
CP Summer School
June 2011 Slide 1

Integrating CP and
Mathematical Programming

John Hooker
Carnegie Mellon University

June 2011

Why Integrate CP and MP?

Complementary strengths
Computational advantages

Outline of the Tutorial

CP Summer School
June 2011 Slide 2

Complementary Strengths

• CP:

– Inference methods

– Modeling

– Exploits local structure

• MP:

– Relaxation methods

– Tools for filtering

– Duality theory

– Exploits global structure

Let’s bring them
together!

CP Summer School
June 2011 Slide 3

Computational Advantage of
Integrating CP and MP

Using CP + relaxation from MP

Problem Relaxation Speedup

Lesson
timetabling

Assignment +
reduced cost
variable fixing

2 to 50 times faster
than CP

Production
planning with
piecewise linear
costs

Convex hull 20 to 120 times
faster than MILP

(CPLEX 12).
Search tree 1000-
8000 times smaller

Automatic digital
recording

Lagrangean 1 to 10 times faster
than MILP, which is

faster than CP.

CP Summer School
June 2011 Slide 4

Computational Advantage of
Integrating CP and MP

Using CP + relaxation from MP

Problem Relaxation Speedup

Radiation therapy Lagrangean 10 times faster than
CP, MILP

Stable set Semidefinite
programming

Better than CP in
less time

Structural design
(nonlinear &
discrete)

Linear quasi-
relaxation + logic

cuts

Up to 600 times
faster than MILP,

GO software
2 problems: <6 min
vs >20 hrs for MILP

CP Summer School
June 2011 Slide 5

Computational Advantage of
Integrating CP and MP

Using CP-based Branch and Price

Problem Speedup

Urban transit crew
scheduling

Optimal schedule for twice
as many trips as traditional

branch and price

Traveling tournament
problem

First to solve
8-team instance

CP Summer School
June 2011 Slide 6

Computational Advantage of
Integrating CP and MP

Using Benders methods

Problem Method Speedup

Min-cost
machine
assignment &
scheduling

MILP/CP
Benders

20 to 1000 times
faster than CP,

MILP

Same SIMPL
implementation

Solved some
problems in < 1 sec
that are intractable

for CP, MILP

Polypropylene
batch scheduling
at BASF

MILP/CP
Benders

Solved previously
insoluble problem in

10 min

CP Summer School
June 2011 Slide 7

Computational Advantage of
Integrating CP and MP

Using Benders methods

Problem Method Speedup

Single-machine
scheduling

MILP/CP
Benders

Solved much longer
time horizons than

MILP, CP

Facility assignment
and resource-
constrained scheduling
(min cost,
min makespan)

MILP/CP
Benders +

subproblem
relaxations

100-1000 times
faster than CP, MILP

Sports scheduling MILP/CP
Benders

Several orders of
magnitude relative to

state of the art

CP Summer School
June 2011 Slide 8

Software for Integrating CP and MP

• ECLiPSe

– Exchanges information between ECLiPSEe solver, Xpress-MP

• OPL Studio (IBM)

– Combines CPLEX and ILOG CP Optimizer with script language

• Xpress-Mosel (FICO)

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• G12 (NICTA)

– Maps problem into script for cooperating solvers

• SIMPL (CMU)

– Full integration with high-level modeling (prototype)

• SCIP (ZIB)

– Combines MILP and CP-based propagation

CP Summer School
June 2011 Slide 9

Outline of the Tutorial

• Why Integrate OR and CP?

• A Glimpse at CP

• Initial Example: Integrated Methods

• CP Concepts

• CP Filtering Algorithms

• Linear Relaxation and CP

• Mixed Integer/Linear Modeling

• Network Flows and Filtering

• Integral Polyhedra

• Cutting Planes

• Lagrangean Relaxation and CP

• Dynamic Programming in CP

• CP-based Branch and Price

• CP-based Benders Decomposition
CP Summer School
June 2011 Slide 10

Detailed Outline

• Why Integrate OR and CP?
• Complementary strengths
• Computational advantages
• Outline of the tutorial

• A Glimpse at CP
• Early successes
• Advantages and disadvantages

• Initial Example: Integrated Methods
• Freight Transfer
• Bounds Propagation
• Cutting Planes
• Branch-infer-and-relax Tree

CP Summer School
June 2011 Slide 11

Detailed Outline

• CP Concepts
• Consistency
• Hyperarc Consistency
• Modeling Examples

• CP Filtering Algorithms
• Element
• Alldiff
• Disjunctive Scheduling
• Cumulative Scheduling

• Linear Relaxation and CP
• Why relax?
• Algebraic Analysis of LP
• Linear Programming Duality
• LP-Based Domain Filtering
• Example: Single-Vehicle Routing
• Disjunctions of Linear Systems

CP Summer School
June 2011 Slide 12

Detailed Outline

• Mixed Integer/Linear Modeling
• MILP Representability
• 4.2 Disjunctive Modeling
• 4.3 Knapsack Modeling

• Network Flows and Filtering
• Min Cost Network Flow
• Max Flow
• Filtering: Cardinality
• Filtering: Sequence

• Integral Polyhedra
• Total Unimodularity
• Network Flow Matrices
• Interval Matrices

CP Summer School
June 2011 Slide 13

Detailed Outline

• Cutting Planes
• 0-1 Knapsack Cuts
• Gomory Cuts
• Mixed Integer Rounding Cuts
• Example: Product Configuration

• Lagrangean Relaxation and CP
• Lagrangean Duality
• Properties of the Lagrangean Dual
• Example: Fast Linear Programming
• Domain Filtering
• Example: Continuous Global Optimization

CP Summer School
June 2011 Slide 14

Detailed Outline

• Dynamic Programming in CP
• Example: Capital Budgeting
• Domain Filtering
• Recursive Optimization
• Filtering: Stretch
• Filtering: Regular

• CP-based Branch and Price
• Basic Idea
• Example: Airline Crew Scheduling

• CP-based Benders Decomposition
• Benders Decomposition in the Abstract
• Classical Benders Decomposition
• Example: Machine Scheduling

CP Summer School
June 2011 Slide 15

Background Reading

This tutorial is based on:

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed.,
Springer (to appear 2011). Contains exercises.

CP Summer School
June 2011 Slide 16

A Glimpse at Constraint Programming

Early Successes
Advantages and Disadvantages

CP Summer School
June 2011 Slide 17

What is constraint programming?

• It is a relatively new technology developed in the computer
science and artificial intelligence communities.

• It has found an important role in scheduling, logistics and supply
chain management.

CP Summer School
June 2011 Slide 18

• Container port scheduling
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control
(Siemens, Xerox)

Early commercial successes

CP Summer School
June 2011 Slide 19

Applications

• Job shop scheduling

• Assembly line smoothing
and balancing

• Cellular frequency
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

CP Summer School
June 2011 Slide 20

• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food,
nuclear fuel)

• Warehouse management

• Course timetabling

Applications

CP Summer School
June 2011 Slide 21

Advantages and Disadvantages

CP vs. Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering,
constraint propagation)

Atomistic modeling
(linear inequalities)

High-level modeling
(global constraints)

Branching Branching

Independence of model
and algorithm

Constraint-based
processing

CP Summer School
June 2011 Slide 22

Programming ≠ programming

• In constraint programming :

• programming = a form of computer programming
(constraint-based processing)

• In mathematical programming :

• programming = logistics planning (historically)

CP Summer School
June 2011 Slide 23

CP vs. MP

• In mathematical programming , equations
(constraints) describe the problem but don’t tell how to
solve it.

• In constraint programming , each constraint invokes a
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes
an operation.

CP Summer School
June 2011 Slide 24

Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or
when constraints have few variables.

CP Summer School
June 2011 Slide 25

Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well.

• Often not good for finding optimal solutions.

• Due to lack of relaxation technology.

• May not scale up

• Discrete combinatorial methods

• Software is not robust

• Younger field

CP Summer School
June 2011 Slide 26

Obvious solution…

• Integrate CP and MP.

CP Summer School
June 2011 Slide 27

Trends

• CP is better known in continental Europe, Asia.

• Less known in North America, seen as threat to OR.

• CP/MP integration is growing

• Eclipse, Mozart, OPL Studio, SIMPL, SCIP, BARON

• Heuristic methods increasingly important in CP

• Discrete combinatorial methods

• MP/CP/heuristics may become a single technology.

CP Summer School
June 2011 Slide 28

Initial Example: Integrated Methods

Freight Transfer
Bounds Propagation

Cutting Planes
Branch-infer-and-relax Tree

CP Summer School
June 2011 Slide 29

Example: Freight Transfer

• Transport 42 tons of freight overnight in trucks that come in
4 sizes…

• 8 loading docks available.

• Allocate 3 loading docks to the largest trucks even if only 1 or 2 of
these trucks are used.

