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Why Integrate CP and MP?

Complementary strengths
Computational advantages

Outline of the Tutorial
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Complementary Strengths

• CP:

– Inference methods

– Modeling

– Exploits local structure

• MP:

– Relaxation methods

– Tools for filtering

– Duality theory

– Exploits global structure

Let’s bring them 
together!
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Computational Advantage of 
Integrating CP and MP

Using CP + relaxation from MP

Problem Relaxation Speedup

Lesson 
timetabling

Assignment + 
reduced cost 
variable fixing

2 to 50 times faster 
than CP

Production 
planning with 
piecewise linear 
costs

Convex hull 20 to 120 times 
faster than MILP 

(CPLEX 12).
Search tree 1000-
8000 times smaller

Automatic digital 
recording

Lagrangean 1 to 10 times faster 
than MILP, which is 

faster than CP.
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Computational Advantage of 
Integrating CP and MP

Using CP + relaxation from MP

Problem Relaxation Speedup

Radiation therapy Lagrangean 10 times faster than 
CP, MILP

Stable set Semidefinite
programming

Better than CP in 
less time

Structural design
(nonlinear & 
discrete)

Linear quasi-
relaxation + logic 

cuts

Up to 600 times 
faster than MILP, 

GO software
2 problems: <6 min 
vs >20 hrs for MILP 
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Computational Advantage of 
Integrating CP and MP

Using CP-based Branch and Price

Problem Speedup

Urban transit crew 
scheduling

Optimal schedule for twice 
as many trips as traditional 

branch and price

Traveling tournament 
problem

First to solve 
8-team instance
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Computational Advantage of 
Integrating CP and MP

Using Benders methods

Problem Method Speedup

Min-cost 
machine 
assignment & 
scheduling

MILP/CP 
Benders

20 to 1000 times 
faster than CP, 

MILP

Same SIMPL 
implementation

Solved some 
problems in < 1 sec 
that are intractable 

for CP, MILP

Polypropylene 
batch scheduling 
at BASF

MILP/CP 
Benders

Solved previously 
insoluble problem in 

10 min
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Computational Advantage of 
Integrating CP and MP

Using Benders methods

Problem Method Speedup

Single-machine 
scheduling

MILP/CP 
Benders

Solved much longer 
time horizons than 

MILP, CP

Facility assignment 
and resource-
constrained scheduling
(min cost, 
min makespan)

MILP/CP 
Benders + 

subproblem
relaxations

100-1000 times 
faster than CP, MILP

Sports scheduling MILP/CP
Benders

Several orders of 
magnitude relative to 

state of the art
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Software for Integrating CP and MP

• ECLiPSe 

– Exchanges information between ECLiPSEe solver, Xpress-MP

• OPL Studio (IBM)

– Combines CPLEX and ILOG CP Optimizer with script language

• Xpress-Mosel (FICO)

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• G12 (NICTA)

– Maps problem into script for cooperating solvers

• SIMPL (CMU)

– Full integration with high-level modeling (prototype)

• SCIP (ZIB)

– Combines MILP and CP-based propagation
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Outline of the Tutorial

• Why Integrate OR and CP?

• A Glimpse at CP

• Initial Example: Integrated Methods

• CP Concepts

• CP Filtering Algorithms

• Linear Relaxation and CP

• Mixed Integer/Linear Modeling

• Network Flows and Filtering

• Integral Polyhedra

• Cutting Planes

• Lagrangean Relaxation and CP

• Dynamic Programming in CP

• CP-based Branch and Price

• CP-based Benders Decomposition
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Detailed Outline

• Why Integrate OR and CP?
• Complementary strengths
• Computational advantages
• Outline of the tutorial

• A Glimpse at CP
• Early successes
• Advantages and disadvantages

• Initial Example: Integrated Methods
• Freight Transfer
• Bounds Propagation
• Cutting Planes
• Branch-infer-and-relax Tree
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Detailed Outline

• CP Concepts
• Consistency
• Hyperarc Consistency
• Modeling Examples

• CP Filtering Algorithms
• Element
• Alldiff
• Disjunctive Scheduling
• Cumulative Scheduling

• Linear Relaxation and CP
• Why relax?
• Algebraic Analysis of LP
• Linear Programming Duality
• LP-Based Domain Filtering
• Example: Single-Vehicle Routing
• Disjunctions of Linear Systems
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Detailed Outline

• Mixed Integer/Linear Modeling
• MILP Representability
• 4.2  Disjunctive Modeling
• 4.3  Knapsack Modeling

• Network Flows and Filtering
• Min Cost Network Flow
• Max Flow
• Filtering: Cardinality
• Filtering: Sequence

• Integral Polyhedra
• Total Unimodularity
• Network Flow Matrices
• Interval Matrices
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Detailed Outline

• Cutting Planes
• 0-1 Knapsack Cuts
• Gomory Cuts
• Mixed Integer Rounding Cuts
• Example: Product Configuration

• Lagrangean Relaxation and CP
• Lagrangean Duality
• Properties of the Lagrangean Dual
• Example: Fast Linear Programming
• Domain Filtering
• Example: Continuous Global Optimization
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Detailed Outline

• Dynamic Programming in CP
• Example: Capital Budgeting
• Domain Filtering
• Recursive Optimization
• Filtering: Stretch
• Filtering: Regular

• CP-based Branch and Price
• Basic Idea
• Example: Airline Crew Scheduling

• CP-based Benders Decomposition
• Benders Decomposition in the Abstract
• Classical Benders Decomposition
• Example: Machine Scheduling
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Background Reading

This tutorial is based on:

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed.,  
Springer (to appear 2011).   Contains exercises.
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A Glimpse at Constraint Programming

Early Successes
Advantages and Disadvantages
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What is constraint programming?

