <x1,x2,...,xn>

• with each xi in current domain of vi 

• whether the tuple is allowed or not



Solution

• Solution to a constraint satisfaction is ... 

• An assignment of a value to each variable

• from its current domain

• such that

• the tuple thus defined for each constraint

• is allowed 



The usual stuff...

• Every paper starts with this stuff

• unless we’ve run out of space ... 

• But I’ve added one variant

• “The constraint defines”

• not “The constraint is”

• Because we only rarely list the tuples



Constraints and SAT
• Nowhere have I said that ...

• constraints have a limited arity

• variables can’t be boolean

• Which means we can have 

• a 0/1 variable for each SAT variable

• A k-ary constraint for each k-clause

• With the set of allowed tuples being

• all but the single tuple disallowed by the clause

• But it does not need to be stored in this hideous way

• So yes, SAT is just a special case of Constraints



SAT and Constraints

• We can encode Constraints into SAT

• e.g. have one SAT variable for each value of each 
variable in the Constraint problem

• some clauses to say exactly one value is allowed

• Have one clause for each disallowed tuple in each 
constraint

• Bingo, any solution to SAT problem is solution to 
Constraint problem



No big surprise
• Whole point of NP-completeness is encoding between problems

• But these are really close encodings...

• SAT just is a Constraint Problem

• Encoding into SAT is very natural 

• Though not ideal in some ways

• E.g. exponential blowup if constraint represented implicitly

• Encodings is another rich area 

• More from Constraints to SAT this time

• And some rather cool encodings

• which can actually be seen as encoding algorithms



Constraint propagator

• propagates an individual constraint

• deducing values which can be removed

• because ...

• just based on this constraint

• and current state of the domains 

• no allowed tuple involves that value



Constraint propagator
• Works in one of 2 ways

• The table constraint

• actually have the list of allowed tuples

• GAC-Schema, GAC2001, ... propagates it

• All other constraints

• a specialised function propagates it

• deduces which values can be removed

• using special purpose algorithm



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1 1..4 1..4

Index 1

Result 1

M[1] = 1



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 2 1..4 1..4

Index 1

Result 2

M[1] = 2



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 3 1..4 1..4

Index 1

Result 3

M[1] = 3



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 4 1..4 1..4

Index 1

Result 4

M[1] = 4



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1 1..4

Index 2

Result 1

M[2] = 1



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 2 1..4

Index 2

Result 2

M[2] = 2



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 3 1..4

Index 2

Result 3

M[2] = 3



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 4 1..4

Index 2

Result 4

M[2] = 4



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 1

Index 3

Result 1

M[3] = 1



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 2

Index 3

Result 2

M[3] = 2



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 3

Index 3

Result 3

M[3] = 3



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 4

Index 3

Result 4

M[3] = 4



Elementary Example

• Vector M of variables

• Index into that vector

• Result variable

• M[Index] = Result

M 1..4 1..4 4

Index 3

Result 4

M[3] = 4



M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result

Elementary Example
• This is the element 

constraint

• Very useful expressively

• e.g. function application

• f(g(i)) = z

• i constant

• z variable

• Arrays F,G for f, g
element(F,G[i],z)



One in 116,179,193,109,431
0 0 2 2 2 2 2 7 7 7 
0 0 2 2 2 2 3 7 7 7 
2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 2 2 
4 4 2 2 2 2 2 2 2 2 
5 5 2 2 2 2 2 3 3 3 
5 5 2 2 2 2 2 3 2 3 
2 2 2 2 2 2 2 2 2 2 
5 5 2 2 2 2 3 3 2 3 
4 4 2 2 2 4 4 2 4 2

• An example of a semigroup

• mathematicians study these 

• various algebraic 
constraints

• Enumerated by Minion

• Distler/Kelsey/Kotthoff

• 72.9 CPU years

• 50,000 found per CPU 
second



M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4

M 1..4 1..4 1..4

Index 1..3

Result 1..4

M[Index] = Result

Elementary Example



• No propagation 
possible 

• Every value in 
some solution of 
the constraint

• So let’s remove 
some values 

Element Example
M1

M2

M3

1 2 3 4

1 2 3 4

1 2 3 4

Index 1 2 3

Result 1 2 3 4



• No propagation 
possible 

• Every value in 
some solution of 
the constraint

• So let’s remove 
some values 

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 4?  