Truck
size

Number
available

Capacity

(tons)

Cost
per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

CP Summer School
June 2011 Slide 30

Truck
type

Number
available

Capacity

(tons)

Cost
per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

() ()

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

1 2 5

{0,1,2,3}i

x x x x

x x x x

x x x x

x x x x

x

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ⇒ + + ≤
∈

Number of trucks of type 1

Knapsack
covering
constraint

Knapsack
packing
constraint Conditional

constraint

CP Summer School
June 2011 Slide 31

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

() ()

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

1 2 5

{0,1,2,3}i

x x x x

x x x x

x x x x

x x x x

x

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ⇒ + + ≤
∈

CP Summer School
June 2011 Slide 32

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced
domain

() ()

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

1 2 5

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

x x x x

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ⇒ + + ≤
∈ ∈

CP Summer School
June 2011 Slide 33

• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and

• xj = Uj in some feasible solution.

• Bounds consistency ⇒ we will not set xj to any infeasible
values during branching.

• Bounds propagation achieves bounds consistency for a
single inequality .

• 7x1 + 5x2 + 4x3 + 3x4 ≥ 42 is bounds consistent when the
domains are x1 ∈ {1,2,3} and x2, x3, x4 ∈ {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency

CP Summer School
June 2011 Slide 34

� Bounds propagation may not achieve bounds consistency
for a set of constraints.

� Consider set of inequalities

with domains x1, x2 ∈ {0,1}, solutions (x1,x2) = (1,0), (1,1).

� Bounds propagation has no effect on the domains.

� But constraint set is not bounds consistent because x1 = 0
in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

+ ≥
− ≥

CP Summer School
June 2011 Slide 35

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains
with bounds

This is a linear programming problem, which is easy to
solve.

Its optimal value provides a lower bound on optimal
value of original problem.

CP Summer School
June 2011 Slide 36

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum
value) with the addition of cutting planes .

CP Summer School
June 2011 Slide 37

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the
original problem satisfy a
cutting plane (i.e., it is valid).

But a cutting plane may
exclude (“cut off ”) solutions of
the continuous relaxation.

Cutting
plane

Feasible solutions

Continuous
relaxation

CP Summer School
June 2011 Slide 38

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality,
even with x1 = x2 = 3.

CP Summer School
June 2011 Slide 39

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut

CP Summer School
June 2011 Slide 40

Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈

≥ −∑ ∑0i i i i
i P i P

a x a a U

and generates a general integer knapsack cut

{ }
∈

∉
∉

 −
 ≥
 
  

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a

CP Summer School
June 2011 Slide 41

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4 ≥ 2

{1,3} x2 + x4 ≥ 2

{1,4} x2 + x3 ≥ 3

{2,3,4} x1 ≥ 1

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant

Propagated bound

CP Summer School
June 2011 Slide 42

+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value
of original problem.

Knapsack cuts

CP Summer School
June 2011 Slide 43

Branch-
infer-and-
relax tree
Propagate bounds
and solve
relaxation of
original problem.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

CP Summer School
June 2011 Slide 44

Branch on a
variable with
nonintegral value
in the relaxation.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

CP Summer School
June 2011 Slide 45

Propagate bounds
and solve
relaxation.

Since relaxation
is infeasible,
backtrack.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

CP Summer School
June 2011 Slide 46

Propagate bounds
and solve
relaxation.

Branch on
nonintegral
variable.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

Branch-infer-
and-relax tree

CP Summer School
June 2011 Slide 47

Branch again.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

CP Summer School
June 2011 Slide 48

Solution of
relaxation
is integral and
therefore feasible
in the original
problem.

This becomes the
incumbent
solution .

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

CP Summer School
June 2011 Slide 49

Solution is
nonintegral, but
we can backtrack
because value of
relaxation is
no better than
incumbent solution.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

CP Summer School
June 2011 Slide 50

Another feasible
solution found.

No better than
incumbent solution,
which is optimal
because search
has finished.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 3}
x3 ∈ {012 }
x4 ∈ {012 }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

CP Summer School
June 2011 Slide 51

Two optimal
solutions found.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 3}
x3 ∈ {012 }
x4 ∈ {012 }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ { }
x2 ∈ { }
x3 ∈ { }
x4 ∈ { }

infeasible

CP Summer School
June 2011 Slide 52

Constraint Programming Concepts

Consistency
Generalized Arc Consistency

Modeling Examples

CP Summer School
June 2011 Slide 53

Consistency

• A constraint set is consistent if every partial assignment to the
variables that violates no constraint is feasible.

• i.e., can be extended to a feasible solution.

• Consistency ≠ feasibility

• Consistency means that any infeasible partial assignment is
explicitly ruled out by a constraint.

• Fully consistent constraint sets can be solved without
backtracking .

CP Summer School
June 2011 Slide 54

Consistency

Consider the constraint set

It is not consistent, because x1 = 0 violates no constraint
and yet is infeasible (no solution has x1 = 0).

Adding the constraint x1 = 1 makes the set consistent.

{ }

1 100

1 100

1

0

0,1j

x x

x x

x

+ ≥
− ≥
∈

CP Summer School
June 2011 Slide 55

subtree with 299 nodes
but no feasible solution

By adding the constraint
x1 = 1, the left subtree is
eliminated

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =

CP Summer School
June 2011 Slide 56

Generalized Arc Consistency (GAC)

• Also known as hyperarc consistency .

• A constraint set is GAC if every value in every variable
domain is part of some feasible solution.

• That is, the domains are reduced as much as
possible.

• If all constraints are “binary” (contain 2 variables),
GAC = arc consistency.

• Domain reduction is CP’s biggest engine.

CP Summer School
June 2011 Slide 57

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 58

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 59

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 60

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 61

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 62

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 63

Graph coloring problem that can be solved by arc
consistency maintenance alone. Color nodes with red,
green, blue with no two adjacent nodes having the same
color.

CP Summer School
June 2011 Slide 64

Modeling Examples with Global Constraints

Traveling Salesman

Traveling salesman problem:

Let cij = distance from city i to city j.

Find the shortest route that visits each of n cities exactly
once.

CP Summer School
June 2011 Slide 65

Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1, all

1, all

1, all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints

CP Summer School
June 2011 Slide 66

A CP model

Let yk = the kth city visited.

The model would be written in a specific constraint programming
language but would essentially say:

Variable indices

“Global” constraint
{ }

1

1

min

s.t. alldiff(, ,)

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…

CP Summer School
June 2011 Slide 67

{ }
1

min

s.t. circuit(, ,)

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit
constraint

CP Summer School
June 2011 Slide 68

The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth
value in the list

(this is a slightly different constraint)

Add the
constraint
z = xy

()1

5

element ,(, ,),n

z

y c c z

≤
…

()1

5

element ,(, ,),n

z

y x x z

≤
…

CP Summer School
June 2011 Slide 69

Day: 1 2 3 4 5 6 7 8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Modeling example: Lot sizing and scheduling

CP Summer School
June 2011 Slide 70

,

, 1

, 1

, 1

, 1

, 1

min

s.t. , all ,

, all ,

, all ,

1 , all ,

1, all , ,

, all , ,

, all , ,

it it ij ijt
t i j t

i t it it it

it it i t

it it

it i t

ijt i t jt

ijt i t

ijt jt

i

h s q

s x d s i t

z y y i t

z y i t

z y i t

y y i j t

y i j t

y i j t

x

δ

δ
δ
δ

≠

−

−

−

−

−

 
+ 

 

+ = +
≥ −
≤
≤ −
≥ + −
≥
≥

∑ ∑

, all ,

1, all

, , {0,1}

, 0

t it

it
i

it it ijt

it it

Cy i t

y t

y z

x s

δ

≤
=

∈
≥

∑

Integer
programming
model

(Wolsey)

Many variables

CP Summer School
June 2011 Slide 71

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Inventory balance

Production capacity

CP Summer School
June 2011 Slide 72

() ()

1

, 1

min

s.t. , all ,

0 , 0, all ,

0 , all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity

CP Summer School
June 2011 Slide 73

• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must
not exceed L.

Job start times
(variables)

Job processing times
Job resource
requirements

Cumulative scheduling constraint

()1 1 1cumulative (, ,),(, ,),(, ,),n n nt t p p c c L… … …

CP Summer School
June 2011 Slide 74

()1 5

1

5

min

s.t. cumulative (, ,),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling constraint

CP Summer School
June 2011 Slide 75

• Will use ILOG’s OPL Studio modeling language.

• Example is from OPL manual.

• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of
workers.

• Total of 8 workers available.

Modeling example: Ship loading

CP Summer School
June 2011 Slide 76

Item Dura-
tion

Labor

1 3 4

2 4 4

3 4 3

4 6 4

5 5 5

6 2 5

7 3 4

8 4 3

9 3 4

10 2 8

11 3 4

12 2 5

13 1 4

14 5 3

15 2 3

16 3 3

17 2 6

Item Dura-
tion

Labor

18 2 7

19 1 4

20 1 4

21 1 4

22 2 4

23 4 7

24 5 8

25 2 8

26 1 3

27 1 3

28 2 6

29 1 8

30 3 3

31 2 3

32 1 3

33 2 3

34 2 3

Problem data

CP Summer School
June 2011 Slide 77

1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints

CP Summer School
June 2011 Slide 78

Use the cumulative scheduling constraint.

