Learning: from CP to SAT and back again

Topics in this Series

- Why SAT & Constraints?
- SAT basics
- Constraints basics
- Encodings between SAT and Constraints
- Watched Literals in SAT and Constraints
- Learning in SAT and Constraints
- Lazy Clause Generation + SAT Modulo Theories

Learning

- Not talking about classical machine learning
 - though it probably falls within that definition
 - and ML has interesting applications in constraints ...
 - but still, not talking about that
- Talking about learning during search
 - parts of the search space that are no good
 - learnt at large cost
 - can be avoided in future at low cost

Obvious advantage

- Search is exponential
- subsearches are exponential
 - and tell us facts that were expensive to find out
 - so let's *learn* those facts
 - and deduce them and similar facts faster in the rest of search

Obvious problem

- How do we learn facts?
 - And reuse them in the future
- We're never going to revisit the identical search state ever again
 - so we have to *abstract* what we have learnt
 - so how do we work out something general from the specifics of this case?
 - and work out how to apply it elsewhere?
 - and with good cost-benefit ratio?

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints

Learning & Backjumping in Constraints

- In this area Constraints seems to have a longer history
- Backjumping
 - Gaschnig 1977
- Learning
 - Dechter & Frost, 1990, 1994
- But I'm going to start with Conflict-directed backjumping
 - Prosser, 1993

CBJ

- Sometimes say "backjumping" as generic term
 - but dangerous as BJ is a specific algorithm (and not as good)
- Conflict directed backjumping
 - CBJ
 - I will use CBJ to include variants like FC-CBJ, MAC-CBJ
 - Patrick Prosser, 1993
 - 617 citations as I write (Google Scholar)
 - compare 215 for my most cited paper

Conflict Directed Backjumping

- Usual to distinguish between learning and backjumping based approaches
- CBJ
 - we avoid backtracking to any node
 - which is above the current node
 - and where the opposite branching choice *cannot* help
 - because we can **prove** it will not
- Learning
 - we reuse the information learnt at this node
 - at nodes which are not ancestors of the current node

Conflict set

- Key idea in CBJ
 - Same as explanation coming later
 - but I'll use the CBJ word here
- A **conflict set** at a failed node
 - is a set of assigned variables such that
 - if **any other** variable is changed there is no solution
 - equivalently:
 - every assignment with the current values in the conflict set, and arbitrary values elsewhere
 - is not a solution

Conflict Set Example

- x in {1,2,3}
- y assigned to I
- x < y
 - conflict set is {y}
 - there is no possible value of x
 - no matter how many other variables there are in the problem

CBJ algorithm

- Whenever we get a failure, compute conflict set
- Jump back [i.e. backtrack to...] the most recently assigned variable x in conflict set
- Discard any search nodes between current node and x
- Merge current c.s. with existing c.s. of x
- If any remaining values of x
 - try next value
 - else repeat this slide

Computing Conflict Sets

- Two cases
 - backtracking
 - propagating
- Quick summary...
 - every propagation always has a conflict set
 - merging is taking the union

Merging Conflict Sets on Backtracking

- Say we have tried x = a, b, c
 - and we have cs_{abc} (merged conflict set for x)
 - and value x = d has just failed
 - with cs_d which must have x in it
 - why must x be in it?

Merging Conflict Sets on Backtracking

- Say we have tried x = a, b, c
 - and we have cs_{abc} (merged conflict set for x)
 - and value x = d has just failed
 - with cs_d which must have x in it
- How do we merge cs_{abc} and cs_d ?
 - Simply take $cs_{abc} U cs_d \{x\}$
 - why?

$$cs_{abc} U cs_d - \{x\}$$

- When [if] we ever backjump from *x*
 - we need to know every variable which changing could lead to a solution
 - We need everything in *cs*_{abc}
 - otherwise x = a, x=b or x=c might work
 - And everything in cs_d
 - otherwise *x*=*d* might work
 - But not x because we are backjumping from x

Conflict sets & Propagation

- If we are propagating (we always are)
- We can't ignore propagation for c.s's
- x < y, y < z
 - x in {1,2,3}, y in {1,2,3}, z in {2,3}
 - z assigned to 2 at search node
 - Then y assigned to I,
 - then x fails with $c.s = \{y\}$
 - So we backjump to last var in c.s., that is y
 - but there is no such node so we fail
 - But we should backjump to z=2
 - then try z=3 and we can carry on

