
Learning: from CP to
SAT and back again

Ian Gent
University of St Andrews

Topics in this Series

• Why SAT & Constraints?

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo
Theories

Learning
• Not talking about classical machine learning

• though it probably falls within that definition

• and ML has interesting applications in constraints ...

• but still, not talking about that

• Talking about learning during search

• parts of the search space that are no good

• learnt at large cost

• can be avoided in future at low cost

Obvious advantage

• Search is exponential

• subsearches are exponential

• and tell us facts that were expensive to
find out

• so let’s learn those facts

• and deduce them and similar facts faster
in the rest of search

Obvious problem

• How do we learn facts?

• And reuse them in the future

• We’re never going to revisit the identical search
state ever again

• so we have to abstract what we have learnt

• so how do we work out something general from
the specifics of this case?

• and work out how to apply it elsewhere?

• and with good cost-benefit ratio?

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

Learning & Backjumping
in Constraints

• In this area Constraints seems to have a longer history

• Backjumping

• Gaschnig 1977

• Learning

• Dechter & Frost, 1990, 1994

• But I’m going to start with Conflict-directed
backjumping

• Prosser, 1993

CBJ
• Sometimes say “backjumping” as generic term

• but dangerous as BJ is a specific algorithm (and not as
good)

• Conflict directed backjumping

• CBJ

• I will use CBJ to include variants like FC-CBJ, MAC-CBJ

• Patrick Prosser, 1993

• 617 citations as I write (Google Scholar)

• compare 215 for my most cited paper

Conflict Directed
Backjumping

• Usual to distinguish between learning and backjumping based
approaches

• CBJ

• we avoid backtracking to any node

• which is above the current node

• and where the opposite branching choice cannot help

• because we can prove it will not

• Learning

• we reuse the information learnt at this node

• at nodes which are not ancestors of the current node

Conflict set
• Key idea in CBJ

• Same as explanation coming later

• but I’ll use the CBJ word here

• A conflict set at a failed node

• is a set of assigned variables such that

• if any other variable is changed there is no solution

• equivalently:

• every assignment with the current values in the conflict
set, and arbitrary values elsewhere

• is not a solution

Conflict Set Example

• x in {1,2,3}

• y assigned to 1

• x < y

• conflict set is {y}

• there is no possible value of x

• no matter how many other variables there
are in the problem

CBJ algorithm

• Whenever we get a failure, compute conflict set

• Jump back [i.e. backtrack to...] the most recently
assigned variable x in conflict set

• Discard any search nodes between current node and x

• Merge current c.s. with existing c.s. of x

• If any remaining values of x

• try next value

• else repeat this slide

Computing Conflict
Sets

• Two cases

• backtracking

• propagating

• Quick summary...

• every propagation always has a conflict set

• merging is taking the union

Merging Conflict Sets on
Backtracking

• Say we have tried x = a, b, c

• and we have csabc (merged conflict set for x)

• and value x = d has just failed

• with csd which must have x in it

• why must x be in it?

Merging Conflict Sets on
Backtracking

• Say we have tried x = a, b, c

• and we have csabc (merged conflict set for x)

• and value x = d has just failed

• with csd which must have x in it

• How do we merge csabc and csd ?

• Simply take csabc U csd - {x}

• why?

csabc U csd - {x}

• When [if] we ever backjump from x

• we need to know every variable which changing
could lead to a solution

• We need everything in csabc

• otherwise x = a, x=b or x=c might work

• And everything in csd

• otherwise x=d might work

• But not x because we are backjumping from x

Conflict sets &
Propagation

• If we are propagating (we always are)

• We can’t ignore propagation for c.s’s

• x < y, y < z

• x in {1,2,3}, y in {1,2,3}, z in {2,3}

• z assigned to 2 at search node

• Then y assigned to 1,

• then x fails with c.s = {y}

• So we backjump to last var in c.s., that is y

• but there is no such node so we fail

• But we should backjump to z=2

• then try z=3 and we can carry on

Conflict sets &
Propagation

• Every time a possible value x=a is deleted

• we record a conflict set for the deletion

• a c.s. for deletion is just like a failure c.s.