()
1 2

1 34

2 1 4 1

min

s.t. 3, 4, etc.

cumulative (, ,),(3,4, ,2),(4,4, ,3),8

3, 3, etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …

CP Summer School
June 2011 Slide 79

int capacity = 8;
int nbTasks = 34;
range Tasks 1..nbTasks;
int duration[Tasks] = [3,4,4,6,…,2];
int totalDuration =

sum(t in Tasks) duration[t];
int demand[Tasks] = [4,4,3,4,…,3];
struct Precedences {

int before;
int after;

}
{Precedences} setOfPrecedences = {

<1,2>, <1,4>, …, <33,34> };

OPL model

CP Summer School
June 2011 Slide 80

scheduleHorizon = totalDuration;
Activity a[t in Tasks](duration[t]);
DiscreteResource res(8);
Activity makespan(0);
minimize

makespan.end
subject to

forall(t in Tasks)
a[t] precedes makespan;

forall(p in setOfPrecedences)
a[p.before] precedes a[p.after];

forall(t in Tasks)
a[t] requires(demand[t]) res;

};

CP Summer School
June 2011 Slide 81

Capacity
C1

Capacity
C2

Capacity
C3

Manufacturing
Unit

Storage
Tanks

Packing
Units

Modeling example: Production scheduling with
intermediate storage

CP Summer School
June 2011 Slide 82

Level

t u t + (b/r) u + (b/s)

Filling starts

Packing starts Filling ends
Packing ends

Batch size

Manufac-
turing rate Packing rate

Need to enforce
capacity constraint
here only

Filling of storage tank

CP Summer School
June 2011 Slide 83

()

1

1

min

s.t. , all

, all

cumulative , , ,

, all

1 , all

cumulative , , , , ,

0

j
j

j

j j

i
i i i

i

i
i i i i

i

n

n

j j

T

b
T u j

s

t R j

t v e m

b
v u t i

s

s
b s u C i

r

b b
u e p

s s

u t

≥ +

≥

= + −

 
− + ≤ 

 

  
   

  

≥ ≥

…

Makespan

Job release time

m storage tanks

Job duration

Tank capacity

p packing units

e = (1,…,1)
CP Summer School
June 2011 Slide 84

Modeling example: Employee scheduling

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in
a row.

CP Summer School
June 2011 Slide 85

Two ways to view the problem

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A

Shift 2 C C C B B B B

Shift 3 D D D D C C D

Assign nurses to shifts

Sun Mon Tue Wed Thu Fri Sat

Nurse A 1 0 1 1 1 1 1

Nurse B 0 1 0 2 2 2 2

Nurse C 2 2 2 0 3 3 0

Nurse D 3 3 3 3 0 0 3

Assign shifts to nurses

0 = day offCP Summer School
June 2011 Slide 86

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff(, ,), all d d dw w w d The variables w1d, w2d,
w3d take different values

That is, schedule 3
different nurses on each
day

CP Summer School
June 2011 Slide 87

()
1 2 3alldiff(, ,), all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6
times in the array w, and similarly
for B, C, D.

That is, each nurse works at least
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

CP Summer School
June 2011 Slide 88

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take
at least 1 and at most 2 different
values.

That is, at least 1 and at most 2
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

CP Summer School
June 2011 Slide 89

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

()1 2 3,alldiff , all ,d d dy y y d

Assign a different nurse to each
shift on each day.

This constraint is redundant of
previous constraints, but
redundant constraints speed
solution.

CP Summer School
June 2011 Slide 90

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least
two days in a row.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

CP Summer School
June 2011 Slide 91

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s,
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

CP Summer School
June 2011 Slide 92

Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the
problem easier to solve.

CP Summer School
June 2011 Slide 93

The complete model is:

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

CP Summer School
June 2011 Slide 94

CP Filtering Algorithms

Element
Alldiff

Disjunctive Scheduling
Cumulative Scheduling

CP Summer School
June 2011 Slide 95

Filtering for element

Variable domains can be easily filtered to maintain GAC.

Domain of z

()1element ,(, ,),ny x x z…

{ }
{ }

|

 if

 otherwise

j

y

j

j

j

z z x
j D

y y z x

z y
x

x

D D D

D D j D D

D D j
D

D

∈

← ∩

← ∩ ∩ ≠ ∅

 = ←  
  

∪

CP Summer School
June 2011 Slide 96

Example...

The initial domains are: The reduced domains are:

()1 2 3 4element ,(, , ,),y x x x x z

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

20,30,60,80,90

1,3,4

10,50

10,20

40,50,80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

80,90

3

10,50

10,20

80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

Filtering for element

CP Summer School
June 2011 Slide 97

Filtering for alldiff

Domains can be filtered with an algorithm based on maximum
cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

()1alldiff , , ny y…

CP Summer School
June 2011 Slide 98

Filtering for alldiff

Consider the domains

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

CP Summer School
June 2011 Slide 99

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

CP Summer School
June 2011 Slide 100

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

CP Summer School
June 2011 Slide 101

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

CP Summer School
June 2011 Slide 102

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

CP Summer School
June 2011 Slide 103

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

CP Summer School
June 2011 Slide 104

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

CP Summer School
June 2011 Slide 105

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

CP Summer School
June 2011 Slide 106

y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite
matching.

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

CP Summer School
June 2011 Slide 107

Filtering for alldiff

Domains have been filtered:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y

∈
∈
∈
∈
∈

GAC achieved.

CP Summer School
June 2011 Slide 108

Disjunctive scheduling

Consider a disjunctive scheduling constraint:

Start time variables

CP Summer School
June 2011 Slide 109

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Processing times

CP Summer School
June 2011 Slide 110

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Variable domains defined by time
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −

CP Summer School
June 2011 Slide 111

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

A feasible (min makespan) solution:

Time window

CP Summer School
June 2011 Slide 112

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

CP Summer School
June 2011 Slide 113

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding
to prove that there is no
feasible schedule.

CP Summer School
June 2011 Slide 114

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

CP Summer School
June 2011 Slide 115

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline

CP Summer School
June 2011 Slide 116

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time

CP Summer School
June 2011 Slide 117

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Total processing time

CP Summer School
June 2011 Slide 118

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of

{3} {3} 4L p− =

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =

CP Summer School
June 2011 Slide 119

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

CP Summer School
June 2011 Slide 120

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =

CP Summer School
June 2011 Slide 121

Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+

CP Summer School
June 2011 Slide 122

Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets J of jobs
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−

CP Summer School
June 2011 Slide 123

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

CP Summer School
June 2011 Slide 124

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

Removing a job from those within an interval only weakens the
test

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals
defined by release times and deadlines.CP Summer School

June 2011 Slide 125

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time
windows lie within some interval.

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

Note: Edge finding does not achieve bounds consistency,
which is an NP-hard problem.

CP Summer School
June 2011 Slide 126

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

CP Summer School
June 2011 Slide 127

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

For each job

Scan jobs in decreasing order of

Select first for which

Conclude that

Update to JPS(,)

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing
time in JPS of jobs in Jik

CP Summer School
June 2011 Slide 128

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

()4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3

CP Summer School
June 2011 Slide 129

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

()4 {1,2}¬ ≪

CP Summer School
June 2011 Slide 130

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

CP Summer School
June 2011 Slide 131

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an
efficient algorithm is quite complicated.

CP Summer School
June 2011 Slide 132

Cumulative scheduling

Consider a cumulative scheduling constraint:

()1 2 3 1 2 3 1 2 3cumulative (, ,),(, ,),(, ,),s s s p p p c c c C

A feasible solution:

CP Summer School
June 2011 Slide 133

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

CP Summer School
June 2011 Slide 134

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8

CP Summer School
June 2011 Slide 135

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8Area available
= 20

CP Summer School
June 2011 Slide 136

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10

CP Summer School
June 2011 Slide 137

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4

CP Summer School
June 2011 Slide 138

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4 Move up job 3
release time
4/2 = 2 units
beyond E{1,2}

E3

CP Summer School
June 2011 Slide 139

Edge finding for cumulative scheduling

In general, if (){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+ 

 

In general, if (){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to

()() 0

()()
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
− 

 

CP Summer School
June 2011 Slide 140

Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the
edge finding rules.

CP Summer School
June 2011 Slide 141

Other propagation rules for cumulative
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.

CP Summer School
June 2011 Slide 142

Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing
Disjunctions of Linear Systems

CP Summer School
June 2011 Slide 143

Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation
can pool relaxations of several constraints.

CP Summer School
June 2011 Slide 144

Some MP models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.

CP Summer School
June 2011 Slide 145

Motivation

• Linear programming is remarkably versatile for representing
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory .

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .

CP Summer School
June 2011 Slide 146

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP

CP Summer School
June 2011 Slide 147

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP

CP Summer School
June 2011 Slide 148

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[]=A B N

Any set of
m linearly
independent
columns of A.

These form a
basis for the
space spanned
by the columns.

Nonbasic
variables

CP Summer School
June 2011 Slide 149

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.

