Learning: from CP to
SAT and back again

Topics in this Series

Why SAT & Constraints!?

SAT basics

Constraints basics

Encodings between SAT and Constraints
Watched Literals in SAT and Constraints
Learning in SAT and Constraints

Lazy Clause Generation + SAT Modulo
Theories

Learning

® Not talking about classical machine learning
® though it probably falls within that definition
® and ML has interesting applications in constraints ...
® but still, not talking about that

® Talking about learning during search
® parts of the search space that are no good
® |earnt at large cost

® can be avoided in future at low cost

Obvious advantage

® Search is exponential
® subsearches are exponential

® and tell us facts that were expensive to
find out

® so let’s learn those facts

® and deduce them and similar facts faster
in the rest of search

Obvious problem

® How do we learn facts?

And reuse them in the future

® We're never going to revisit the identical search
state ever again

so we have to abstract what we have learnt

so how do we work out something general from
the specifics of this case!

and work out how to apply it elsewhere?

and with good cost-benefit ratio?

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
o ..to SAT

® |earning in SAT

e VSIDS

® ... and back again

® s-learning and g-learning in Constraints

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
o ..to SAT

® |earning in SAT

e VSIDS

® ... and back again

® s-learning and g-learning in Constraints

Learning & Backjumping
in Constraints

® |n this area Constraints seems to have a longer history
® Backjumping

® Gaschnig 1977
® |earning

® Dechter & Frost, 1990, 1994

® But I'm going to start with Conflict-directed
backjumping

® Prosser, 1993

CB]

® Sometimes say “backjumping” as generic term

® but dangerous as BJ is a specific algorithm (and not as
good)

® Conflict directed backjumping
o CB]J
® | will use CB]J to include variants like FC-CBJ, MAC-CB]
® Patrick Prosser, 1993
® 617 citations as | write (Google Scholar)

® compare 215 for my most cited paper

Conflict Directed
Backjumping

® Usual to distinguish between learning and backjumping based
approaches

o CB
® we avoid backtracking to any node
® which is above the current node
® and where the opposite branching choice eannot help
® because we can prove it will not
® |earning
® we reuse the information learnt at this node

® at nodes which are not ancestors of the current node

Conflict set

® Key idea in CB]J
® Same as explanation coming later
® but I'll use the CB) word here
o A conflict set at a failed node
® s a set of assigned variables such that
e if any other variable is changed there is no solution
® equivalently:

® every assignment with the current values in the conflict
set, and arbitrary values elsewhere

® s not a solution

Conflict Set Example

e xin{l,2,3}
® y assigned to |
®x<y
® conflict set is {y}
® there is no possible value of x

® no matter how many other variables there
are in the problem

CBJ algorithm

Whenever we get a failure, compute conflict set

Jump back [i.e. backtrack to...] the most recently
assigned variable x in conflict set

Discard any search nodes between current node and x
Merge current c.s. with existing c.s. of x

If any remaining values of x

® try next value

® else repeat this slide

Computing Conflict
Sets

® [wo cases
® backtracking
® propagating
® Quick summary...
® every propagation always has a conflict set

® merging is taking the union

Merging Conflict Sets on
Backtracking

® Say we have tried x =a, b, c
® and we have csqnc (merged conflict set for x)
® and value x = d has just failed
® with csq which must have x in it

® why must x be in it?

Merging Conflict Sets on
Backtracking

® Say we have tried x = q, b, c
® and we have csqc (Mmerged conflict set for x)
® and value x = d has just failed
® with csq which must have x in it
® How do we merge csapcand csq ?
® Simply take csapc U csq - {x}

® why?

CSabc U CS4d - {X}

® When [if] we ever backjump from x

® we need to know every variable which changing
could lead to a solution

® We need everything in CSanc

® otherwise x = g, x=b or x=c might work
® And everything in csq

® otherwise x=d might work

® But not x because we are backjumping from x

Conflict sets &
Propagation

® |f we are propagating (we always are)
® We can’t ignore propagation for c.s’s
® x<yy<z
e xin{l,2,3},yin{l,2,3},zin {2,3}
® zassigned to 2 at search node
® Theny assigned to |,
® then x fails with c.s = {y}
® So we backjump to last var in c.s., that is y
® but there is no such node so we fail
® But we should backjump to z=2

® then try z=3 and we can carry on

Conflict sets &
Propagation

® Every time a possible value x=a is deleted
® we record a conflict set for the deletion

® a c.s.for deletion is just like a failure c.s.

® set so that if the variables in it take their current
values, then x=a is impossible

® When we propagate, merge c.s.’s which played role
® e.g. if weare doing AC

® relevant c.s’s are deleted values in constraint which
otherwise would form a support for x=a

Conflict sets &
Propagation

® X<Yy,y<z
e xin{l,2,3},yin{l,2,3},zin {2,3}
® 7 assigned to 2 at search node
® Then y=2 is deleted, conflict set {z}
® And y=3 is deleted, conflict set {z}
® then x fails with c.s = merge(y=1/{z},y=2/z}) = {z}
® So we backjump to last var in c.s.,i.e.z

® then try z=3 and we can carry on

Conflict sets &
explanations

® Going to return in a bit to key questions:

® how do we compute explanations
(conflict sets) from propagators?