Conflict sets & Propagation

- Every time a possible value x=a is deleted
 - we record a conflict set for the deletion
- a c.s. for deletion is just like a failure c.s.
 - set so that if the variables in it take their current values, then x=a is impossible
- When we propagate, merge c.s.'s which played role
 - e.g. if we are doing AC
 - relevant c.s.'s are deleted values in constraint which otherwise would form a support for x=a

Conflict sets & Propagation

- x < y, y < z
 - x in {1,2,3}, y in {1,2,3}, z in {2,3}
 - z assigned to 2 at search node
 - Then y=2 is deleted, conflict set $\{z\}$
 - And y=3 is deleted, conflict set $\{z\}$
 - then x fails with c.s = merge($y=1/{z}, y=2/{z}$) = {z}
 - So we backjump to last var in c.s., i.e. z
 - then try z=3 and we can carry on

Conflict sets & explanations

- Going to return in a bit to key questions:
 - how do we compute explanations (conflict sets) from propagators?
 - and then handle the merging of them from propagators?

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints

- Very natural view of CBJ in SAT
- conflict sets are *clauses*
 - e.g. conflict set after failure of x=a is $\{y,z\}$, with y=b, z=c
 - -xa OR -yb OR -yc
 - e.g. conflict set for x=b is {y,w} with w=d
 - -xb OR -yb OR -wd
 - conflict set merging is resolution
 - We have At-Least-One clause
 - xa OR xb
 - resolve to get *xb* OR -*yb* OR -*zc*
 - resolve to get -yb OR -zc OR -wd

- Very easy indeed to work out conflict set
- If failure (i.e. empty clause) arises in clause
 C ...
 - ... conflict set is C
- If clause C becomes unit setting x=0
 - ... conflict set explaining x != 1 is C

- CBJ was brought across to SAT in 96, 97
- "Using CSP Look-Back Techniques to Solve Real-World SAT Instances", 1997
 - Bayardo & Schrag
 - 593 citations (Google Scholar)
- All SAT solvers do backjumping/learning
 - Much research on SAT solvers in mid-late 90s
 - Bayardo & Schrag porting of CBJ one key piece of research

- Another key piece of work was GRASP
 - Marques-Silva & Sakallah, 97, 99
 - 693 and 811 citations for the two papers
 - Doesn't cite Prosser this time
 - Ginsberg 93 (529 citations)
 - Sussmann/Stallmann 77 (677 citations)
 - i.e. still brought backjumping to SAT from Constraints

Citation numbers

- 617 (Prosser),
- 677 (Sussmann & Stallmann)
- 529 (Ginsberg)
- 593 (Bayardo & Schrag)
- 693 (Marques-Silva & Sakallah)
- 811 (Marques-Silva & Sakallah)
- To get an idea of scale
 - 656 citations
 - Jean-Charles Régin 1994, All-different GAC propagator

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints

Learning in SAT

- Going to present this with constraints in mind
 - so sometimes slightly more general than what SAT does
- But still will start with SAT
 - and move on to constriants later

Explanation (general)

- An explanation for a assignment (x = a) or disassignment (x != a) is
 - a set of assignments or disassignments
 - such that if this set is all (dis-)assigned
 - appropriate propagation level
 - will force x = a (or x!=a)

Explanation (Unit propagation)

- An explanation for a literal (x = 0 or x = 1) is
 - a set of literals
 - such that if this set is all assigned
 - unit propagation
 - will force the literal to be true
 - i.e. the negation of remaining literals in clause which caused the unit propagation to happen
- Also explanation for failure
 - exactly analogous
 - i.e. negation of all literals in failed clause

SAT Example

- You must invite somebody:
- The ambassador asks you to invite a Francophone ambassador so his daughter can practice her French:
- The Belgian, German and Dutch ambassadors are badly behaved when they get together, so they mustn't all be invited:
- If you invite the Dutch ambassador, you must also invite the Belgian ambassador:

- $B \lor N \lor F \lor G$
- **B** ∨ **F**
- $\neg B \lor \neg G \lor \neg N$.
- $N \Rightarrow B$
 - ¬N ∨ B