CP Summer School
June 2011 Slide 150

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible
solution

x1

x2

CP Summer School
June 2011 Slide 151

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −+ −1 1()B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0,
basic solution (xB,0)
is optimal if
reduced costs are
nonnegative.

CP Summer School
June 2011 Slide 152

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this
basic feasible
solution

x1

x2

CP Summer School
June 2011 Slide 153

Example…

[] []   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

CP Summer School
June 2011 Slide 154

[] []   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN

CP Summer School
June 2011 Slide 155

Example…

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[] []   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b

CP Summer School
June 2011 Slide 156

[] []

[] []

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
−   = −    −   

≥=

Example…
Basic solution is

Reduced costs are

Solution is
optimal

[] []   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

CP Summer School
June 2011 Slide 157

Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the
objective function that is implied by the constraints.

CP Summer School
June 2011 Slide 158

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

That is, some surrogate
(nonnegative linear
combination) of
Ax ≥ b dominates cx ≥ v

CP Summer School
June 2011 Slide 159

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the

classical
LP dual

CP Summer School
June 2011 Slide 160

This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the
classical
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).

CP Summer School
June 2011 Slide 161

λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ()

()

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1(2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost
CP Summer School
June 2011 Slide 162

Weak Duality

If x* is feasible in the
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the
dual problem

then cx* ≥ λ*b.

This is because
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual
feasible

and x* ≥ 0

x* is primal
feasible

and λ* ≥ 0

CP Summer School
June 2011 Slide 163

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

The dual of the perturbed LP has the
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the
perturbed dual.

CP Summer School
June 2011 Slide 164

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

By weak duality, the optimal value of the perturbed LP is at least
λ*(b + ∆b) = λ*b + λ*∆b.

So λi* is a lower bound on the marginal cost of increasing the
i-th requirement by one unit (∆bi = 1).

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).

CP Summer School
June 2011 Slide 165

Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Summer School
June 2011 Slide 166

Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Summer School
June 2011 Slide 167

Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative
at optimal solution (xB,0).

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Summer School
June 2011 Slide 168

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[] []1/ 21 0
4 0 2 0

1 1Bc Bλ −  = = = − 

In the example,

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

CP Summer School
June 2011 Slide 169

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A

CP Summer School
June 2011 Slide 170

CPAIOR tutorial
May 2009 Slide 171

� One way to filter the domain of xj is to minimize and maximize xj
subject to Ax ≥ b, x ≥ 0.

- This is time consuming.

� A faster method is to use dual multipliers to derive valid
inequalities.

- A special case of this method uses reduced costs to bound or
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.

min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

CP Summer School
June 2011 Slide 172

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
Aix ≥ bi would change by some amount ∆bi.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to Aix ≥ bi + ∆bi.

So it would increase the optimal value at least λi*∆bi.

CP Summer School
June 2011 Slide 173

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

CP Summer School
June 2011 Slide 174

Since ∆bi = Aix − Aix* = Aix − bi, this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

CP Summer School
June 2011 Slide 175

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate
the inequality

or

CP Summer School
June 2011 Slide 176

Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint xj ≥ 0 is tight.

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for xj ≥ 0 is the reduced cost
rj of xj, because increasing xj (currently 0) by 1
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its
upper bound.

CP Summer School
June 2011 Slide 177

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If x2 is required to be integer, we can fix it to zero.
This is reduced-cost variable fixing.

CP Summer School
June 2011 Slide 178

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time
windows).

Stop i

Stop j

Travel time cij

CP Summer School
June 2011 Slide 179

Assignment Relaxation

{ }

min

1, all

0,1 , all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

CP Summer School
June 2011 Slide 180

Assignment Relaxation

min

1, al

0 1, all ,

l

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

CP Summer School
June 2011 Slide 181

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems
represents a union of polyhedra. ()

min
k k

k

cx

A x b≥∨

Disjunctions of linear systems

CP Summer School
June 2011 Slide 182

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

A disjunction of linear systems
represents a union of polyhedra.

We want a convex hull relaxation
(tightest linear relaxation).

()
min

k k

k

cx

A x b≥∨

Relaxing a disjunction of linear systems

CP Summer School
June 2011 Slide 183

Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems
and can be given a convex hull relaxation.

The closure of the convex hull of

()
min

k k

k

cx

A x b≥∨

min

, all

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

…is described by

CP Summer School
June 2011 Slide 184

Why?

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull
relaxation of a disjunction…

min

, all

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each
solution as a
convex
combination
of points in
the
polyhedron

x
1x

2x

CP Summer School
June 2011 Slide 185

Why?

Convex hull relaxation
(tightest linear relaxation)

min

, all

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

To derive convex hull
relaxation of a disjunction…

min

, all

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each
solution as a
convex
combination
of points in
the
polyhedron

x
1x

2x

Change of
variable

k
kx y x=

CP Summer School
June 2011 Slide 186

Mixed Integer/Linear Modeling

MILP Representability
Disjunctive Modeling
Knapsack Modeling

CP Summer School
June 2011 Slide 187

Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint,
to obtain an LP.

• The LP relaxation can be strengthened with cutting planes .

• The first step is to learn how to write MILP models.

A mixed integer/linear programming
(MILP) problem has the form

min

, 0

 integer

cx dy

Ax By b

x y

y

+
+ ≥
≥

CP Summer School
June 2011 Slide 188

MILP Representability

A subset S of is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }
, 0

, , 0,1n p m
k

Ax Bu Dy b

x y

x u y

+ + ≥
≥

∈ × ∈ ∈R Z R

R
n

CP Summer School
June 2011 Slide 189

MILP Representability

A subset S of is MILP representable if it is the projection onto x
of some MILP constraint set of the form

R
n

Theorem . S ⊂ is MILP
representable if and only if
S is the union of finitely
many mixed integer
polyhedra having the same
recession cone.

n
R

{ }
, 0

, , 0,1n p m
k

Ax Bu Dy b

x y

x u y

+ + ≥
≥

∈ × ∈ ∈R Z R

Mixed integer
polyhedron

Recession cone
of polyhedron

CP Summer School
June 2011 Slide 190

Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

CP Summer School
June 2011 Slide 191

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set

CP Summer School
June 2011 Slide 192

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two
polyhedra
P1, P2

P1

CP Summer School
June 2011 Slide 193

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two
polyhedra
P1, P2

P1

P2

CP Summer School
June 2011 Slide 194

Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The
polyhedra
have
different
recession
cones.

P1

P1
recession

cone

P2

P2
recession

coneCP Summer School
June 2011 Slide 195

Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The
polyhedra
have the
same
recession
cone.

P1

P1
recession

cone

P2

P2
recession

coneMCP Summer School
June 2011 Slide 196

Modeling a union of polyhedra

Start with a disjunction of linear
systems to represent the union
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

()
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable yk that is
1 when x is in polyhedron k.

Disaggregate x to create an xk for
each k.

{ }

min

, all

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

CP Summer School
June 2011 Slide 197

Example

Start with a disjunction of
linear systems to represent
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

x1

x2

P1

P2

MCP Summer School
June 2011 Slide 198

Example

Start with a disjunction of
linear systems to represent
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

{ }

1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0, 0

0 ,

1, 0,1k

cx

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

Introduce a 0-1 variable yk
that is 1 when x is in
polyhedron k.

Disaggregate x to create an
xk for each k.

CP Summer School
June 2011 Slide 199

Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y. { }

2
1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0, 0

0 ,

1, 0,1k

x

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

This yields

{ }

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

≤ ≤
≥ +

∈
{ }

min

0

0,1

fy cx

x My

y

+
≤ ≤
∈

or

“Big M ”

CP Summer School
June 2011 Slide 200

Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given
an MILP model.

Recall that a disjunction of linear
systems (representing polyhedra
with the same recession cone) ()

min
k k

k

cx

A x b≥∨

{ }

min

, all

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

…has the MILP model

CP Summer School
June 2011 Slide 201

Example: Uncapacitated facility location

i j

fi cij

Fixed
cost Transport

cost

m possible
factory

locations n markets Locate factories to serve
markets so as to minimize
total fixed cost and
transport cost.

No limit on production
capacity of each factory.

CP Summer School
June 2011 Slide 202

Uncapacitated facility location

i j

fi cij

Fixed
cost Transport

cost

n markets Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   ∨   = ≥   

=

∑ ∑

∑

No factory
at location i

Factory
at location i

Fraction of
market j’s demand
satisfied from
location im possible

factory
locations

CP Summer School
June 2011 Slide 203

Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1, all
, all

0

1, all

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   ∨   = ≥   

=

∑ ∑

∑

No factory
at location i

Factory
at location i

{ }

min

0 , all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

CP Summer School
June 2011 Slide 204

Uncapacitated facility location

MILP formulation:

{ }

min

0 , all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

Beginner’s model:

{ }

min

, all ,

0,1

i i ij ij
i ij

ij i
j

i

f y c x

x ny i j

y

+

≤

∈

∑ ∑

∑

Based on capacitated location model.

It has a weaker continuous relaxation
(obtained by replacing yi ∈ {0,1} with 0 ≤ yi ≤ 1).

This beginner’s mistake can be avoided by
starting with disjunctive formulation.