• set so that if the variables in it take their current
values, then x=a is impossible

• When we propagate, merge c.s.’s which played role

• e.g. if we are doing AC

• relevant c.s.’s are deleted values in constraint which
otherwise would form a support for x=a

Conflict sets &
Propagation

• x < y, y < z

• x in {1,2,3}, y in {1,2,3}, z in {2,3}

• z assigned to 2 at search node

• Then y=2 is deleted, conflict set {z}

• And y=3 is deleted, conflict set {z}

• then x fails with c.s = merge(y=1/{z},y=2/{z}) = {z}

• So we backjump to last var in c.s., i.e. z

• then try z=3 and we can carry on

Conflict sets &
explanations

• Going to return in a bit to key questions:

• how do we compute explanations
(conflict sets) from propagators?

• and then handle the merging of them
from propagators?

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

CBJ in SAT
• Very natural view of CBJ in SAT

• conflict sets are clauses

• e.g. conflict set after failure of x=a is {y,z}, with y=b, z=c

• -xa OR -yb OR -yc

• e.g. conflict set for x=b is {y,w} with w=d

• -xb OR -yb OR -wd

• conflict set merging is resolution

• We have At-Least-One clause

• xa OR xb

• resolve to get xb OR -yb OR -zc

• resolve to get -yb OR -zc OR -wd

CBJ in SAT

• Very easy indeed to work out conflict set

• If failure (i.e. empty clause) arises in clause
C ...

• ... conflict set is C

• If clause C becomes unit setting x=0

• ... conflict set explaining x != 1 is C

CBJ in SAT
• CBJ was brought across to SAT in 96, 97

• “Using CSP Look-Back Techniques to Solve Real-World
SAT Instances”, 1997

• Bayardo & Schrag

• 593 citations (Google Scholar)

• All SAT solvers do backjumping/learning

• Much research on SAT solvers in mid-late 90s

• Bayardo & Schrag porting of CBJ one key piece of
research

CBJ in SAT
• Another key piece of work was GRASP

• Marques-Silva & Sakallah, 97, 99

• 693 and 811 citations for the two papers

• Doesn’t cite Prosser this time

• Ginsberg 93 (529 citations)

• Sussmann/Stallmann 77 (677 citations)

• i.e. still brought backjumping to SAT from
Constraints

Citation numbers
• 617 (Prosser),

• 677 (Sussmann & Stallmann)

• 529 (Ginsberg)

• 593 (Bayardo & Schrag)

• 693 (Marques-Silva & Sakallah)

• 811 (Marques-Silva & Sakallah)

• To get an idea of scale

• 656 citations

• Jean-Charles Régin 1994, All-different GAC propagator

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

Learning in SAT

• Going to present this with constraints in
mind

• so sometimes slightly more general than
what SAT does

• But still will start with SAT

• and move on to constriants later

Explanation (general)

• An explanation for a assignment (x = a) or
disassignment (x != a) is

• a set of assignments or disassignments

• such that if this set is all (dis-)assigned

• appropriate propagation level

• will force x = a (or x!=a)

Explanation
(Unit propagation)

• An explanation for a literal (x = 0 or x = 1) is

• a set of literals

• such that if this set is all assigned

• unit propagation

• will force the literal to be true

• i.e. the negation of remaining literals in clause which caused
the unit propagation to happen

• Also explanation for failure

• exactly analogous

• i.e. negation of all literals in failed clause

SAT Example
• You must invite somebody:

• The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

• The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

• If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

• B ∨ N ∨ F ∨ G

• B ∨ F

• ¬B ∨ ¬G ∨ ¬N.

• N ⇒ B

• ¬N ∨ B

SAT Example
• You must invite somebody:

• The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

• The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

• If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

• B ∨ N ∨ F ∨ G

• B ∨ F

• ¬B ∨ ¬G ∨ ¬N.

• ¬N ∨ B

SAT Example
• You must invite somebody:

• The ambassador asks you to
invite a Francophone
ambassador so his daughter can
practice her French:

• The Belgian, German and Dutch
ambassadors are badly behaved
when they get together, so they
mustn’t all be invited:

• If you invite the Dutch
ambassador, you must also
invite the Belgian ambassador:

1. B ∨ N ∨ F ∨ G

2. B ∨ F

3. ¬B ∨ ¬G ∨ ¬N.

4. ¬N ∨ B

• Suppose we have N, G

• (4) explanation of B is N

• (3) explanation of ¬B is G, N

• (2) explanation of F is ¬B

SAT Implication Graph

• An implication graph (IG)
for the current state of
variables is a directed
acyclic graph where

• each node is a currently
true literal, e.g. v when
variable v ← 1, and

• there is an edge from u
to v iff u appears in the
explanation for v.