• It is a relatively new technology developed in the computer 
science and artificial intelligence communities.

• It has found an important role in scheduling, logistics and supply 
chain management.

CP Summer School
June 2011    Slide 18



• Container port scheduling 
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control 
(Siemens, Xerox)

Early commercial successes
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Applications

• Job shop scheduling

• Assembly line smoothing 
and balancing 

• Cellular frequency 
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning
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• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food, 
nuclear fuel)

• Warehouse management

• Course timetabling

Applications

CP Summer School
June 2011    Slide 21



Advantages and Disadvantages

CP vs. Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering, 
constraint propagation)

Atomistic modeling 
(linear inequalities)

High-level modeling 
(global constraints)

Branching Branching

Independence of model 
and algorithm

Constraint-based 
processing
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Programming ≠ programming

• In constraint programming :

• programming = a form of computer programming 
(constraint-based processing)

• In mathematical programming :

• programming = logistics planning (historically)
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CP vs. MP

• In mathematical programming , equations 
(constraints) describe the problem but don’t tell how to 
solve it.

• In constraint programming , each constraint invokes a 
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes 
an operation.
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Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

• “Better at highly-constrained problems”

• Misleading – better when constraints propagate well, or 
when constraints have few variables.
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Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well. 

• Often not good for finding optimal solutions.

• Due to lack of relaxation technology.

• May not scale up

• Discrete combinatorial methods

• Software is not robust

• Younger field

CP Summer School
June 2011    Slide 26



Obvious solution…

• Integrate CP and MP.
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Trends

• CP is better known in continental Europe, Asia.

• Less known in North America, seen as threat to OR.

• CP/MP integration is growing

• Eclipse, Mozart, OPL Studio, SIMPL, SCIP, BARON

• Heuristic methods increasingly important in CP

• Discrete combinatorial methods

• MP/CP/heuristics may become a single technology.
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Initial Example: Integrated Methods

Freight Transfer
Bounds Propagation

Cutting Planes
Branch-infer-and-relax Tree
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Example: Freight Transfer

• Transport 42 tons of freight overnight in trucks that come in 
4 sizes…

• 8 loading docks available. 

• Allocate 3 loading docks to the largest trucks even if only 1 or 2 of 
these trucks are used.

Truck 
size

Number 
available

Capacity

(tons)

Cost 
per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40
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Truck 
type

Number 
available

Capacity

(tons)

Cost 
per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

1 2 5

{0,1,2,3}i

x x x x

x x x x

x x x x

x x x x

x

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ⇒ + + ≤
∈

Number of trucks of type 1

Knapsack 
covering 
constraint

Knapsack 
packing 
constraint Conditional

constraint
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Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
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1 2 3 4
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min 90 60 50 40
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x x x x
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Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced 
domain

( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

1 2 5

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

x x x x

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ⇒ + + ≤
∈ ∈
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• Let {Lj, …, Uj} be the domain of xj

• A constraint set is bounds consistent if for each j :

• xj = Lj in some feasible solution and 

• xj = Uj in some feasible solution.

• Bounds consistency ⇒ we will not set xj to any infeasible 
values during branching.

• Bounds propagation achieves bounds consistency for a 
single inequality .

• 7x1 + 5x2 + 4x3 + 3x4 ≥ 42 is bounds consistent when the 
domains are x1 ∈ {1,2,3} and x2, x3, x4 ∈ {0,1,2,3}.

• But not necessarily for a set of inequalities.

Bounds consistency
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� Bounds propagation may not achieve bounds consistency 
for a set of constraints.

� Consider set of inequalities

with domains x1, x2 ∈ {0,1}, solutions (x1,x2) = (1,0), (1,1).

� Bounds propagation has no effect on the domains.  

� But constraint set is not bounds consistent because x1 = 0 
in no feasible solution.

Bounds consistency

1 2

1 2

1

0

x x

x x

+ ≥
− ≥
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains 
with bounds

This is a linear programming problem, which is easy to 
solve.

Its optimal value provides a lower bound on optimal 
value of original problem.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum 
value) with the addition of cutting planes .
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the 
original problem satisfy a 
cutting plane (i.e., it is valid ).

But a cutting plane may 
exclude (“cut off ”) solutions of 
the continuous relaxation.