Maximum output
from location i

CP Summer School
June 2011 Slide 205

Knapsack Modeling

• Knapsack models consist of knapsack covering and
knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive
and knapsack modeling.

• Most OR professionals are unlikely to write a model as good
as the one presented here.

CP Summer School
June 2011 Slide 206

Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general
a convex hull relaxation.

- A disjunctive formulation would provide a convex hull
relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.

CP Summer School
June 2011 Slide 207

{ }

min

; 1, all

1
0

0 , all

0
{0,1}, all

0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

i

z

Q y a x j

y
yz c
z ia x Q
x

x j

y

≥ =

= 
   ==
   ∨ =≤   

   =  ∈ 

∈

∑

∑ ∑ ∑

∑

Example: Package transport

Each package j
has size aj

Each truck i has
capacity Qi and

costs ci to
operate

Disjunctive model Knapsack
constraints

Truck i used
Truck i not used

1 if truck i carries
package j 1 if truck i is usedCP Summer School

June 2011 Slide 208

Example: Package transport

Disjunctive modelMILP model

{ }

min

; 1, all

, all

, all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑

{ }

min

; 1, all

1
0

0 , all

0
{0,1}, all

0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

i

z

Q y a x j

y
yz c
z ia x Q
x

x j

y

≥ =

= 
   ==
   ∨ =≤   

   =  ∈ 

∈

∑

∑ ∑ ∑

∑

CP Summer School
June 2011 Slide 209

Example: Package transport

MILP model

{ }

min

; 1, all

, all

, all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑ Modeling trick;
unobvious without
disjunctive approach

Most OR professionals
would omit this constraint,
since it is the sum over i
of the next constraint.
But it generates very
effective knapsack cuts.

CP Summer School
June 2011 Slide 210

Network Flows and Filtering

Min Cost Network Flow
Max Flow

Filtering: Cardinality
Filtering: Sequence

CP Summer School
June 2011 Slide 211

Min Cost Network Flow

A min cost network flow problem:

CP Summer School
June 2011 Slide 212

Unit cost of flow

Net supply at node

Min Cost Network Flow

In general:

CP Summer School
June 2011 Slide 213

Flow on arc (i,j)

This is an LP.

Min Cost Network Flow

Matrix form:

CP Summer School
June 2011 Slide 214

Min Cost Network Flow

Matrix form:

CP Summer School
June 2011 Slide 215

Rows sum to zero.

So rank < m (= # of nodes)

Will show rank = m − 1

Min Cost Network Flow

Basis tree theorem . Every basis
corresponds to a spanning tree.

CP Summer School
June 2011 Slide 216

Spanning tree

Corresponding columns

Min Cost Network Flow Can triangularize (except for
last row) by permuting rows,
columns:

CP Summer School
June 2011 Slide 217

Min Cost Network Flow Can triangularize (except for
last row) by permuting rows,
columns:

CP Summer School
June 2011 Slide 218

So columns have rank
m − 1 and form a basis.

Min Cost Network Flow

Conversely, any basis corresponds to a spanning tree.

Why? Columns corresponding to a cycle are linearly dependent
and therefore not part of a basis.

Cycle

Linearly dependent columns:

Multiplier for forward arc
Multiplier for backward arc

Optimality conditions

Recall that basic solution is optimal if reduced cost

vector wh ≥ 0, where

But , which means

To evaluate , compute by solving

triangular system .

CP Summer School
June 2011 Slide 220

Optimality conditions

To evaluate , compute

by solving the triangular
system .

Basis tree

Equations to solve
(after fixing one ui to, say, zero):

CP Summer School
June 2011 Slide 221

Optimality conditions

Can solve

directly on the network:

Fix this
potential to
zero, e.g.

Equations to solve
(after fixing one ui to, say, zero):

CP Summer School
June 2011 Slide 222

Optimality conditions

Can improve solution by adding
arc with negative reduced cost
to basis.

Reduced cost is

r13 = c13 − u1 + u3 = −1

CP Summer School
June 2011 Slide 223

Improvement step

Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.

CP Summer School
June 2011 Slide 224

Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.

Move flow around cycle to obtain
next basic solution.

Improvement step

CP Summer School
June 2011 Slide 225

Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.

Move flow around cycle to obtain
next basic solution.

This is one step of the network
simplex method .

Improvement step

CP Summer School
June 2011 Slide 226

Max Flow Problem

Special case of max cost flow
problem.

Useful for filtering alldiff ,
cardinality , etc.

Maximize flow from source s
to sink t .

Arc capacity

CP Summer School
June 2011 Slide 227

Special case of max cost flow
problem.

Useful for filtering alldiff ,
cardinality , etc.

In general,

Max Flow Problem

Arc capacity

Maximize flow from source s
to sink t .

Special case of max cost flow
problem.

Max Flow Problem

Formulation as max cost
flow problem:

Cost is 1 on return arc,
zero on other arcs.

Basic solution is shown.

CP Summer School
June 2011 Slide 229

Easy to compute potentials
(dual variables).

Max Flow Problem
S

This is an S-T cut

Potentials in S = 0

Potentials in T = 1
T

Cost = 1CP Summer School
June 2011 Slide 230

Easy to compute potentials
(dual variables).

Max Flow Problem
S

This is an S-T cut

Potentials in S = 0

Potentials in T = 1

Reduced costs also easy:

T

So, basic solution is
optimal if

Flows S →T are at
capacity

Flows T →S are zero

Max Flow Problem
S

T

CP Summer School
June 2011 Slide 232

This basic solution is
suboptimal.

Add nonzero T-S arc
to the basis.

Improvement step

CP Summer School
June 2011 Slide 233

This basic solution is
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

Improvement step

CP Summer School
June 2011 Slide 234

This basic solution is
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

To increase total s-t flow:

Increase flow on forward arcs
of dashed path, decrease on
backward arcs.

Improvement step

CP Summer School
June 2011 Slide 235

This basic solution is
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

To increase total s-t flow:

Increase flow on forward arcs
of dashed path, decrease on
backward arcs.

Equivalently, increase flow on
augmenting path of the
residual graph .

Improvement step

CP Summer School
June 2011 Slide 236

Network flow model of

with domains

Filtering: Cardinality Constraint

Capacity bounds

Network flow model of

with domains

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Network flow model of

with domains

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Constraint is
feasible because
max s-t flow = 4

Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Constraint is
feasible because
max s-t flow = 4

Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow. There is an augmenting path from x2 to c
in the residual graph.

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Constraint is
feasible because
max s-t flow = 4

Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow. There is an augmenting path from x2 to c
in the residual graph.

Filtering: Cardinality Constraint

0

2

2
Residual graph

Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow. There is an augmenting path from x2 to c
in the residual graph.

However, we can remove a from domain of x2 (no augmenting path).

Filtering: Cardinality Constraint

0

2

2
Residual graph

Alldiff is a special case in which these capacities are [0,1].

(Max cardinality bipartite matching)

Filtering: Alldiff

0

Capacity bounds

2

2

The sequence constraint has several polytime filters that achieve
domain consistency:

• Cumulative sums (also filters genSequence)

• Network flow model

• Decomposition and propagation (based on Berge acyclicity of
constraint hypergraph).

We will develop the network flow model .

Filtering: Sequence

CP Summer School
June 2011 Slide 245

Consider constraint

That is, every stretch of 3 variables yi must contain at least and
at most 1’s.

Filtering: Sequence

CP Summer School
June 2011 Slide 246

Consider constraint

That is, every stretch of 3 variables yi must contain at least and
at most 1’s.

IP formulation is

Filtering: Sequence

CP Summer School
June 2011 Slide 247

Consider constraint

That is, every stretch of 3 variables yi must contain at least and
at most 1’s.

IP formulation is

or

Filtering: Sequence

CP Summer School
June 2011 Slide 248

The transpose of the matrix has the consecutive ones property .

We will see later that it is therefore totally unimodular and can be
solved as an LP (all LP solutions are integral).

Filtering: Sequence

CP Summer School
June 2011 Slide 249

The transpose of the matrix has the consecutive ones property .

We will see later that it is therefore totally unimodular and can be
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Filtering: Sequence

CP Summer School
June 2011 Slide 250

The transpose of the matrix has the consecutive ones property .

We will see later that it is therefore totally unimodular and can be
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Subtract each row from the next (after adding row of zeros):

Filtering: Sequence

CP Summer School
June 2011 Slide 251

The transpose of the matrix has the consecutive ones property .

We will see later that it is therefore totally unimodular and can be
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Subtract each row from the next (after adding row of zeros):

Filtering: Sequence

This is a network flow problem.
The network is…

Filtering: Sequence

This is a network flow problem.
The network is…

Filtering: Sequence

CP Summer School
June 2011 Slide 254

The network
can be analyzed
for filtering in the
same way as the
cardinality
network.

Filtering: Sequence
y1 y2 y3

y4

y5

y6

y7

CP Summer School
June 2011 Slide 255

The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables xi

Filtering: genSequence

CP Summer School
June 2011 Slide 256

The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables in x = (x1, …, xn).