• B ∨ N ∨ F ∨ G

• B ∨ F

• ¬B ∨ ¬G ∨ ¬N.

• ¬N ∨ B

• set G and N

2.6. LEARNING 37

G ¬B

N B

Figure 2.7. Implication graph for Example 2.13: IG cut shown by
dashed line

Example 2.13. In the SAT of Example 2.11, suppose the search process has set

G, i.e. invite the German ambassador. No unit propagation results. Suppose next

decision N , i.e. invite the Dutch ambassador. ¬N ∨ B can propagate, to assert B,

i.e. invite the Belgian ambassador. However now the clause ¬B ∨¬G∨¬N can unit

propagate asserting ¬B (or ¬N or ¬G) to prevent the terrible trio of ambassadors

being reunited
19
. The search process will stop and backtrack at this stage.

The IG is shown in Figure 2.7.

When a conflict occurs, the IG shows why the conflict happened: tracing back from

mutually inconsistent nodes (e.g. B and ¬B in Figure 2.7) to decision assignments

via inferences. I now define IG cut :

Definition 2.8 (Implication graph cut). A cut of an IG (V,E) containing mutually

inconsistent nodes is a partition (S, T) of V such that

• all nodes corresponding to decision assignments belong to S,

• the mutually inconsistent nodes belong to T , and

• if a node x ∈ T , either all its direct predecessors are in T or all its direct

predecessors are in S.

A cut can be drawn on a graph as a line through the edges in the cut-set, i.e.

edges (u, v) ∈ E : u ∈ S, v ∈ T . Since an IG is a directed acyclic graph, the cut can

equally well be characterised by the vertices in S that are incident to edges in the

cut-set.

Example 2.14. The dashed line in Figure 2.7 is the cut ({G,N}, {¬B,B}) or alter-

natively just {G,N} to state the vertices in S incident to the cut-set.

19it is equally valid here to stop the search process because that clause is definitely unsatisfied,

rather than propagating it to cause a domain wipeout

Implication Graph Cut
• A cut of an IG containing mutually inconsistent nodes

is a partition (S, T) of vertices such that

• all nodes corresponding to decision assignments
belong to S,

• the mutually inconsistent nodes are in T

• if a node x ∈ T,

• either all its direct predecessors in T

• or all its direct predecessors are in S.

• Asserting all events of a cut and enforcing the same
consistency level as the explanations were built with
will lead to the same failure.

• Cuts often written by literals immediately to left of cut

• e.g. {G, N}

• B ∨ N ∨ F ∨ G

• B ∨ F

• ¬B ∨ ¬G ∨ ¬N.

• ¬N ∨ B

• set G and N

2.6. LEARNING 37

G ¬B

N B

Figure 2.7. Implication graph for Example 2.13: IG cut shown by
dashed line

Example 2.13. In the SAT of Example 2.11, suppose the search process has set

G, i.e. invite the German ambassador. No unit propagation results. Suppose next

decision N , i.e. invite the Dutch ambassador. ¬N ∨ B can propagate, to assert B,

i.e. invite the Belgian ambassador. However now the clause ¬B ∨¬G∨¬N can unit

propagate asserting ¬B (or ¬N or ¬G) to prevent the terrible trio of ambassadors

being reunited
19
. The search process will stop and backtrack at this stage.

The IG is shown in Figure 2.7.

When a conflict occurs, the IG shows why the conflict happened: tracing back from

mutually inconsistent nodes (e.g. B and ¬B in Figure 2.7) to decision assignments

via inferences. I now define IG cut :

Definition 2.8 (Implication graph cut). A cut of an IG (V,E) containing mutually

inconsistent nodes is a partition (S, T) of V such that

• all nodes corresponding to decision assignments belong to S,

• the mutually inconsistent nodes belong to T , and

• if a node x ∈ T , either all its direct predecessors are in T or all its direct

predecessors are in S.

A cut can be drawn on a graph as a line through the edges in the cut-set, i.e.

edges (u, v) ∈ E : u ∈ S, v ∈ T . Since an IG is a directed acyclic graph, the cut can

equally well be characterised by the vertices in S that are incident to edges in the

cut-set.

Example 2.14. The dashed line in Figure 2.7 is the cut ({G,N}, {¬B,B}) or alter-

natively just {G,N} to state the vertices in S incident to the cut-set.