SAT Example

- You must invite somebody:
- The ambassador asks you to invite a Francophone ambassador so his daughter can practice her French:
- The Belgian, German and Dutch ambassadors are badly behaved when they get together, so they mustn't all be invited:
- If you invite the Dutch ambassador, you must also invite the Belgian ambassador:

- $B \lor N \lor F \lor G$
- $B \vee F$
- $\neg B \lor \neg G \lor \neg N$.
- $\neg N \lor B$

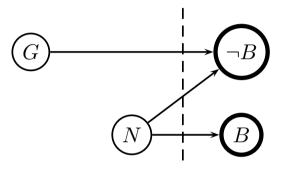
SAT Example

- You must invite somebody:
- The ambassador asks you to invite a Francophone ambassador so his daughter can practice her French:
- The Belgian, German and Dutch ambassadors are badly behaved when they get together, so they mustn't all be invited:
- If you invite the Dutch ambassador, you must also invite the Belgian ambassador:

- $I. \quad B \lor N \lor F \lor G$
- $\textbf{2.} \quad \textbf{B} \lor \textbf{F}$
- 3. $\neg B \lor \neg G \lor \neg N$.
- 4. $\neg N \lor B$
- Suppose we have N, G
 - (4) explanation of B is N
 - (3) explanation of $\neg B$ is G, N
 - (2) explanation of F is ¬B

SAT Implication Graph

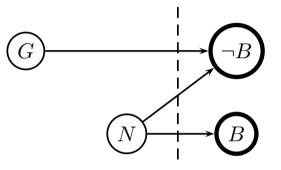
- An implication graph (IG) for the current state of variables is a directed acyclic graph where
 - each node is a currently true literal, e.g. v when variable v ← 1, and
 - there is an edge from u to v iff u appears in the explanation for v.



- $\bullet \quad B \lor N \lor F \lor G$
- **B** ∨ **F**
- $\neg B \lor \neg G \lor \neg N.$
- ¬N ∨ B
- set **G** and **N**

Implication Graph Cut

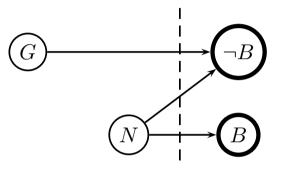
- A **cut** of an IG containing mutually inconsistent nodes is a partition (S,T) of vertices such that
 - all nodes corresponding to decision assignments belong to S,
 - the mutually inconsistent nodes are in T
 - if a node $x \in T$,
 - either all its direct predecessors in T
 - or all its direct predecessors are in S.
- Asserting all events of a cut and enforcing the same consistency level as the explanations were built with will lead to the same failure.
- Cuts often written by literals immediately to left of cut
 - e.g. {G, N}



- $B \lor N \lor F \lor G$
- $\mathbf{B} \vee \mathbf{F}$
- $\neg B \lor \neg G \lor \neg N.$
- $\neg N \lor B$
- set **G** and **N**

Cuts in graphs

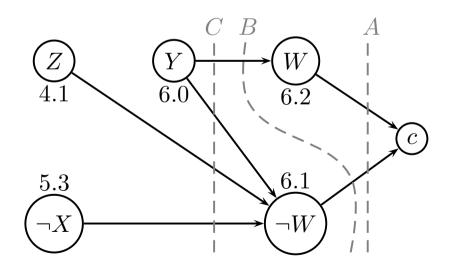
- A cut in the graph gives us something we can learn
- We can add a clause from the cut
 - e.g. cut {G,N}
 - learn $\neg G \lor \neg N$
 - Should avoid the same mistake in the future
- But how do we find a good cut?



- $\bullet \quad B \lor N \lor F \lor G$
- **B** ∨ **F**
- $\neg B \lor \neg G \lor \neg N.$
- ¬N ∨ B
- set **G** and **N**

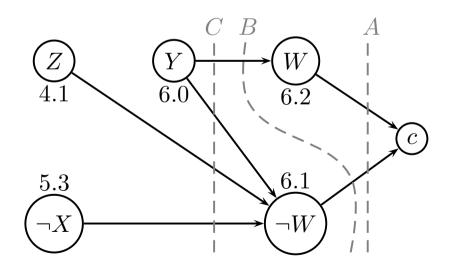
- If cut is too specific...
 - doesn't actually avoid the work of branching
- If cut is too general...
 - it may not save work
 - e.g. just the set of branching decisions
- Want a compromise
 - First Unique Implication Point
 - Find cut such that both contradictory literals forced by branching decision and nothing else at this depth