It may be possible to permute rows so that the matrix has the
consecutive ones property. This allows the network flow model to be
used.

This can be checked in O(m + n + r) time, where r = number of
nonzeros in matrix.

Filtering: genSequence

CP Summer School
June 2011 Slide 257

The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables in x = (x1, …, xn).

It may be possible to permute rows so that the matrix has the
consecutive ones property. This allows the network flow model to be
used.

This can be checked in O(m + n + r) time, where r = number of
nonzeros in matrix.

Even without consecutive ones, there may be an equivalent network
flow matrix. This can be checked in O(mr) time.

Filtering: genSequence

Integral Polyhedra

Total Unimodularity
Network Flow Matrices

Interval Matrices

CP Summer School
June 2011 Slide 259

Integral polyhedron

An integral polyhedron is one whose vertices have all integral
coordinates.

If the continuous relaxation of an MILP model describes an integral
polyhedron, the model can be solved as an LP. (All vertices are
integral.)

CP Summer School
June 2011 Slide 260

Integral polyhedron

An integral polyhedron is one whose vertices have all integral
coordinates.

If the continuous relaxation of an MILP model describes an integral
polyhedron, the model can be solved as an LP. (All vertices are
integral.)

Classic result: Total unimodularity

A matrix is totally unimodular if every square submatrix has
determinant 0, 1, or −1.

CP Summer School
June 2011 Slide 261

Integral polyhedron

An integral polyhedron is one whose vertices have all integral
coordinates.

If the continuous relaxation of an MILP model describes an integral
polyhedron, the model can be solved as an LP. (All vertices are
integral.)

Classic result: Total unimodularity

A matrix is totally unimodular if every square submatrix has
determinant 0, 1, or −1.

Theorem. Matrix A with integral components is totally unimodular
if and only if Ax ≥ b, x ≥ 0 describes an integral polyhedron for any
integral b.

CP Summer School
June 2011 Slide 262

Total unimodularity

Lemma. The following preserve total unimodularity:

• Transposition

• Swapping rows or columns

• Negating a column

• Adding a unit column.

CP Summer School
June 2011 Slide 263

Total unimodularity

Lemma. The following preserve total unimodularity:

• Transposition

• Swapping rows or columns

• Negating a column

• Adding a unit column.

Key Theorem. Matrix A is totally unimodular if and only if every
subset J of columns has a partition J = J1 ∪ J2 such that for each
row i of A,

CP Summer School
June 2011 Slide 264

1 2

1ij ij
j J j J

A A
∈ ∈

− ≤∑ ∑

Total unimodularity

Corollary. A network flow matrix is totally unimodular.

CP Summer School
June 2011 Slide 265

Total unimodularity

Corollary. A matrix with the consecutive ones property (interval
matrix) is totally unimodular.

CP Summer School
June 2011 Slide 266

Cutting Planes

0-1 Knapsack Cuts
Gomory Cuts

Mixed Integer Rounding Cuts
Example: Product Configuration

CP Summer School
June 2011 Slide 267

Cutting
plane

Feasible solutions

Continuous
relaxation

To review…

A cutting plane (cut, valid inequality) for
an MILP model:

• …is valid

- It is satisfied by all feasible solutions
of the model.

• …cuts off solutions of the continuous
relaxation.

- This makes the relaxation tighter.

CP Summer School
June 2011 Slide 268

Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an
MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied
and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.

CP Summer School
June 2011 Slide 269

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1
variables.

The analysis is different from that of general knapsack constraints,
to exploit the special structure of 0-1 inequalities.

CP Summer School
June 2011 Slide 270

0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1
variables.

The analysis is different from that of general knapsack constraints,
to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax ≤ a0. (Knapsack
covering constraints are similarly analyzed.)

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality is a 0-1 knapsack cut for
ax ≤ a0

1j
j J

x J
∈

≤ −∑

Only minimal covers need be considered.
CP Summer School
June 2011 Slide 271

Example

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality is a 0-1 knapsack cut for
ax ≤ a0

1j
j J

x J
∈

≤ −∑

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x+ + + ≤

CP Summer School
June 2011 Slide 272

Sequential lifting

• A cover inequality can often be strengthened by lifting it into a
higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.

CP Summer School
June 2011 Slide 273

Sequential lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add a term to the left-hand side 1j k k
j J

x x Jπ
∈

+ ≤ −∑

where πk is the largest coefficient for which the inequality is still valid.

So,
{ } 00,1

for

1 max
j

k j j j kx
j J j J

j J

J x a x a aπ
∈

∈ ∈
∈

 
= − − ≤ − 

 
∑ ∑

This can be done repeatedly (by dynamic programming).

CP Summer School
June 2011 Slide 274

Example

To lift

add a term to the left-hand side

This yields

{ }
{ }5 1 2 3 4 1 2 3 40,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x xπ
∈

∈

= − + + + + + + ≤ −

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 5 3x x x x xπ+ + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where

1 2 3 4 52 3x x x x x+ + + + ≤

1 2 3 4 5 6 3x x x x x x+ + + + + ≤

CP Summer School
June 2011 Slide 275

Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than
sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.

CP Summer School
June 2011 Slide 276

Sequence-independent lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add terms to the left-hand side () 1j j k
j J j J

x a x Jρ
∈ ∉

+ ≤ −∑ ∑

where

with

{ }
{ }

1if and 0, , 1

() () / if and 1, , 1

() / if

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u

ρ
+ ≤ ≤ − ∆ ∈ −

= + − ∆ − ∆ ≤ < − ∆ ∈ −
 + − ∆ − ∆ ≤

…

…

0j
j J

a a
∈

∆ = −∑

{ }1, ,J p= …

1

j

j k
k

A a
=

=∑

0 0A =

CP Summer School
June 2011 Slide 277

Example

To lift

Add terms
1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 6(8) (3) 3x x x x x xρ ρ+ + + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where ρ(u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x+ + + + + ≤

CP Summer School
June 2011 Slide 278

Gomory Cuts

• When an integer programming
problem has a nonintegral solution,
we can generate at least one Gomory
cut to cut off that solution.

- This is a special case of a
separating cut , because it
separates the current solution of
the relaxation from the feasible
set.

• Gomory cuts are widely used and
very effective in MILP solvers.

Separating
cut

Feasible solutions

Solution of
continuous
relaxation

CP Summer School
June 2011 Slide 279

min

0 and integral

cx

Ax b

x

=
≥

Gomory cuts

Given an integer programming
problem

Let (xB,0) be an optimal solution
of the continuous relaxation,
where

ˆ ˆ
B Nx b Nx= −

1 1ˆ ˆ, b B b N B N− −= =

Then if xi is nonintegral in this solution, the following Gomory cut is
violated by (xB,0):

ˆ ˆ
i i N ix N x b   + ≤   

CP Summer School
June 2011 Slide 280

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   

  

CP Summer School
June 2011 Slide 281

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

ˆ ˆ
i i N ix N x b   + ≤   

1

2

1

2 / 3B

x
x

x
   = =   

  

The Gomory cut

is [] 3
2

4

4 /9 1/ 9 2 / 3
x

x
x
 

+ − ≤       
 

or 2 3 0x x− ≤ In x1,x2 space this is 1 22 3x x+ ≥

CP Summer School
June 2011 Slide 282

1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of
the continuous
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   

  

Gomory cut x1 + 2x2 ≥ 3

Gomory cut after re-solving LP with
previous cut.

1ˆ
2 / 3

b
 =  
 

CP Summer School
June 2011 Slide 283

Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions
of any relaxed MILP in which one or more integer variables has a
fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.

CP Summer School
June 2011 Slide 284

min

, 0 and integral

cx dy

Ax Dy b

x y y

+
+ =
≥

MIR cuts

Given an MILP problem
In an optimal solution of the
continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is
violated by the solution of the relaxation:

1 2

ˆfrac() 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac() frac()

ij
i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b
+

∈ ∈ ∈

 
     + + + + ≥      

 
∑ ∑ ∑

where { }1
ˆ ˆfrac() frac()ij jJ j J N b= ∈ ≥ 2 1\J J J=

CP Summer School
June 2011 Slide 285

Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0, integerj j j

x x y y

x x y y

x y y

+ − − =
+ − − =

≥

1/ 3 2 / 3ˆ
2 /3 8 / 3

N
 =  − 

8 / 3ˆ
17 / 3

b
 =  
 

J = {2}, K = {2}, J1 = ∅, J2 = {2}

The MIR cut is 1 2 2

1/ 3 1
1/3 (2 / 3) 8 /3

2 / 3 2 / 3
y y x+ + + + ≥       

 

or 1 2 2(1/ 2) 3y y x+ + ≥

CP Summer School
June 2011 Slide 286

This example illustrates:

• Combination of propagation and relaxation.

• Processing of variable indices.

• Continuous relaxation of element constraint.

Example: Product Configuration

CP Summer School
June 2011 Slide 287

Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Disk
drive

Choose what type of each component, and how many

Personal computer

The problem

CP Summer School
June 2011 Slide 288

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced

(< 0 if consumed):
memory, heat, power,

weight, etc.