19it is equally valid here to stop the search process because that clause is definitely unsatisfied,

rather than propagating it to cause a domain wipeout

Cuts in graphs
• A cut in the graph gives us

something we can learn

• We can add a clause from the
cut

• e.g. cut {G,N}

• learn ¬G ∨ ¬N

• Should avoid the same
mistake in the future

• But how do we find a good cut?

• B ∨ N ∨ F ∨ G

• B ∨ F

• ¬B ∨ ¬G ∨ ¬N.

• ¬N ∨ B

• set G and N

2.6. LEARNING 37

G ¬B

N B

Figure 2.7. Implication graph for Example 2.13: IG cut shown by
dashed line

Example 2.13. In the SAT of Example 2.11, suppose the search process has set

G, i.e. invite the German ambassador. No unit propagation results. Suppose next

decision N , i.e. invite the Dutch ambassador. ¬N ∨ B can propagate, to assert B,

i.e. invite the Belgian ambassador. However now the clause ¬B ∨¬G∨¬N can unit

propagate asserting ¬B (or ¬N or ¬G) to prevent the terrible trio of ambassadors

being reunited
19
. The search process will stop and backtrack at this stage.

The IG is shown in Figure 2.7.

When a conflict occurs, the IG shows why the conflict happened: tracing back from

mutually inconsistent nodes (e.g. B and ¬B in Figure 2.7) to decision assignments

via inferences. I now define IG cut :

Definition 2.8 (Implication graph cut). A cut of an IG (V,E) containing mutually

inconsistent nodes is a partition (S, T) of V such that

• all nodes corresponding to decision assignments belong to S,

• the mutually inconsistent nodes belong to T , and

• if a node x ∈ T , either all its direct predecessors are in T or all its direct

predecessors are in S.

A cut can be drawn on a graph as a line through the edges in the cut-set, i.e.

edges (u, v) ∈ E : u ∈ S, v ∈ T . Since an IG is a directed acyclic graph, the cut can

equally well be characterised by the vertices in S that are incident to edges in the

cut-set.

Example 2.14. The dashed line in Figure 2.7 is the cut ({G,N}, {¬B,B}) or alter-

natively just {G,N} to state the vertices in S incident to the cut-set.

19it is equally valid here to stop the search process because that clause is definitely unsatisfied,

rather than propagating it to cause a domain wipeout

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut
• If cut is too specific...

• doesn’t actually avoid the work of
branching

• If cut is too general...

• it may not save work

• e.g. just the set of branching
decisions

• Want a compromise

• First Unique Implication Point

• Find cut such that both
contradictory literals forced by
branching decision and nothing
else at this depth

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut
• If cut is too specific...

• doesn’t actually avoid the work of
branching

• If cut is too general...

• it may not save work

• e.g. just the set of branching
decisions

• Want a compromise

• First Unique Implication Point

• Find cut such that both
contradictory literals forced by
branching decision and nothing
else at this depth

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut
• Depth annotations

• 6.0 = set at depth 6 by
search

• 4.1 = set at depth 4, first
propagation

• c represents conflict

• i.e. empty clause

• i.e. ¬Y ∨ W with Y=1,
W=0

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Start with T = trivial cut

of conflict

• Loop until we have First
UIP cut

• choose deepest node
N with predecessors
in S

• add all predecessors
of N to T

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Start with T = trivial cut of

conflict c

• Loop until we have First UIP cut

• choose deepest node N with
predecessors in S

• add all predecessors of N to T

• Remove N from T

• Theorem:

• algorithm always gives us first
UIP cut

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Start with T = trivial cut

of conflict

• T = {c}

• line A

• deepest node in T = c

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Start with T = trivial cut

of conflict

• T = {c} (line A)

• deepest node in T = c

• Add predecessors

• Add W, ¬W to T

• Remove c

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Add W, ¬W to T

• Depths 6.1, 6.2

• T = {W, ¬W}

• line B

• deepest node in T = W

• Add predecessors

• Add Y to T

• Remove W

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Add Y to T

• T = {Y, ¬W}

• Depths 6.0, 6.1

• deepest node in T = ¬W

• Add predecessors

• Add Z, ¬X, Y to T

• Remove ¬W

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• Add Z, ¬X, Y to T

• T = {Y, Z, ¬X}

• line C

• Depths 6.0, 4.1, 5.3

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut Algorithm
• STOP

• We have reached UIP

• Unique depth 6 node

• i.e. search decision

• T is firstUIP Cut

• Cut is T = {Y, Z, ¬X}

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Z Y W

c

¬X ¬W

4.1

5.3

6.0 6.2

6.1

C B A

First UIP Cut
• Now we have learnt

• X ∨ ¬Y ∨ ¬Z

• We can add this clause

• If we backtrack to the
assignment Y=1

• the new clause will
propagate and set Y=0

Neil Moore, PhD thesis

• Clauses (fragment)

• ¬Y ∨ W

• X ∨ ¬Y ∨ ¬Z ∨ ¬W

Forgetting
• One problem

• If we learn a clause at every failed node

• and search exponential nodes

• we end up with exponentially many clauses

• Fortunately...