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



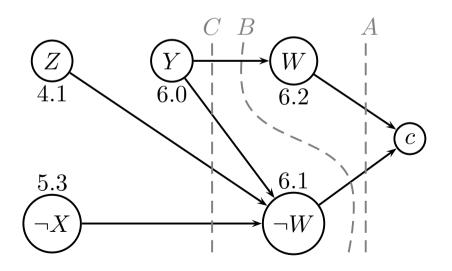
- If cut is too specific...
 - doesn't actually avoid the work of branching
- If cut is too general...
 - it may not save work
 - e.g. just the set of branching decisions
- Want a compromise
 - First Unique Implication Point
 - Find cut such that both contradictory literals forced by branching decision and nothing else at this depth

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



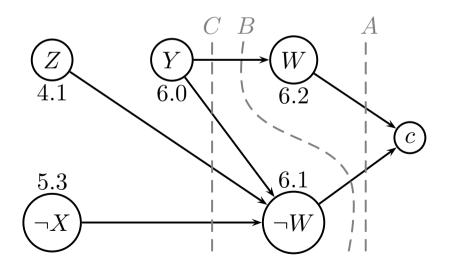
- Depth annotations
 - 6.0 = set at depth 6 by search
 - 4.1 = set at depth 4, first propagation
- *c* represents conflict
 - i.e. empty clause
 - i.e. $\neg Y \lor W$ with Y=I, W=0

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



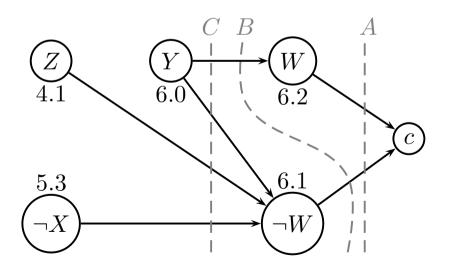
- Start with T = trivial cut of conflict
- Loop until we have First UIP cut
 - choose deepest node N with predecessors in S
 - add all predecessors of N to T

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



- Start with T = trivial cut of conflict *c*
- Loop until we have First UIP cut
 - choose deepest node N with predecessors in S
 - add all predecessors of N to T
 - Remove N from T
- Theorem:
 - algorithm always gives us first UIP cut

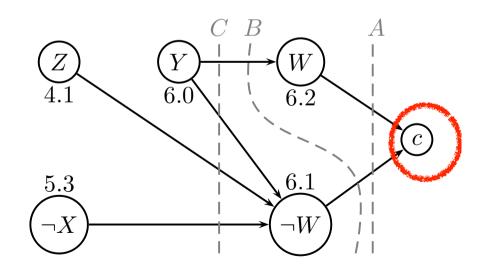
- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



- Start with T = trivial cut of conflict
 - $T = \{c\}$

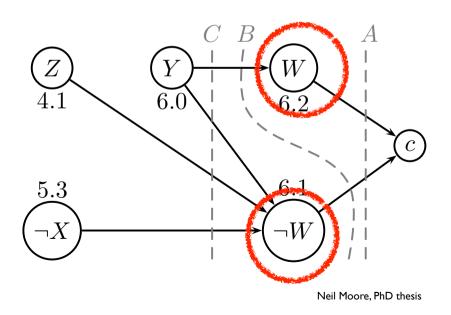
- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$

• deepest node in T = c



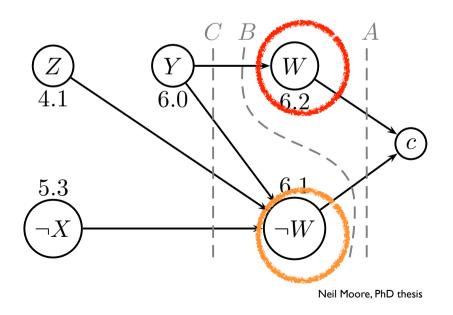
- Start with T = trivial cut of conflict
- $T = \{c\}$ (line A)
- deepest node in T = c
 - Add predecessors
 - Add W, ¬W to T
 - Remove c