Cutting 
plane

Feasible solutions

Continuous 
relaxation
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality, 
even with x1 = x2 = 3.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut
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Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈

≥ −∑ ∑0i i i i
i P i P

a x a a U

and generates a general integer knapsack cut

{ }
∈

∉
∉

 −
 ≥
 
  

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4 ≥ 2

{1,3} x2 + x4 ≥ 2

{1,4} x2 + x3 ≥ 3

{2,3,4} x1 ≥ 1

Knapsack cuts corresponding to nonmaximal 
packings can be nonredundant

Propagated bound
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+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value 
of original problem.

Knapsack cuts
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Branch-
infer-and-
relax tree
Propagate bounds 
and solve 
relaxation of 
original problem.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓
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Branch on a 
variable with 
nonintegral value 
in the relaxation.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Since relaxation 
is infeasible, 
backtrack.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Branch on 
nonintegral 
variable.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

Branch-infer-
and-relax tree

CP Summer School
June 2011    Slide 47



Branch again.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible
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Solution of 
relaxation 
is integral and 
therefore feasible 
in the original 
problem.

This becomes the 
incumbent 
solution .

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible
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Solution is 
nonintegral, but 
we can backtrack 
because value of 
relaxation is 
no better than 
incumbent solution.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible
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Another feasible 
solution found.

No better than 
incumbent solution, 
which is optimal 
because search 
has finished.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {      3}
x3 ∈ {012  }
x4 ∈ {012  }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible
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Two optimal 
solutions found.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {      3}
x3 ∈ {012  }
x4 ∈ {012  }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

x1 ∈ {  }
x2 ∈ {  }
x3 ∈ {  }
x4 ∈ {  }

infeasible
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Constraint Programming Concepts

Consistency
Generalized Arc Consistency

Modeling Examples

CP Summer School
June 2011    Slide 53



Consistency

• A constraint set is consistent if every partial assignment to the 
variables that violates no constraint is feasible.

• i.e., can be extended to a feasible solution.  

• Consistency ≠ feasibility

• Consistency means that any infeasible partial assignment is 
explicitly ruled out by a constraint.

• Fully consistent constraint sets can be solved without 
backtracking .
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Consistency

Consider the constraint set

It is not consistent, because x1 = 0 violates no constraint 
and yet is infeasible (no solution has x1 = 0).

Adding the constraint x1 = 1 makes the set consistent.

{ }

1 100

1 100

1

0

0,1j

x x

x x

x

+ ≥
− ≥
∈
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subtree with 299 nodes
but no feasible solution

By adding the constraint 
x1 = 1, the left subtree is 
eliminated 

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =
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Generalized Arc Consistency (GAC)

• Also known as hyperarc consistency .

• A constraint set is GAC if every value in every variable 
domain is part of some feasible solution.

• That is, the domains are reduced as much as 
possible.

• If all constraints are “binary” (contain 2 variables), 
GAC = arc consistency.

• Domain reduction is CP’s biggest engine.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
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color.
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Graph coloring problem that can be solved by arc 
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
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Graph coloring problem that can be solved by arc 
consistency maintenance alone.  Color nodes with red, 
green, blue with no two adjacent nodes having the same 
color.
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Modeling Examples with Global Constraints

Traveling Salesman 

Traveling salesman problem:

Let cij = distance from city i to city j.  

Find the shortest route that visits each of n cities exactly 
once.
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Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1,  all 

1,   all 

1,   all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints
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A CP model

Let yk = the kth city visited.

The model would be written in a specific constraint programming 
language but would essentially say:

Variable indices

“Global” constraint
{ }

1

1

min

s.t. alldiff( , , )

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…
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{ }
1

min

s.t. circuit( , , )

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit 
constraint
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The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth 
value in the list

(this is a slightly different constraint)

Add the 
constraint 
z = xy

( )1

5

element ,( , , ),n

z

y c c z

≤
…

( )1

5

element ,( , , ),n

z

y x x z

≤
…
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Day: 1         2         3         4         5         6         7         8

A B A

Product

• At most one product manufactured on each day.

• Demands for each product on each day.

• Minimize setup + holding cost.

Modeling example: Lot sizing and scheduling
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,

, 1

, 1

, 1

, 1

, 1

min

s.t. ,   all ,

,   all ,

,   all ,

1 ,   all ,

1,  all , ,

,   all , ,

,   all , ,

it it ij ijt
t i j t

i t it it it

it it i t

it it

it i t

ijt i t jt

ijt i t

ijt jt

i

h s q

s x d s i t

z y y i t

z y i t

z y i t

y y i j t

y i j t

y i j t

x

δ

δ
δ
δ

≠

−

−

−

−

−

 
+ 

 

+ = +
≥ −
≤
≤ −
≥ + −
≥
≥

∑ ∑

,   all ,

1,   all 

, , {0,1}

, 0

t it

it
i

it it ijt

it it

Cy i t

y t

y z

x s

δ

≤
=

∈
≥

∑

Integer
programming
model

(Wolsey)

Many variables
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( ) ( )

1

, 1

min

s.t. ,   all ,

0 ,   0,  all ,

0 ,   all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Inventory balance

Production capacity
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( ) ( )

1

, 1

min

s.t. ,   all ,

0 ,   0,  all ,

0 ,   all ,

t ty y i it
t i

i t it it it

it it

t it

q h s

s x d s i t

x C s i t

y i x i t

−

−

 + 
 

+ = +
≤ ≤ ≥

≠ → =

∑ ∑

CP model
Minimize holding and setup costs

Variable indices

Product manufactured in period t

Production level of product i in period t

Inventory balance

Production capacity
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• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must 
not exceed L.