• all learnt clauses are implied

• i.e. does not change set of solutions

• but may help search

Forgetting
• This means we can ...

• delete any learnt clause ...

• at any time ...

• perfectly safely

• So need some kind of forgetting strategy

• e.g. activity based

• recently propagated clauses less likely to be
forgotten

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

VSIDS

• VSIDS means...

• Variable State Independent, Decaying Sum

• Most common example of an

• activity based heuristic

• heuristic for choice of branching literal

• Idea is to choose the most “active” variables
in some sense

VSIDS WARNING

• VSIDS comes from Chaff

• and like watched literals is included in the
Chaff patent

• IANAL (I am not a lawyer)

• So don’t believe anything I tell you about
the legal position

VSIDS
• Activity based heuristic

• Give each literal a counter.

• Set all counters to 0

• For each new learnt clause

• Increment counter for each literal in clause

• When we need a search decision

• choose literal with highest counter

• Every once in a while ...

• reduce all counters by a constant factor

• so that inactive literals decay over time

Problem with
understanding SAT solvers
• “Everyone knows” that

• watched literals/learning/VSIDS/forgetting/restarts

• is an unbeatable combination

• But nobody knows

• if it’s true

• why

• this is a real problem

• seems to be little to no research evaluating these
techniques scientifically

Learning in SAT &
Constraints

• From Constraints ...

• Conflict directed backjumping

• ... to SAT

• Learning in SAT

• VSIDS

• ... and back again

• s-learning and g-learning in Constraints

learning in constraints

• Saw that learning in Constraints affected SAT (Frost,
Dechter, Prosser, Ginsberg, Stallmann & Sussmann)

• More recently SAT work on learning come back to
constraints

• Mainly through

• Katsirelos and Bacchus 2003, 2005

• Katsirelos PhD thesis 2009

• Neil Moore PhD thesis 2011

learning in constraints
• Approach has been

• can we take ideas that work well in SAT?

• Apply them in Constraints

• And work out what we need to make them work?

• Answers are

• Yes we can

• Has been significant successes

• But not unqualified success story

s-learning
• s-learning was first approach used

• going back to E.g. Bayardo & Schrag

• Learn which combination of assignments cause
failure/propagation

• i.e. explanations are sets of assigned constraint
variables

• seems like natural extension of SAT learning

• since SAT based on assigned variables too

g-learning

• g-learning completely supersedes s-learning

• major contribution of Katsirelos PhD

• A better natural generalisation of SAT

• in SAT, assignment/disassignment the
same thing

• in Constraints, we need assignment/
disassignment as different things

g-explanation

• A g-explanation is just a set of assignments
and disassignments of variable/value pairs

• I often call v/v pairs literals anyway

• such that if all these commitments made

• and appropriate propagators used

• we get the failure/propagation the
explanation is justifying

Two problems

• Finding good explanations from constraints

• Adapting solver to cope with explanations,
backjumping, learning, etc

Finding good
explanations

• For each constraint propagator

• we need to be able to explain every
propagation

• with as good an explanation as possible

• as efficiently as possible

All-different
• How do we explain all-different?

• Suppose it is for failure

• Then there is a set of k variables

• With total number of values k-1 or less

• An explanation is ...

• the removals of all other values for all of the k variables
(but not others)

• Katsirelos 09

• And we see the value of g-explanation instead of s-

Lazy explanations
• SAT explanations are very cheap

• based on the clause that fails/propagates

• Can be expensive to compute Constraint explanations

• e.g. computing Hall sets after failure

• Often the explanation is never needed

• So it’s important to be lazy [Moore 2011]

• When propagation happens

• make minimal annotation of propagation

• Only compute explanation if it is needed

• e.g. to compute FirstUIP cut.