• Result = 4?  

• Could be ... 

• M[2] = 4 

• Index = 2 

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



• Result = 2? 

• None of three 
possible ways 
work

Element Example
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1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4
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• None of three 
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M3

1 3

1 3 4
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Index 1 2

Result 2 4
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1 3
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Result 2 4



• Result = 2? 

• None of three 
possible ways 
work
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1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 2 4

• Result = 2? 

• None of three 
possible ways 
work



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Result = 2? 

• None of three 
possible ways 
work

• Remove 2 from 
domain of Result



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Result = 2? 

• None of three 
possible ways 
work

• Remove 2 from 
domain of Result



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1? 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
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1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2
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1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 1 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

• Remove 1 from 
domain of Index

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

• Remove 1 from 
domain of Index

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• Index = 1?

• No. 

• No value of M[1] is 
the same as a value 
of Result.

• Remove 1 from 
domain of Index

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.  

• Because M[2] = 
Result

• Result can’t be 1

 



Element Example
M1

M2

M3

1 3

1 3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.  

• Remove 1 from 
domain of M[2]

 



Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.  

• Remove 1 from 
domain of M[2]

 



Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 1?

• No.  

• Remove 1 from 
domain of M[2]

 



Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

 



Element Example
M1

M2

M3

1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• No.  

• Because M[2] = 
Result

• Result can’t be 3
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1 3

3 4

1 2 3 4

Index 2

Result 4

• M[2] = 3?

• Remove 3 from 
domain of M[2]
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• Remove 3 from 
domain of M[2]
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Index 2
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• M[2] = 3?

• Remove 3 from 
domain of M[2]
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M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we 
have ...

• assigned Result = 4
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M2
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1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we 
have ...

• assigned Result = 4

• assigned Index = 2

 



Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we 
have ...

• assigned Result = 4

• assigned Index = 2

• assigned M[2]=4

 



Element Example
M1

M2

M3

1 3

4

1 2 3 4

Index 2

Result 4

• In doing all this, we 
have ...

• assigned Result = 4

• assigned Index = 2

• assigned M[2]=4

And proved that all values  
of M[1] and M[3] are ok.
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Chapter 6

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

A global constraint is a constraint that captures a relation between a non-fixed number
of variables. An example is the constraint alldifferent(x1, . . . , xn), which specifies
that the values assigned to the variables x1, . . . , xn must be pairwise distinct. Typically, a
global constraint is semantically redundant in the sense that the same relation can be ex-
pressed as the conjunction of several simpler constraints. Having shorthands for frequently
recurring patterns clearly simplifies the programming task. What may be less obvious is
that global constraints also facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in the best case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search space without enumerating them. For
example, if the CSP contains the constraint x + y = 3 and both x and y are set to 1, we
can conclude that regardless of the values assigned to other variables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is called filtering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in the domain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, then it is also useless with respect
to the whole CSP, but not vice versa. In other words, filtering separately with respect

Some Key Constraints
• table (list of tuples)

• sum

• knapsack

• element

• all-different

• global cardinality constraint

• gcc with costs
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pressed as the conjunction of several simpler constraints. Having shorthands for frequently
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that global constraints also facilitate the work of the constraint solver by providing it with
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One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in the best case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search space without enumerating them. For
example, if the CSP contains the constraint x + y = 3 and both x and y are set to 1, we
can conclude that regardless of the values assigned to other variables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is called filtering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in the domain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, then it is also useless with respect
to the whole CSP, but not vice versa. In other words, filtering separately with respect

Some Key Constraints
• cumulative (for 

scheduling)

• regular (language 
membership)

• circuit 

• soft all different

• And there are a few 
more ...



343 more ... 

http://www.emn.fr/z-info/sdemasse/gccat/index.html



Propagator algorithms

• A specialised propagator

• Built into a modern constraint solver

• Can make more deductions than naive 
method

• Can be highly optimised

• Interact with other constraints via 
propagation



“Can be highly optimised”
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• all-different examples again

• x-axis is secs to solve

• using good implementation of 
all-different propagator

• y-axis is speedup factor

• using best optimisations

• We can solve hard problems more 
than 1,000 times faster 

• doing exactly the same 
propagation

Ian P. Gent and Ian Miguel and Peter Nightingale,
Generalised Arc Consistency for the AllDifferent Constraint: An Empirical Survey,
Artificial Intelligence, Volume 172 number 18 pages 1973-2000.