Job start times
(variables)

Job processing times
Job resource 
requirements

Cumulative scheduling constraint

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n nt t p p c c L… … …
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( )1 5

1

5

min

s.t. cumulative ( , , ),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2 3

4

5

time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling constraint 
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• Will use ILOG’s OPL Studio modeling language.

• Example is from OPL manual.

• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of 
workers.

• Total of 8 workers available.

Modeling example: Ship loading
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Item Dura-
tion

Labor

1 3 4

2 4 4

3 4 3

4 6 4

5 5 5

6 2 5

7 3 4

8 4 3

9 3 4

10 2 8

11 3 4

12 2 5

13 1 4

14 5 3

15 2 3

16 3 3

17 2 6

Item Dura-
tion

Labor

18 2 7

19 1 4

20 1 4

21 1 4

22 2 4

23 4 7

24 5 8

25 2 8

26 1 3

27 1 3

28 2 6

29 1 8

30 3 3

31 2 3

32 1 3

33 2 3

34 2 3

Problem data
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1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints
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Use the cumulative scheduling constraint.

( )
1 2

1 34

2 1 4 1

min

s.t. 3, 4,  etc.

cumulative ( , , ),(3,4, ,2),(4,4, ,3),8

3,  3,   etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …
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int capacity = 8;
int nbTasks = 34;
range Tasks 1..nbTasks;
int duration[Tasks] = [3,4,4,6,…,2];
int totalDuration = 

sum(t in Tasks) duration[t];
int demand[Tasks] = [4,4,3,4,…,3];
struct Precedences {

int before;
int after;

}
{Precedences} setOfPrecedences = {

<1,2>, <1,4>, …, <33,34> };

OPL model
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scheduleHorizon = totalDuration;
Activity a[t in Tasks](duration[t]);
DiscreteResource res(8);
Activity makespan(0);
minimize

makespan.end
subject to

forall(t in Tasks)
a[t] precedes makespan;

forall(p in setOfPrecedences)
a[p.before] precedes a[p.after];

forall(t in Tasks)
a[t] requires(demand[t]) res;

};
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Capacity
C1

Capacity
C2

Capacity
C3

Manufacturing
Unit

Storage
Tanks

Packing
Units

Modeling example: Production scheduling with 
intermediate storage
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Level

t u t + (b/r) u + (b/s)

Filling starts

Packing starts Filling ends
Packing ends

Batch size

Manufac-
turing rate Packing rate

Need to enforce 
capacity constraint 
here only

Filling of storage tank 
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( )

1

1

min

s.t. ,   all 

,   all 

cumulative , , ,

,   all 

1 ,   all 

cumulative , , , , ,

0

j
j

j

j j

i
i i i

i

i
i i i i

i

n

n

j j

T

b
T u j

s

t R j

t v e m

b
v u t i

s

s
b s u C i

r

b b
u e p

s s

u t

≥ +

≥

= + −

 
− + ≤ 

 

  
   

  

≥ ≥

…

Makespan

Job release time

m storage tanks

Job duration

Tank capacity

p packing units

e = (1,…,1)
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Modeling example: Employee scheduling 

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in 
a row.
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Two ways to view the problem

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A

Shift 2 C C C B B B B

Shift 3 D D D D C C D

Assign nurses to shifts

Sun Mon Tue Wed Thu Fri Sat

Nurse A 1 0 1 1 1 1 1

Nurse B 0 1 0 2 2 2 2

Nurse C 2 2 2 0 3 3 0

Nurse D 3 3 3 3 0 0 3

Assign shifts to nurses

0 = day offCP Summer School
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Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff( , , ),   all d d dw w w d The variables w1d, w2d, 
w3d take different values

That is, schedule 3 
different nurses on each 
day
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( )
1 2 3alldiff( , , ),   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6 
times in the array w, and similarly 
for B, C, D.

That is, each nurse works at least 
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take 
at least 1 and at most 2 different 
values.

That is, at least 1 and at most 2 
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

( )1 2 3,alldiff ,  all ,d d dy y y d

Assign a different nurse to each 
shift on each day.

This constraint is redundant of 
previous constraints, but 
redundant constraints speed 
solution.
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least 
two days in a row.  

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s, 
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

CP Summer School
June 2011    Slide 92



Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the 
problem easier to solve.
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The complete model is:

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…
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CP Filtering Algorithms

Element
Alldiff

Disjunctive Scheduling
Cumulative Scheduling
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Filtering for element

Variable domains can be easily filtered to maintain GAC.

Domain of z

( )1element ,( , , ),ny x x z…

{ }
{ }

|

  if 

  otherwise

j

y

j

j

j

z z x
j D

y y z x

z y
x

x

D D D

D D j D D

D D j
D

D

∈

← ∩

← ∩ ∩ ≠ ∅

 = ←  
  

∪
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Example...