Quantity of
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti is a variable
index

Unit cost of producing
attribute j

CP Summer School
June 2011 Slide 289

To solve it:

• Branch on domains of ti and qi.

• Propagate element constraints and bounds on vj.

– Variable index is converted to specially structured
element constraint.

– Valid knapsack cuts are derived and propagated.

• Use linear continuous relaxations .

– Special purpose MILP relaxation for element.

CP Summer School
June 2011 Slide 290

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated
in the usual way

CP Summer School
June 2011 Slide 291

This is rewritten as

Propagation

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated
in the usual way

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

CP Summer School
June 2011 Slide 292

This can be propagated by
(a) using specialized filters for element constraints of this form…

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

CP Summer School
June 2011 Slide 293

This is propagated by
(a) using specialized filters for element constraints of this form,
(b) adding knapsack cuts for the valid inequalities:

is current
domain of vj

Propagation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all

min , all

ti

ti

jijk ik D
i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[,]j jv vand (c) propagating the knapsack cuts.

CP Summer School
June 2011 Slide 294

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

CP Summer School
June 2011 Slide 295

This is relaxed by relaxing this
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all

, all

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

CP Summer School
June 2011 Slide 296

This is relaxed by replacing each element constraint
with a disjunctive convex hull relaxation:

()1

, all

element ,(, , ,), , all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation

CP Summer School
June 2011 Slide 297

So the following LP relaxation is solved at each node
of the search tree to obtain a lower bound:

{ }
{ }

min

, all

, all

, all

, all

knapsack cuts for max , all

knapsack cuts for min , all

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Relaxation

CP Summer School
June 2011 Slide 298

Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example: Continuous Global Optimization

CP Summer School
June 2011 Slide 299

Motivation

• Lagrangean relaxation can provide better bounds than LP
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP
duality.

- This is a key technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .

CP Summer School
June 2011 Slide 300

Lagrangean Duality

Consider an
inequality-constrained
problem

min ()

() 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize) the hard constraints
by moving them into the objective function.

CP Summer School
June 2011 Slide 301

Lagrangean Duality

Consider an
inequality-constrained
problem

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound
on the objective function that is implied by the constraints.

It is related to an
inference problem

CP Summer School
June 2011 Slide 302

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

CP Summer School
June 2011 Slide 303

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or { }min () ()
x S

v f x g xλ
∈

≤ −

CP Summer School
June 2011 Slide 304

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min () ()
x S

v f x g xλ
∈

≤ −

Surrogate

CP Summer School
June 2011 Slide 305

min ()

() 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ()

λ
θ λ

≥

or where

{ }() min () ()
x S

f x g xθ λ λ
∈

= −

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean
relaxation

Vector of
Lagrange
multipliers

The Lagrangean dual can be viewed as the problem
of finding the Lagrangean relaxation that gives the
tightest bound.

These constraints
are dualized

CP Summer School
June 2011 Slide 306

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

(,) min 3 4 (3) (2 5)

min (3 2) (4 3) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥= 


1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥= 


CP Summer School
June 2011 Slide 307

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7), θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7
(no strong duality).CP Summer School

June 2011 Slide 308

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual
provides the same bound (9 2/7) as the
continuous relaxation of the IP.

This is because the Lagrangean relaxation
can be solved as an LP:

Lagrangean duality is useful when the
Lagrangean relaxation is tighter than an LP
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

(,) min (3 2) (4 3) 5

min (3 2) (4 3) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…

CP Summer School
June 2011 Slide 309

Properties of the Lagrangean dual

Weak duality: For any feasible x* and any λ* ≥ 0, f(x*) ≥ θ(λ*).

In particular, min ()

() 0

f x

g x

x S

≥
≥

∈

0
max ()

λ
θ λ

≥

Concavity: θ(λ) is concave. It can therefore be maximized by
local search methods.

Complementary slackness : If x* and λ* are optimal, and there
is no duality gap, then λ*g(x*) = 0.

CP Summer School
June 2011 Slide 310

Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk.

The stepsize αk must be adjusted so that the sequence
converges but not before reaching a maximum.

CP Summer School
June 2011 Slide 311

Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree
very rapidly.

• Lagrangean relaxation may allow very fast calculation of a lower
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which
is an LP) and use the same Lagrange multipliers to get an LP
bound at other nodes.

CP Summer School
June 2011 Slide 312

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds

CP Summer School
June 2011 Slide 313

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

()

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching
constraints,
etc.

Here θ(λ*) is still a lower bound on the optimal
value of the LP and can be quickly calculated
by solving a specially structured LP.

Special structure,
e.g. variable bounds

CP Summer School
June 2011 Slide 314

min ()

() 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

Domain Filtering

CP Summer School
June 2011 Slide 315

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
gi(x) ≥ 0 would change by some amount ∆i.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to gi(x) − ∆i ≥ 0.

So it would increase the optimal value at least λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs. Dual
multipliers for LP are a special case of Lagrange multipliers.)

CP Summer School
June 2011 Slide 316

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

CP Summer School
June 2011 Slide 317

Since ∆i = gi(x) − gi(x*) = gi(x), this implies the inequality
*

*()i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

CP Summer School
June 2011 Slide 318

Example: Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON)
combine OR-style relaxation with CP-style interval arithmetic and
domain filtering.

• These methods can be combined with domain filtering based on
Lagrange multipliers.

CP Summer School
June 2011 Slide 319

Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1], [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈

CP Summer School
June 2011 Slide 320

To solve it:

• Search : split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering.

– Use Lagrange multipliers to infer valid inequality for
propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear
continuous relaxation.

CP Summer School
June 2011 Slide 321

Interval propagation

Propagate intervals
[0,1], [0,2]

through constraints
to obtain

[1/8,7/8], [1/4,7/4]

x1

x2

CP Summer School
June 2011 Slide 322

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

CP Summer School
June 2011 Slide 323

where domain of xj is [,]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −

CP Summer School
June 2011 Slide 324

The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Solve linear relaxation.

x1

x2

Relaxation (function factorization)

x1

x2

Since solution is infeasible,
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent

solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent

solution

x1

x2

x1

x2
Solution of

relaxation is
not quite
feasible,

value = 1.854

Also use
Lagrange

multipliers for
domain

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

Relaxation (function factorization)

This yields a valid inequality for propagation:

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of
relaxation Lagrange multiplier

Value of incumbent
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Dynamic Programming in CP

Example: Capital Budgeting
Domain Filtering

Recursive Optimization
Filtering for Stretch
Filtering for Regular

Motivation

• Dynamic programming (DP) is a highly versatile technique that
can exploit recursive structure in a problem.

• Domain filtering is straightforward for problems modeled as a
DP.

• DP is also important in designing filters for some global
constraints, such as stretch and regular.

• Nonserial DP is related to bucket elimination in CP and exploits
the structure of the primal graph.

• DP modeling is the art of keeping the state space small while
maintaining a Markovian property.

• We will examine only one simple example of serial DP.

Example: Capital Budgeting

We wish to built power plants with a total cost of at most 12 million
Euros.

There are three types of plants, costing 4, 2 or 3 million Euros
each. We must build one or two of each type.

The problem has a simple knapsack packing model:

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈Number of

factories of type j

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

The recursion for ax ≤ b might be

1() ()
k xk

k k k k k k
x D

f s f s a x+
∈

= +∑

= # of paths
from state sk
to feasible
solutions

State is sum
of first k terms

of ax

f4(14)=0
f4(11)=1

f3(8) = f4(8+3⋅1) + f4(8+3⋅2)} = 1 + 0 = 1

x3=2

x3=1

State sk

Stage k

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

The recursion for ax ≤ b might be

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1
Boundary condition:

1
1 1

1 if
()

0 otherwise
n

n n

s b
f s +

+ +

≤= 


fk(sk) for each state sk

1() ()
k xk

k k k k k k
x D

f s f s a x+
∈

= +∑

Feasible if:

1(0) 0f >

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1

fk(sk) for each state sk

The problem is feasible.

Each path to 1 is a feasible
solution.

Path 1: x = (1,2,1)

Path 2: x = (1,1,2)

Path 3: x = (1,1,1)

Possible costs are 9,11,12.

Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1

fk(sk) for each state sk

Key property:

The DP model is Markovian

Possible transitions depend only
on current state…

…not how the state was
reached.

Domain Filtering

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

x3=1

To filter domains: observe what
values of xk occur on feasible
paths.

x3=2

x3=1

{ }
3

1,2xD =

x2=2

x2=1

{ }
2

1,2xD =

x1=1

{ }
1

1xD =

Recursive Optimization

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1() max ()
k xk

k k k k k k k kx D
f s c x f s a x+∈

= + +

= value on max
value path from
sk to final stage

(value to go)

Arc value

f4(14)=−∞
f4(11)=0

f3(8) = max{12⋅1+f4(8+3⋅1), 12⋅2+f4(8+3⋅2)}
= max{12,−∞} = 12

12⋅2

12⋅1

Maximize
revenue

Recursive optimization

24

−∞

12

49

34

0

0

0

Boundary condition:

1
1 1

0 if
()

otherwise
n

n n

s b
f s +

+ +

≤= −∞
fk(sk) for each state sk

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1() max ()k k k k k k k kf s c x f s a x+= + +

−∞

−∞

−∞

−∞

−∞

−∞

−∞

Optimal value:

1(0)f

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

fk(sk) for each state sk

The maximum revenue is 49.