® and then handle the merging of them
from propagators!?

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
e ..toSAT

® |earning in SAT

e VSIDS

® ... and back again

® s-learning and g-learning in Constraints

CBJ in SAT

® Very natural view of CBJ in SAT
® conflict sets are clauses
e e.g conflict set after failure of x=a is {y,z}, with y=b, z=c
® xa OR-yb OR -yc
e e.g conflict set for x=b is {y,w} with w=d
e xb OR-yb OR -wd
® conflict set merging is resolution
® We have At-Least-One clause
® xa ORxb
® resolve to get xb OR -yb OR -zc

® resolve to get -yb OR -zc OR -wd

CBJ in SAT

® Very easy indeed to work out conflict set

® |f failure (i.e. empty clause) arises in clause
C..

® .. conflictsetis C
® |f clause C becomes unit setting x=0

® .. conflict set explaining x I= [is C

CBJ in SAT

® (CBJ was brought across to SAT in 96,97

® “Using CSP Look-Back Techniques to Solve Real-World
SAT Instances”, 1997

® Bayardo & Schrag
® 593 citations (Google Scholar)
® All SAT solvers do backjumping/learning
® Much research on SAT solvers in mid-late 90s

® Bayardo & Schrag porting of CBJ one key piece of
research

CBJ in SAT

® Another key piece of work was GRASP
® Marques-Silva & Sakallah, 97, 99
® 693 and 81| citations for the two papers
® Doesn’t cite Prosser this time
® Ginsberg 93 (529 citations)
® Sussmann/Stallmann 77 (677 citations)

® i.e.still brought backjumping to SAT from
Constraints

Citation numbers

617 (Prosser),

677 (Sussmann & Stallmann)
529 (Ginsberg)

593 (Bayardo & Schrag)

693 (Marques-Silva & Sakallah)
811 (Marques-Silva & Sakallah)
To get an idea of scale

® 656 citations

® Jean-Charles Régin 1994, All-different GAC propagator

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
o ..toSAT

® |earning in SAT

e VSIDS

® ... and back again

® s-learning and g-learning in Constraints

Learning in SAT

® (Going to present this with constraints in
mind

® so sometimes slightly more general than
what SAT does

® But still will start with SAT

® and move on to constriants later

Explanation (general)

® An explanation for a assignment (x = a) or
disassignment (x !=a) is

® a set of assignments or disassignments
® such that if this set is all (dis-)assigned
® appropriate propagation level

® will force x = a (or x!=a)

Explanation
(Unit propagation)

® An explanation for a literal (x =0orx=1) is
® aset of literals
® such that if this set is all assigned
® unit propagation
e will force the literal to be true

® i.e.the negation of remaining literals in clause which caused
the unit propagation to happen

® Also explanation for failure

® exactly analogous

® i.e.negation of all literals in failed clause

SAT Example

You must invite somebody:

The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

BVNVFVG

BvF

=B v =G v =N.

N=B

e "NVvB

SAT Example

You must invite somebody:

The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

BVNVFVG

BvF

-B v =G v =N.

=N v B

SAT Example

You must invite somebody:

The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

BVNVFvVvG

BVvF

=B v =G v =N.

N v B

Suppose we have N, G

(4) explanation of B is N
(3) explanation of =B is G, N

(2) explanation of F is B

SAT Implication Graph

® An implication graph (IG) @
for the current state of
variables is a directed
acyclic graph where

® ecach node is a currently e BVYNVFVG
true literal, e.g. v when
variable v < |, and e BVvF

[= = -
® there is an edge from u Bv-Gv-N.

to v iff u appears in the e -NVB
explanation for v.
® set Gand N

Implication Graph Cut

® A cut of an IG containing mutually inconsistent nodes @
is a partition (5,T) of vertices such that

® all nodes corresponding to decision assignments
belong to S,

® the mutually inconsistent nodes are in T

e ifanodexeT, e BVYVNVFVG

e either all its direct predecessors in T

e BVF

® or all its direct predecessors are in S.
. : e -Bv-Gv-aN.
e Asserting all events of a cut and enforcing the same
consistency level as the explanations were built with
will lead to the same failure. e - NVB

e Cuts often written by literals immediately to left of cut

® setGand N
® eg {G,N}

Cuts in graphs

® A cutin the graph gives us @
something we can learn

® We can add a clause from the

cut

e eg cut{G,N} e BYNVFVG
® J|earn G v =N e BVF

® Should avoid the same e -Bv-Gv-aN.

mistake in the future

e -NvVvB
® But how do we find a good cut?

® setGand N

First UIP Cut

® (Clauses (fragment)
If cut is too specific...