The initial domains are: The reduced domains are:

( )1 2 3 4element ,( , , , ),y x x x x z

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

20,30,60,80,90

1,3,4

10,50

10,20

40,50,80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

{ }
{ }
{ }
{ }
{ }
{ }

1

2

3

4

80,90

3

10,50

10,20

80,90

40,50,70

z

y

x

x

x

x

D

D

D

D

D

D

=
=
=

=

=

=

Filtering for element
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Filtering for alldiff

Domains can be filtered with an algorithm based on maximum 
cardinality bipartite matching and a theorem of Berge.

It is a special case of optimality conditions for max flow.

( )1alldiff , , ny y…
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Filtering for alldiff

Consider the domains

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

CP Summer School
June 2011    Slide 102



y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Indicate domains with edges

Find maximum cardinality bipartite 
matching.

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.
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Filtering for alldiff

Domains have been filtered:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3,5

1,2,3,5

1,5

1,2,3,4,5,6

y

y

y

y

y

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

y

y

y

y

y

∈
∈
∈
∈
∈

GAC achieved.
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Disjunctive scheduling

Consider a disjunctive scheduling constraint:

Start time variables
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Processing times
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Variable domains defined by time 
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5noOverlap ( , , , ),( , , , )s s s s p p p p

A feasible (min makespan) solution:

Time window
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding 
to prove that there is no 
feasible schedule.
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Latest deadline
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Earliest release time
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

Total processing time
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of 

{3} {3} 4L p− =

L{2,3,5}E{3,5}
7<3+3+2

Since time window of job 2 is now too narrow, there is no 
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =
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Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest 
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+
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Edge finding for disjunctive scheduling

Problem:  how can we avoid enumerating all subsets J of jobs 
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

Removing a job from those within an interval only weakens the 
test

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals 
defined by release times and deadlines.CP Summer School
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time 
windows lie within some interval.  

{ }min J JJ J
L p′ ′′⊂

−

e.g., J = {3,5}

Note:  Edge finding does not achieve bounds consistency, 
which is an NP-hard problem.
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:

For each job 

Scan jobs  in decreasing order of 

Select first  for which 

Conclude that 

Update  to JPS( , )

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing 
time in JPS of jobs in Jik
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

( )4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the 
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

( )4 {1,2}¬ ≪
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Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+

CP Summer School
June 2011    Slide 131



Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an 
efficient algorithm is quite complicated.
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Cumulative scheduling

Consider a cumulative scheduling constraint:

( )1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8Area available 
= 20
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime

= 10

10
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4 Move up job 3 
release time 
4/2 = 2 units 
beyond E{1,2}

E3
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Edge finding for cumulative scheduling

In general, if ( ){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+ 

 

In general, if ( ){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to 

( )( ) 0

( )( )
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
− 

 
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Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the 
edge finding rules.
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Other propagation rules for cumulative 
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.
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Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing
Disjunctions of Linear Systems
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Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation 
can pool relaxations of several constraints.
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Some MP models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.
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Motivation

• Linear programming is remarkably versatile for representing 
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory . 

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP 
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[ ]=A B N

Any set of 
m linearly 
independent 
columns of A.

These form a 
basis for the 
space spanned 
by the columns.

Nonbasic
variables
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible    
solution

x1

x2
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −+ −1 1( )B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0, 
basic solution (xB,0) 
is optimal if 
reduced costs are 
nonnegative.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this 
basic feasible 
solution

x1

x2
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Example…

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥
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[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN
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Example…

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b
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[ ] [ ]

[ ] [ ]

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
−   = −    −   

≥=

Example…
Basic solution is

Reduced costs are

Solution is 
optimal

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x
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Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the 
objective function that is implied by the constraints.
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

That is, some surrogate 
(nonnegative linear 
combination) of  
Ax ≥ b dominates  cx ≥ v
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the 

classical 
LP dual
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This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the 
classical 
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).
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λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ( )

( )

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1( 2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost
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Weak Duality

If x* is feasible in the 
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the 
dual problem

then  cx* ≥ λ*b.  

This is because  
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual 
feasible 

and x* ≥ 0

x* is primal 
feasible 

and λ* ≥ 0
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

The dual of the perturbed LP has the 
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the 
perturbed dual.
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

By weak duality,  the optimal value of the perturbed LP is at least 
λ*(b + ∆b) = λ*b + λ*∆b.

So λi*  is a lower bound on the marginal cost of increasing the 
i-th requirement by one unit (∆bi = 1). 

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).
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Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative 
at optimal solution (xB,0). 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[ ] [ ]1/ 21 0
4 0 2 0

1 1Bc Bλ −  = = = − 

In the example, 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

CP Summer School
June 2011    Slide 169



Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A
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CPAIOR tutorial
May 2009     Slide 171

� One way to filter the domain of xj is to minimize and maximize xj
subject to Ax ≥ b, x ≥ 0.  

- This is time consuming.

� A faster method is to use dual multipliers to derive valid 
inequalities.

- A special case of this method uses reduced costs to bound or 
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.



min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and 
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.
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min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
Aix ≥ bi would change by some amount ∆bi.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to Aix ≥ bi + ∆bi.  