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



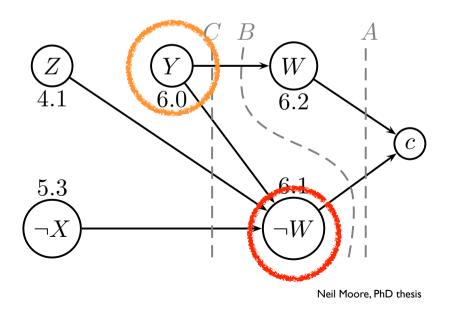
- Add *W*, ¬W to T
 - Depths 6.1, 6.2
 - $T = \{W, \neg W\}$
 - line B
- deepest node in T = W
 - Add predecessors
 - Add Y to T
 - Remove W

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$

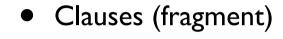


- Add Y to T
 - $T = \{Y, \neg W\}$
 - Depths 6.0, 6.1
- deepest node in T = $\neg W$
 - Add predecessors
 - Add Z, $\neg X$, Y to T
 - Remove ¬W

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$

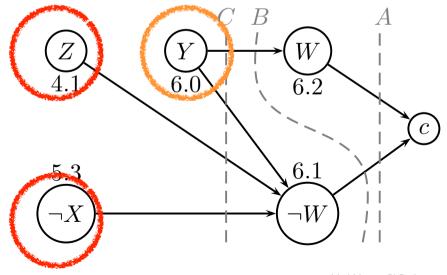


- Add *Z*, ¬*X*, *Y* to T
 - $T = \{Y, Z, \neg X\}$
 - line C
 - Depths 6.0, 4.1, 5.3



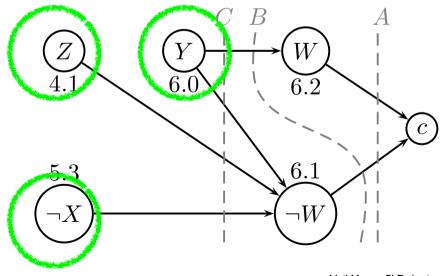
 $\bullet \quad \neg Y \lor W$

•
$$X \lor \neg Y \lor \neg Z \lor \neg W$$



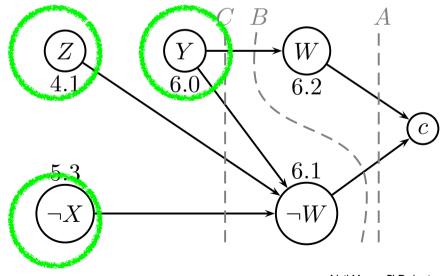
- STOP
 - We have reached UIP
 - Unique depth 6 node
 - i.e. search decision
 - T is firstUIP Cut
- Cut is $T = \{Y, Z, \neg X\}$

- Clauses (fragment)
 - $\neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



- Now we have learnt
- $X \lor \neg Y \lor \neg Z$
- We can add this clause
- If we backtrack to the assignment Y=1
 - the new clause will propagate and set Y=0

- Clauses (fragment)
 - $\bullet \quad \neg Y \lor W$
 - $X \lor \neg Y \lor \neg Z \lor \neg W$



Forgetting

- One problem
- If we learn a clause at every failed node
 - and search exponential nodes
 - we end up with exponentially many clauses
- Fortunately...
 - all learnt clauses are implied
 - i.e. does not change set of solutions
 - but may help search

Forgetting

- This means we can ...
 - delete any learnt clause ...
 - at any time ...
 - perfectly safely
- So need some kind of forgetting strategy
 - e.g. activity based
 - recently propagated clauses less likely to be forgotten

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints

VSIDS

- VSIDS means...
 - Variable State Independent, Decaying Sum
- Most common example of an
 - activity based heuristic
 - heuristic for choice of branching literal
- Idea is to choose the most "active" variables in some sense

VSIDS WARNING

- VSIDS comes from Chaff
 - and like watched literals is included in the Chaff patent
 - IANAL (I am not a lawyer)
 - So don't believe anything I tell you about the legal position

VSIDS

- Activity based heuristic
- Give each literal a counter.
 - Set all counters to 0
- For each new learnt clause
 - Increment counter for each literal in clause
- When we need a search decision
 - choose literal with highest counter
- Every once in a while ...
 - reduce all counters by a constant factor
 - so that inactive literals decay over time

Learning in SAT & Constraints

- From Constraints ...
 - Conflict directed backjumping
- ... to SAT
 - Learning in SAT
 - VSIDS
- ... and back again
 - s-learning and g-learning in Constraints