® doesn’t actually avoid the work of o Y VW
branching
If cut is too general... e XvAaYyv-ZvaW

® it may not save work

® e.g.just the set of branching
decisions

C B A
|| |
|
|

Want a compromise

® First Unique Implication Point

® Find cut such that both 03 : | :
contradictory literals forced by - X : I
branching decision and nothing | I

else at this depth
Neil Moore, PhD thesis

First UIP Cut

® (Clauses (fragment)
If cut is too specific...

® doesn’t actually avoid the work of o Y VW
branching
If cut is too general... e XvAaYyv-ZvaW

® it may not save work

® e.g.just the set of branching
decisions

C B A
|| |
|
|

Want a compromise

® First Unique Implication Point

® Find cut such that both 03 : | :
contradictory literals forced by - X : I
branching decision and nothing | I

else at this depth
Neil Moore, PhD thesis

First UIP Cut

® (Clauses (fragment)
® Depth annotations

o 6.0 = set at depth 6 by ® Y VW

search

e XvAaYv-ZvaW

® 4| =set at depth 4, first
propagation

® ¢ represents conflict

® i.e.empty clause

® je.Y vW withY=]l,
W=0

First UIP Cut Algorithm

® (Clauses (fragment)
® Start with T = trivial cut

of conflict o Y VW
® [oop until we have First o XvAaYvyv-aZvaW
UIP cut

® choose deepest node

N with predecessors
in S

® add all predecessors
of NtoT

First UIP Cut Algorithm

® (Clauses (fragment)
® Start with T = trivial cut of

conflict ¢
e Y VvW

® | oop until we have First UIP cut

e XvAaYv-ZvaW

® choose deepest node N with
predecessors in S

® add all predecessors of Nto T
e Remove N fromT
® Theorem:

® algorithm always gives us first
UIP cut

Neil Moore, PhD thesis

First UIP Cut Algorithm

® (Clauses (fragment)
e Start with T = trivial cut

of conflict e Y vW
* T={c e XvAaYyvaZvaw
® |ineA

® deepestnodeinT =c¢

Neil Moore, PhD thesis

First UIP Cut Algorithm

® (Clauses (fragment)
® Start with T = trivial cut

of conflict o Y VW
o T={c} (lineA) e XvaYvyaZy W
® deepestnodeinT =c¢
® Add predecessors

® AddW,-“WtoT

® Remove ¢

First UIP Cut Algorithm

® (Clauses (fragment)
¢ AddW -WtoT

e Depths 6.1,6.2 o YVW
* TENEW) e XvAaYv-aZv-aW
® JineB

® deepestnodeinT =W
® Add predecessors
© AddYtoT

® Remove W

Neil Moore, PhD thesis

First UIP Cut Algorithm

® (Clauses (fragment)
© AddYtoT

[T={Y,—|W} * YVW

e Depths 6.0, 6.1

e XvAaYv-ZvaW

® deepest node inT = "W
® Add predecessors

® Add Z -X)Y toT

® Remove "W

First UIP Cut Algorithm

® (Clauses (fragment)
® AddZ X, Y toT

o Y vW
o T={Y,Z,—|X}

e XvAaYv-ZvaW
® Jine C

® Depths 6.0,4.1,5.3

Neil Moore, PhD thesis

First UIP Cut Algorithm

® (Clauses (fragment)
e STOP

e Y VvW
® We have reached UIP

e XvaYyvaZv-aW

® Unique depth 6 node
® j.e.search decision
® T is firstUIP Cut

o CutisT ={Y,Z X}

First UIP Cut

® (Clauses (fragment)
Now we have learnt

o Y vW
XvaYyvaZ

e XvAaYv-ZvaW

We can add this clause

If we backtrack to the
assignment Y=|

® the new clause will
propagate and set Y=0

Forgetting

® One problem
® |f we learn a clause at every failed node
® and search exponential nodes
® we end up with exponentially many clauses
® Fortunately...
® all learnt clauses are implied
® i.e.does not change set of solutions

® but may help search

Forgetting

® This means we can ...
® delete any learnt clause ...
® at any time ...
® perfectly safely
® So need some kind of forgetting strategy
® e.g. activity based

® recently propagated clauses less likely to be
forgotten

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
o ..to SAT

® |earning in SAT

e VSIDS

® ... and back again

® s-learning and g-learning in Constraints

VSIDS

® VSIDS means...

® Variable State Independent, Decaying Sum
® Most common example of an

® activity based heuristic

® heuristic for choice of branching literal

® |dea is to choose the most “active” variables
In some sense

VSIDS WARNING

® VSIDS comes from Chaff

® and like watched literals is included in the
Chaff patent

® |ANAL (I am not a lawyer)

® So don’t believe anything | tell you about
the legal position

VSIDS

Activity based heuristic

Give each literal a counter.

Set all counters to 0

For each new learnt clause

Increment counter for each literal in clause

When we need a search decision

choose literal with highest counter

Every once in a while ...

reduce all counters by a constant factor

so that inactive literals decay over time

Learning in SAT &
Constraints

® From Constraints ...

® Conflict directed backjumping
o ..to SAT

® |earning in SAT

e VSIDS

® ..and back again

® s-learning and g-learning in Constraints