So it would increase the optimal value at least  λi*∆bi.
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We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:
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Since  ∆bi = Aix − Aix* = Aix − bi,  this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate 
the inequality

or
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Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint  xj ≥ 0  is tight.  

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for  xj ≥ 0 is the reduced cost 
rj of xj, because increasing xj (currently 0) by 1 
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its 
upper bound.
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If  x2 is required to be integer, we can fix it to zero.  
This is reduced-cost variable fixing.
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Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject 
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem (with time 
windows).

Stop i

Stop j

Travel time cij
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Assignment Relaxation

{ }

min

1, all 

0,1 ,  all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.
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Assignment Relaxation

min

1, al

0 1, all ,

l 

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.
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Disjunctions of linear systems often occur naturally in problems 
and can be given a convex hull relaxation.

A disjunction of linear systems 
represents a union of polyhedra. ( )

min
k k

k

cx

A x b≥∨

Disjunctions of linear systems
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Disjunctions of linear systems often occur naturally in problems 
and can be given a convex hull relaxation.

A disjunction of linear systems 
represents a union of polyhedra.

We want a convex hull relaxation
(tightest linear relaxation).

( )
min

k k

k

cx

A x b≥∨

Relaxing a disjunction of linear systems
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Relaxing a disjunction of linear systems

Disjunctions of linear systems often occur naturally in problems 
and can be given a convex hull relaxation.

The closure of the convex hull of

( )
min

k k

k

cx

A x b≥∨

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

…is described by
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Why?

Convex hull relaxation
(tightest linear relaxation)

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x
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Why?

Convex hull relaxation
(tightest linear relaxation)

min

, all 

1

0 1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

≤ ≤

∑

∑

To derive convex hull 
relaxation of a disjunction…

min

, all 

1

0 1

k k k

k
k

k
k

k

k

cx

A x b k

y

x y x

y

≥
=

=

≤ ≤

∑

∑

Write each 
solution as a 
convex 
combination 
of points in 
the 
polyhedron

x
1x

2x

Change of 
variable

k
kx y x=
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Mixed Integer/Linear Modeling

MILP Representability
Disjunctive Modeling
Knapsack Modeling
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Motivation

• We can relax a CP problem by modeling some constraints with an MILP.

• If desired, we can then relax the MILP by dropping the integrality constraint, 
to obtain an LP.

• The LP relaxation can be strengthened with cutting planes .

• The first step is to learn how to write MILP models.

A mixed integer/linear programming 
(MILP) problem has the form

min

, 0

 integer

cx dy

Ax By b

x y

y

+
+ ≥
≥
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MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

{ }
, 0

, , 0,1n p m
k

Ax Bu Dy b

x y

x u y

+ + ≥
≥

∈ × ∈ ∈R Z R

R
n
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MILP Representability

A subset S of    is MILP representable if it is the projection onto x
of some MILP constraint set of the form

R
n

Theorem .  S ⊂ is MILP 
representable if and only if 
S is the union of finitely 
many mixed integer 
polyhedra having the same 
recession cone.

n
R

{ }
, 0

, , 0,1n p m
k

Ax Bu Dy b

x y

x u y

+ + ≥
≥

∈ × ∈ ∈R Z R

Mixed integer
polyhedron

Recession cone 
of polyhedron
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Example: Fixed charge function

Minimize a fixed charge function:

x1

x2

2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Feasible set
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

Union of two 
polyhedra
P1, P2

P1

P2
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Example

Minimize a fixed charge function: 2

1
2

1 1

1

min

0 if 0

if 0

0

x

x
x

f cx x

x

= ≥  + > 

≥

x1

x2

The 
polyhedra 
have 
different 
recession 
cones.

P1

P1
recession

cone

P2

P2
recession

coneCP Summer School
June 2011    Slide 195



Example

Minimize a fixed charge function:

Add an upper bound on x1

2

1
2

1 1

1

min

0 if 0

if

0

 0

x

x
x

f cx x

x M

=

≤

≥  + >

≤


x1

x2

The 
polyhedra 
have the 
same 
recession 
cone.

P1

P1
recession

cone

P2

P2
recession

coneMCP Summer School
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Modeling a union of polyhedra

Start with a disjunction of linear 
systems to represent the union 
of polyhedra.

The kth polyhedron is {x | Akx ≥ b}

( )
min

k k

k

cx

A x b≥∨

Introduce a 0-1 variable  yk that is 
1 when x is in polyhedron k.

Disaggregate x to create an xk for 
each k.  

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑
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Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

x1

x2

P1

P2
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Example

Start with a disjunction of 
linear systems to represent 
the union of polyhedra

2

1 1

2 2 1

min

0 0

0

x

x x M

x x f cx

= ≤ ≤   ∨   ≥ ≥ +   

{ }

1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

cx

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

Introduce a 0-1 variable  yk
that is 1 when x is in 
polyhedron k.

Disaggregate x to create an 
xk for each k.  
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Example

To simplify:

Replace x1
2 with x1.

Replace x2
2 with x2.