“Can be highly optimised”



One thing leads to 
another...

• Key feature of propagation

• Value removal in one constraint

• means more can be removed by a second

• and more by a third constraint

• and now more by the first constraint

• and now more by a fourth ... 



One thing leads to 
another...

• Looks like this might go on forever...

• but it won’t.

• Propagation will terminate

• And either prove there is no solution

• in which case we backtrack

• Or succeed 

• typically a key consistency property holds

• and we have to branch search



Key Consistency 
Properties

• GAC 

• “Generalised Arc consistency”

• or “Domain consistency

• for any arity constraints

• there’s an allowed tuple involving every value

• i.e. all values in relevant domain

• tuple allowed by constraint



Communicating 
Constraints

• To have one thing lead to another ...

• We have to propagate effect of one constraint to other 
constraints ... 

• Done by a propagation Queue

• When one value gets removed 

• We put this information on the queue

• When we pop off the queue

• We notify any constraints that need to know

• They propagate and either do nothing or remove more values 



Constraints Basics II: 
Practice

“In theory there’s no difference between 
theory and practice.

In practice there is.”

 Jan L.A. van de Snepscheut

or maybe Yogi Berra



Misconceptions about 
propagation

• Perhaps not too damaging

• But can lead to wrong mental model

• leading to bad practice

• and bad research

• And anyway, reality is far more interesting

• I’ve hidden a lot of straw men



First Misconception

• I couldn’t bring myself to put it up even as straw man

• Constraints almost never lists of tuples

• As in “the usual stuff”

• Only when using the table constraint

• though it’s an important constraint

• If you don’t know this ...

• ... then you might get complexity wrong

• since you don’t need to read the table to propagate



Second misconception

• Levels of consistency matter

• Very often we go for GAC 

• Or Bounds Consistency or something 
else

• But not if the tradeoff is better elsewhere

• And we don’t care if we don’t know what 
consistency it achieves



Third Misconception

• GAC algorithms establish GAC

• Not if there are repeated variables

• e.g.  all-different(x,y,z,x)

• GAC algorithms almost always pretend 
there are no repeated variables

• And repeated variables can’t be banned



All that really matters

• Propagators should not remove values in 
some allowed tuple

• Propagators should fail if ...

• all their variables are assigned

• i.e. domains are now singleton {x} 

• and the resulting tuple is not allowed



Fourth Misconception
• There is a constraint queue

• Almost never single list operated as queue

• Might use a number of queues 

• or some more complex ordering

• E.g. “staging” in all-different

• do the binary not-equals first

• only later do more expensive propagator

• vital to optimising run time



Fifth Misconception

• Constraint solvers have 354 propagators

• Or at least a good number from catalog

• Of the 11 “key constraints” I listed

• Minion has 4 of them

• Very few constraints that most solvers have



Sixth Misconception

• There’s only five misconceptions ... 



Interlude

• Be careful what you say in your bio ... 

“On a good day he can juggle five balls, and 
on a very good day figure out some way to 
get juggling into a technical talk.”



What has juggling 
got to do with 
propagation?



What has juggling 
got to do with 
propagation?

Almost nothing 



What has juggling 
got to do with 
propagation?

but not quite... 



It’s dealing with 
some pretty 

hard constraints

In this case gravity ... 



You can have 
constraints with 

different numbers of 
variables ... 

This one has five variables



You can have 
constraints with 

different numbers of 
variables ... 

This one has five variables

No really, it does... 



You can have 
constraints with 

different numbers of 
variables ... 

This one has three variables



You might have to 
deal with different 
kinds of variables

Which makes the propagation 
different



Different 
constraints interact 

with each other
restricting solutions 

 One hand can’t be used

And only three variables can be 
solved (by me)



One thing leads 
to another ... 

You throw a ball ... 
And then you have to catch it ... 

But to catch it ... 
You have to throw the next ball ...
And then you have to catch it ...

But to catch it ... 



It looks like it 
might go on 
forever ... 



But it won’t!
It is guaranteed to stop ...

either with success or failure


