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Topics in this Series

• Why SAT & Constraints? 

• SAT basics

• Constraints basics

• Encodings between SAT and Constraints

• Watched Literals in SAT and Constraints

• Learning in SAT and Constraints

• Lazy Clause Generation + SAT Modulo 
Theories



SMT & LCG

• SAT Modulo Theories

• Lazy Clause Generation

• Two areas where constraints/SAT most 
tightly integrated



SAT Modulo Theories
• Extremely important & trendy area

• Will dismiss it in a few slides 

• because ... 

• Integration with Constraints not so tight ... and 

• Nieuwenhuis & Stuckey agree they are converging 
together ... and 

• I am running out of time ... and 

• I know very little about it ... and 

• I like “Lazy Talk Generation”



SMT

• Idea is simple

• SAT is very good at search on literals

• We may have theory reasoners good at their 
thing 

• Combine the two 

• Search using SAT

• Reason using theory reasoner



SMT example
• Simple example based on 

software checking

• solution means type error

• SAT literals are 

• x>0

• y>0

• x>y

• y-x ≤ 0

• 42 ≤ 0 [= false]
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However the practical usage and fine details of their respective solvers differ

greatly. In SMT the emphasis is on extending SAT with a selection of theories to allow

selected problems to be modelled more directly and solved more efficiently. In CSP,

the emphasis is on providing a rich and general set of constraints for modelling any

appropriate problem, and that the solvers should expose many options and strategies

to the user. I will first give an example of a typical SMT model, and then describe

the highlights of the solvers.

Example 2.24 (Based on [Gor09]). SMT commonly finds application in hardware

and software verification problems. In programming language type systems, variables

may be given a complex refinement type such as x : x ≥ 0 (read “x such that x ≥ 0”).

The requirement on the type system is to prove that given the input types and oper-

ations carried out, the output can never differ from its type. Consider the following

code and suppose +ve is the positive integer type:

function foo(x : +ve, y : +ve) : +ve = if x > y then y − x else 42

Now the aim is to automatically prove that the result must be +ve. This is done

by trying to find an assignment to x and y such that the result is -ve, which can be

modelled as:

x > 0

∧ y > 0

∧ (x > y → y − x ≤ 0)

∧ (x ≤ y → 42 ≤ 0)

The first term types x and y. The third term checks the result if the condition is true.

The fourth term checks the type if the condition is false. If all 4 can be satisfied at

once it denotes a type error. Hence, if a solution is found, a type error exists; if the

solver finds no solution, the program is well-typed. In this case a solution exists when

x = 10, y = 9 so the program is wrongly typed.

This SMT example is basically a SAT, except literals have been replaced by theory

terms like x > y. In this case the theory is linear arithmetic [KS08] since only
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SMT example
• Simple example based on 

software checking

• solution means type error

• SAT literals are 

• searched on as if simple 
literals 

• i.e. SAT solvers knows 
nothing about inequalities

• solution found by assigning 
literals true / false
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SMT example

• SAT might search to get...

• x>0   T

• y>0    T

• x>y     F 

• y-x ≤ 0  T

• 42 ≤ 0   T

2.6. LEARNING 57

However the practical usage and fine details of their respective solvers differ

greatly. In SMT the emphasis is on extending SAT with a selection of theories to allow

selected problems to be modelled more directly and solved more efficiently. In CSP,

the emphasis is on providing a rich and general set of constraints for modelling any

appropriate problem, and that the solvers should expose many options and strategies

to the user. I will first give an example of a typical SMT model, and then describe

the highlights of the solvers.

Example 2.24 (Based on [Gor09]). SMT commonly finds application in hardware

and software verification problems. In programming language type systems, variables

may be given a complex refinement type such as x : x ≥ 0 (read “x such that x ≥ 0”).

The requirement on the type system is to prove that given the input types and oper-

ations carried out, the output can never differ from its type. Consider the following

code and suppose +ve is the positive integer type:

function foo(x : +ve, y : +ve) : +ve = if x > y then y − x else 42

Now the aim is to automatically prove that the result must be +ve. This is done

by trying to find an assignment to x and y such that the result is -ve, which can be

modelled as:

x > 0

∧ y > 0

∧ (x > y → y − x ≤ 0)

∧ (x ≤ y → 42 ≤ 0)

The first term types x and y. The third term checks the result if the condition is true.

The fourth term checks the type if the condition is false. If all 4 can be satisfied at

once it denotes a type error. Hence, if a solution is found, a type error exists; if the

solver finds no solution, the program is well-typed. In this case a solution exists when

x = 10, y = 9 so the program is wrongly typed.

This SMT example is basically a SAT, except literals have been replaced by theory

terms like x > y. In this case the theory is linear arithmetic [KS08] since only

Moore PhD, based on Gordon 2009



SMT example
• SAT literals are 

• searched on as if simple literals 

• i.e. SAT solvers knows nothing about 
inequalities

• solution found by assigning literals 
true / false

• SAT solution given to theory reasoner 

• which either 

• accepts it 

• or fails and gives explanation

• Explanations are clauses and treated as in 
SAT solving
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SMT example

• SAT might search to get...

• ...

• x>y     F 

• 42 ≤ 0   T

• Fail! 

• Learnt clause might be 

• x>y     
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SMT example
• SAT literals are 

• x>0   T

• y>0    T

• x>y     T 

• y-x ≤ 0  T

• 42 ≤ 0   F

• Theory reasoner succeeds!

• sets e.g. x=9, y=10

• so software bugged
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SMT Solving
• Search in SAT

• Theory Decisions

• Theory Propagation

• not seen in toy example

• tell theory about every decision

• let it propagate (if it can) 

• and communicate results by explanation

• Learning and Theory Explanations



SMT vs Constraints
• SMT has broader reach than constraints

• Can use any theory we like

• If we can code it as a theory 

• Many theories encoded into SMT

• Theories need not even be decidable

• so more general than Constraints

• SMT has less coverage in constraints

• Constraint type theories not well developed

• E.g. Alldiff theory only recently produced (2010??) 

• Not clear that propagation as effective



Lazy Clause Generation

• Alternative track of research 

• starting with

• Ohrimenko,  Stuckey, and Codish, 2007

• But as optimisations made on both sides

• SMT and LCG converging

• So SMT more general

• But LCG much better at constraint problems  



Lazy Talk Generation

• Dear Peter ...

“I wonder if there's a lazy solution for 
me, to steal some of your slides on lazy 
clause generation?    This would save me 
lots of time and also let me present it 
accurately instead of wrongly!    It won't 
go without saying I'd give you full credit 
for the slides.”

• Slides available from

 http://ww2.cs.mu.oz.au/~pjs/637/lec/