Replace y2 with y. { }

2
1 1
1 2

2 2 2
1 2 1 2 2

1 2
1 2

min

0,  0

0 ,   

1,  0,1k

x

x x

x My cx x fy

y y y

x x x

= ≥
≤ ≤ − + ≥
+ = ∈
= +

This yields

{ }

2

1

2 1

min

0

0,1

x

x My

x fy cx

y

≤ ≤
≥ +

∈
{ }

min

0

0,1

fy cx

x My

y

+
≤ ≤
∈

or

“Big M ”
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Disjunctive Modeling

Disjunctions often occur naturally in problems and can be given 
an MILP model.

Recall that a disjunction of linear 
systems (representing polyhedra 
with the same recession cone) ( )

min
k k

k

cx

A x b≥∨

{ }

min

, all 

1

0,1

k k k
k

k
k

k

k

k

cx

A x b y k

y

x x

y

≥
=

=

∈

∑

∑

…has the MILP model
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Example:  Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

m possible 
factory 

locations n markets Locate factories to serve 
markets so as to minimize 
total fixed cost and 
transport cost.

No limit on production 
capacity of each factory.

CP Summer School
June 2011    Slide 202



Uncapacitated facility location

i j

fi cij

Fixed 
cost Transport 

cost

n markets Disjunctive model:

min

0, all 0 1, all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   ∨   = ≥   

=

∑ ∑

∑

No factory 
at location i

Factory
at location i

Fraction of 
market j’s demand 
satisfied from 
location im possible 

factory 
locations
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Uncapacitated facility location

MILP formulation: Disjunctive model:

min

0, all 0 1, all 
,   all 

0

1,  all 

i ij ij
i ij

ij ij

i i i

ij
i

z c x

x j x j
i

z z f

x j

+

= ≤ ≤   ∨   = ≥   

=

∑ ∑

∑

No factory 
at location i

Factory
at location i

{ }

min

0 ,  all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑
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Uncapacitated facility location

MILP formulation:

{ }

min

0 ,  all ,

0,1

i i ij ij
i ij

ij i

i

f y c x

x y i j

y

+

≤ ≤
∈

∑ ∑

Beginner’s model:

{ }

min

,  all ,

0,1

i i ij ij
i ij

ij i
j

i

f y c x

x ny i j

y

+

≤

∈

∑ ∑

∑

Based on capacitated location model.

It has a weaker continuous relaxation
(obtained by replacing yi ∈ {0,1} with 0 ≤ yi ≤ 1).

This beginner’s mistake can be avoided by 
starting with disjunctive formulation.

Maximum output 
from location i
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Knapsack Modeling

• Knapsack models consist of knapsack covering and 
knapsack packing constraints.

• The freight transfer model presented earlier is an example.

• We will consider a similar example that combines disjunctive 
and knapsack modeling.

• Most OR professionals are unlikely to write a model as good 
as the one presented here.
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Note on tightness of knapsack models

• The continuous relaxation of a knapsack model is not in general 
a convex hull relaxation.

- A disjunctive formulation would provide a convex hull 
relaxation, but there are exponentially many disjuncts.

• Knapsack cuts can significantly tighten the relaxation.
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{ }

min

;   1,  all 

1
0

0 ,  all 

0
{0,1},  all 

0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

i

z

Q y a x j

y
yz c
z ia x Q
x

x j

y

≥ =

= 
   ==
   ∨ =≤   

   =  ∈ 

∈

∑

∑ ∑ ∑

∑

Example:  Package transport

Each package j
has size aj

Each truck i has 
capacity Qi and 

costs ci to 
operate

Disjunctive model Knapsack 
constraints

Truck i used
Truck i not used

1 if truck i carries 
package j 1 if truck i is usedCP Summer School

June 2011    Slide 208



Example:  Package transport

Disjunctive modelMILP model

{ }

min

;   1,  all 

,   all 

,   all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑

{ }

min

;   1,  all 

1
0

0 ,  all 

0
{0,1},  all 

0,1

i
i

i i j ij
i j i

i

ii i

ij ij i
j

ij

ij

i

z

Q y a x j

y
yz c
z ia x Q
x

x j

y

≥ =

= 
   ==
   ∨ =≤   

   =  ∈ 

∈

∑

∑ ∑ ∑

∑
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Example:  Package transport

MILP model

{ }

min

;   1,  all 

,   all 

,   all ,

, 0,1

i i
i

i i j ij
i j i

j ij i i
j

ij i

ij i

c y

Q y a x j

a x Q y i

x y i j

x y

≥ =

≤

≤
∈

∑

∑ ∑ ∑

∑ Modeling trick; 
unobvious without 
disjunctive approach

Most OR professionals 
would omit this constraint, 
since it is the sum over i
of the next constraint.  
But it generates very 
effective knapsack cuts.
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Network Flows and Filtering

Min Cost Network Flow
Max Flow

Filtering: Cardinality
Filtering: Sequence
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Min Cost Network Flow

A min cost network flow problem:

CP Summer School
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Unit cost of flow

Net supply at node



Min Cost Network Flow

In general:
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Flow on arc (i,j)

This is an LP.



Min Cost Network Flow

Matrix form:
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Min Cost Network Flow

Matrix form:
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Rows sum to zero.