The optimal path is easy to
retrace.

(x1,x2,x3) = (1,1,2)

Recursive optimization

24

−∞

12

49

34

0

0

0

−∞

−∞

−∞

−∞

−∞

−∞

−∞

Example:

where
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Filtering: Stretch

Example:

where
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

Filtering: Stretch

Example:

where
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

One feasible solution.

Filtering: Stretch

Example:

where
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

The other feasible solution.

Filtering: Stretch

Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch):

(day,shift)

Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch):

(day,shift)

Model is Markovian because pattern constraint involves
only 2 consecutive states.

Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch):

Remove states that are not backward reachable from a feasible
end state.

(day,shift)

Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch):

Domains can now be filtered:

(day,shift)

Encode the stretch example as a finite deterministic automaton A:

Filtering: Regular

Initial
state

Circled nodes
are accepting
(terminal)
states

Transitions defined by choice of shift .

Encode the stretch example as a finite deterministic automaton A:

Filtering: Regular

Initial
state

Circled nodes
are accepting
(terminal)
states

Transitions defined by choice of shift .

Now impose the constraint

Filtering can be done on a DP state transition graph:

Filtering: Regular

Filtering can be done on a DP state transition graph:

Filtering: Regular

Remove states that are not backward reachable from an accepting
state in the final stage.

Filtering can be done on a DP state transition graph:

Filtering: Regular

Remove states that are not backward reachable from an accepting
state in the final stage.

Now filter the domains.

CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling

Motivation

• Branch and price allows solution of integer programming
problems with a huge number of variables.

• The problem is solved by a branch-and-relax method. The
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when
constraints are complex.

• CP-based branch and price has been successfully applied
to airline crew scheduling, transit scheduling, and other
transportation-related problems.

Basic Idea

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem ,
which has a small subset of the variables:

()

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a
negative reduced cost:

0k k kr c Aλ= − <

Adding xk to the problem would improve the solution if xk has a
negative reduced cost:

0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to
the restricted master problem.

So we solve the pricing problem:

Cost of column y

Basic Idea

max

 is a column of

y

y A

λ

need not be solved to optimality, so long as we find a column with
negative reduced cost.

However, when we can no longer find an improving column, we
solved the pricing problem to optimality to make sure we have the
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy,
CP may be a good way to solve the pricing problem.

Example: Airline Crew Scheduling

Flight data

Start
time

Finish
time

A roster is the sequence of flights assigned to
a single crew member.

The gap between two consecutive flights in a
roster must be from 2 to 3 hours. Total flight
time for a roster must be between 6 and 10
hours.

For example,
flight 1 cannot immediately precede 6
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize
cost while covering the flights and observing complex
work rules.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 1.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 2.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 3.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 4.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 5.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 6.

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

In a real problem, there can be millions of rosters.

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Optimal
dual

solution

u1
u2
v1
v2
v3
v4
v5
v6

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

The reduced cost of an
excluded roster k for
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the
pricing problem as a
shortest path problem.

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

Pricing problem

Crew
member 1

Crew
member 2

Pricing problem
Each s-t path corresponds to a roster,
provided the flight time is within bounds.

Crew
member 1

Crew
member 2

Pricing problem
Cost of flight 3 if it immediately follows
flight 1, offset by dual multiplier for flight 1

Crew
member 1

Crew
member 2

Pricing problem
Cost of transferring from home to flight 1,
offset by dual multiplier for crew member 1

Dual multiplier
omitted to break
symmetry

Crew
member 1

Crew
member 2

Pricing problem
Length of a path is reduced cost of the
corresponding roster.

Crew
member 1

Crew
member 2

Crew
member 1

Crew
member 2

Pricing problem
Arc lengths using dual solution of LP
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

Crew
member 1

Crew
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

Reduced cost = −1
Add x12 to problem.

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no
remaining variable has negative reduced cost.

Pricing problem

The shortest path problem cannot be solved by traditional shortest
path algorithms, due to the bounds on total duration of flights.

It can be solved by CP:

()
{ }

min max

Path(, ,), all flights

flights , 0, all
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights
assigned to crew
member i

Path
length Graph

Path global constraint

Setsum global constraint

Duration of flight j

CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling

Motivation

• Benders decomposition allows us to apply CP and OR to
different parts of the problem.

• It searches over values of certain variables that, when fixed,
result in a much simpler subproblem .

• The search learns from past experience by accumulating
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR
conception.

• Generalized Benders methods have resulted in the greatest
speedups achieved by combining CP and OR.

• Instance of constraint-directed search.

• Generates constraints (nogoods) by solving inference dual of
subproblem.

Benders Decomposition in the Abstract

Benders decomposition
can be applied to
problems of the form

min (,)

(,)

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)

(,)

y

f x y

S x y

y D∈

…perhaps
because it
decouples into
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules
the jobs on the machines.

When x is fixed, the problem decouples into a separate scheduling
subproblem for each machine.

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk. To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x),
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk. Cost in the original problem

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

that satisfies Bk+1(x) = vk. Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts
generated so far

Benders Decomposition

We now solve the
master problem

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next
trial value xk+1.

The master problem is a relaxation of the original problem, and its
optimal value is a lower bound on the optimal value of the original
problem.

The subproblem is a restriction, and its optimal value is an upper
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set
onto x. We hope not too many cuts are needed to find the optimum.

Classical Benders Decomposition

The classical method
applies to problems
of the form

min ()

()

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem
is an LP

()

min ()

()

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

()max () ()

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual . So by
weak duality, Bk+1(x) remains a lower bound on v.

Classical Benders

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

() (()), 1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or

• a mixed integer/nonlinear programming problem (MINLP).

Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master
problem , to be solved by MILP.

• Schedule the jobs in the
subproblem , to be solved by CP.

Time lapse between
start of first job and
end of last job.

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Machine A

Machine B

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5

on machine A

Machine Scheduling

()

min

, all

, all

noOverlap (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

Machine Scheduling

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment the subproblem on each machine i is

()

min

, all with

, all with

noOverlap (),()

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

()

min

, all

, all

noOverlap (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ = 


Benders cuts

We want the master problem to be an MILP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ()2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is

assigned to
machine A

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

v 10(2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Subproblem relaxation derived
from time windows

Subproblem relaxation derived
from release times

Benders cut from machine A

Benders cut from machine B

Cumulative scheduling subproblem

Benders cut for min makespan (all release times the same):

{ } { }(1) max min
ik ik ik

ik ij ij j j
j J j J j J

v M p x d d
∈ ∈ ∈

 
≥ − + − 

 
∑

Min makespan
on machine i
in iteration k

Set of jobs
assigned to
machine i in
iteration k

Cumulative scheduling subproblem

Benders cut for min total tardiness :

0

\

1 (1) , all

1 (1) , all

ik

ik ik

ik ij
j J

ik ij
j J Z

v T x i

v T x i

∈

∈

 
≥ − − 

 

 
≥ − − 

 

∑

∑
Min total

tardiness on
machine i

in iteration k
Set of jobs that, when
individually removed

from Jik, do not reduce
min tardiness

Min tardiness when
all jobs in Zik are
removed from

machine i

Cumulative scheduling subproblem

Because the tardiness Benders cuts are weak, a good subproblem
relaxation is particularly important:

Capacity of
machine i

where

Rate of resource
consumption of job j

() ()
1

1
, 1, ,

i i

k

k i j i j
ji

v T

T p c d n
C π π

+

=

≥

 
= − = 
 

∑

∑

ℓ

ℓ

ℓ

ℓ ℓ
ℓ …

(1) (1) () ()i i i ii i i n i np c p cπ π π π≤ ≤⋯

Cumulative scheduling subproblem

Example

() ()
1

1
, 1, ,

i i

k

k i j i j
ji

v T

T p c d n
C π π

+

=

≥

 
= − = 
 

∑

∑

ℓ

ℓ

ℓ

ℓ ℓ
ℓ …

()1 1 1(1), (2), (3) (3,1,2)π π π =

1 2 3k k kv T T T≥ + +
Relaxation:

()
()
()

1
1 3

21
2 33

11
3 33

(5) 2 0

(5 6) 3

(5 6 8) 4 2

k

k

k

T

T

T

+

+

+

= − =

= + − =

= + + − =

Bound = 3

Min tardiness = 6

Some Topics Not Covered

• Polyhedral relaxations for metaconstraints (alldiff, element,
circuit, noOverlap, cumulative, logic, etc.)

• MILP models for metaconstraints.

• Unifying role of inference duality in constraint-based search
(e.g., Benders, DPLL, tabu search).

• Unification of exhaustive and local search.

• Constraint store as relaxation (e.g., relaxed multivalued
decision diagram).

CP Summer School
June 2011 Slide 403