● ●
●

●●

●

●
●

●●●● ●●●●
●

●●

●

●●
●

●

●

●

●

●

●●
●

●●●
●

●●

●

●
●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●

●

●

●

● ●●●

●

●

●●

●
●

●

●

●

●

●

●

●●●●●
●

●

●
●●●●●●●● ●●●●●●●●●●●

●●

●
●

●
●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●● ●● ●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●
●

●● ●

●

●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●● ●●●
●

●●●●●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●

●

●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●

●
●●

●
●

●

●

●●
●

●●●

●

●

●

●
●● ●●

●
●
●

●

●
●●

●

●●

●
● ●

●●

●

●

●
●●

●●
●

●
●

●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●

●
●●

●
●

●

●

●

●●●● ●●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●●
●

●● ●●

●

● ●

●

●

●
●

●
●

●
●

●

●
●●

●

●
●●●●

●

●●
●●

●
●
●●

●●

●●
● ●
●

●

●
●

●
●

●

●
●

●
●

●
●●●

●
●

●

●●●●
●

● ●
●

●

●

●

●●●
●

●●

●
●●
●●●●

●

●
●
●

●

●
●●

●
●

●
●●

●●●●
●

● ●

●

●
●●

●

●
●●

●
●

●●

●

● ●

● ●

●
●●●

●
●

●
● ●

●
●
●●

●

●
●●

●

●
●
●●

●

●●

●
●●

●

●● ●
●●●●● ●

●
●

●●●●
●
●

●●
●

●

●
●● ●

●
● ●

●
●

●●●

●

●

●

●
●

●

● ●
●●

●●
●

●

●

●
●

●
●●●
●● ●●

●
●

●
●●●

●●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●

●

●
●

●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●
●

●
●●

●●●●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●●●●●

●

●●●●●

●
●

●
●

●
●

●

●●●

●

●

●

●●●

●

●●●
●●●●●
●●●● ● ●

●

●

●

●
●

●● ●
●

● ● ●●
●

●
●

●●
●●

●
●

●●
●● ● ●●

●
●● ●● ●● ●●● ●● ●●● ●●●

●
●●

●

●
●●●

●

●●

●

●

●
●

●●
●
●

●●● ●●●●● ●
●●

●●

●

●

● ●●●● ●●●●● ●● ●

●

●●● ●
●

●

●
●

●
●

●

●

●●●
●
●●●●●● ●●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●● ●●● ●

●

●●●●●●●●●● ●●●

●

●● ●●● ●●● ●●●●●●●●● ●●●

●

●●

●

●● ●

●

● ●●● ●
●
●●●●

●
●●

●

●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●● ●●●

●

●●

●

●●

●

●●●●●●●●●●● ●●● ●●●

●

●

●

●
●

●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●
●

●●●

●●
●

●●

●

●

●

●

●

●

●

● ●
●

●●
●

●● ●● ●
●

●
●

●● ●
●

●
●

●
●●
●
●●

●

●

●

●

●

●●●●

●
●●●

●●●●●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●● ●

●

● ●●●●●●●●●● ●

●
●

●

● ●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●●
●

●●●●
●

●

● ●●

●

●

●

●
●

●
●●

●

●

●●●

●

●
●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●●

●●

●
●●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●● ●●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●●

●

●
●●●

●

●
●

●

●
●

●

●
●

●●
●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●●

●
●●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●
●● ●

●

●

●

● ●

●

●

●

●

● ●

● ●
●

●

●

●
●

●●●●
●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●●●●

●

●

●

●

●

●●●●●
●

●
●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●●●●

●

●●

●●●●

●

●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●

●
●

●
●

●●
●

●

●
●

●

●

●

●●●
●●

●

●

●●●●●

●●

●●●●●●●●●●●●●
●
●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●●●●●●●● ●● ●● ●● ●
●

●

●

●

●●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

0.1 1.0 10.0 100.0 1000.0

0.0001

0.0100

1.0000

100.0000

10000.0000

Minion solve time [s]

Minion solve time over Minion−lazy solve time

Win some, lose some
• Can have huge successes

• Learning beats minion by
10,000 times

• and huge failures

• Minion beats learning by
1000 times

• Just because of overheads

• One workaround is to use ML

• learn when to use learning

G
en

t,
Je

ffe
rs

on
, K

ot
th

of
f,

M
ig

ue
l,

M
oo

re
, N

ig
ht

in
ga

le
, P

et
ri

e,
 2

01
0

above y=1 means lazy learning better