So rank < m (= # of nodes)

Will show rank = m − 1



Min Cost Network Flow

Basis tree theorem .  Every basis  
corresponds to a spanning tree. 
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Spanning tree

Corresponding columns



Min Cost Network Flow Can triangularize (except for 
last row) by permuting rows, 
columns:
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Min Cost Network Flow Can triangularize (except for 
last row) by permuting rows, 
columns:
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So columns have rank 
m − 1 and form a basis.



Min Cost Network Flow

Conversely, any basis corresponds to a spanning tree.

Why?  Columns corresponding to a cycle are linearly dependent 
and therefore not part of a basis. 

Cycle

Linearly dependent columns:

Multiplier for forward arc
Multiplier for backward arc



Optimality conditions

Recall that basic solution                        is optimal if reduced cost 

vector                        wh   ≥ 0, where  

But                              , which means   

To evaluate        ,  compute                          by solving

triangular system                     .
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Optimality conditions

To evaluate        ,  compute                          

by solving the triangular 
system                     .

Basis tree

Equations to solve 
(after fixing one ui to, say, zero):
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Optimality conditions

Can solve

directly on the network:

Fix this 
potential to 
zero, e.g.

Equations to solve 
(after fixing one ui to, say, zero):
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Optimality conditions

Can improve solution by adding
arc with negative reduced cost
to basis.

Reduced cost is

r13 = c13 − u1 + u3 = −1
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Improvement step

Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.
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Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.

Move flow around cycle to obtain
next basic solution.

Improvement step
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Can improve solution by adding
arc with negative reduced cost
to basis.

This creates a cycle.

Move flow around cycle to obtain
next basic solution.

This is one step of the network 
simplex method .

Improvement step
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Max Flow Problem

Special case of max cost flow 
problem.

Useful for filtering alldiff , 
cardinality , etc.

Maximize flow from source  s
to sink  t .

Arc capacity
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June 2011    Slide 227



Special case of max cost flow 
problem.

Useful for filtering alldiff , 
cardinality , etc.

In general,

Max Flow Problem

Arc capacity

Maximize flow from source  s
to sink  t .



Special case of max cost flow 
problem.

Max Flow Problem

Formulation as max cost 
flow problem:

Cost is 1 on return arc,
zero on other arcs.

Basic solution is shown.
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Easy to compute potentials
(dual variables).

Max Flow Problem
S

This is an S-T cut

Potentials in S = 0

Potentials in T = 1
T

Cost = 1CP Summer School
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Easy to compute potentials
(dual variables).

Max Flow Problem
S

This is an S-T cut

Potentials in S = 0

Potentials in T = 1

Reduced costs also easy:

T



So, basic solution is
optimal if

Flows S →T are at
capacity

Flows T →S are zero

Max Flow Problem
S

T

CP Summer School
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This basic solution is 
suboptimal.

Add nonzero T-S arc
to the basis.

Improvement step
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This basic solution is 
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

Improvement step
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This basic solution is 
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

To increase total s-t flow:

Increase flow on forward arcs
of dashed path, decrease on 
backward arcs.

Improvement step
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This basic solution is 
suboptimal.

Add nonzero T-S arc
to the basis.

This creates a cycle.

To increase total s-t flow:

Increase flow on forward arcs
of dashed path, decrease on 
backward arcs.

Equivalently, increase flow on
augmenting path of the
residual graph .

Improvement step
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Network flow model of

with domains 

Filtering: Cardinality Constraint

Capacity bounds



Network flow model of

with domains 

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow



Network flow model of

with domains 

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Constraint is 
feasible because 
max s-t flow = 4



Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

Filtering: Cardinality Constraint

0

Capacity bounds

2

2

Flow

Constraint is 
feasible because 
max s-t flow = 4



Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow.  There is an augmenting path from x2 to c
in the residual graph.

Filtering: Cardinality Constraint
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Capacity bounds

2

2

Flow

Constraint is 
feasible because 
max s-t flow = 4



Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow.  There is an augmenting path from x2 to c
in the residual graph.

Filtering: Cardinality Constraint

0

2

2
Residual graph



Network-based filtering achieves domain consistency.

Can remove c from domain of x2 if max flow from c to x2 is zero.

But zero is not max flow.  There is an augmenting path from x2 to c
in the residual graph.

However, we can remove a from domain of x2 (no augmenting path).

Filtering: Cardinality Constraint

0

2

2
Residual graph



Alldiff is a special case in which these capacities are [0,1].

(Max cardinality bipartite matching)

Filtering: Alldiff

0

Capacity bounds

2

2



The sequence constraint has several polytime filters that achieve 
domain consistency:

• Cumulative sums (also filters genSequence)

• Network flow model

• Decomposition and propagation (based on Berge acyclicity of 
constraint hypergraph).

We will develop the network flow model .

Filtering: Sequence
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Consider constraint

That is, every stretch of 3 variables yi must contain at least      and
at most      1’s. 

Filtering: Sequence
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Consider constraint

That is, every stretch of 3 variables yi must contain at least      and
at most      1’s. 

IP formulation is

Filtering: Sequence
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Consider constraint

That is, every stretch of 3 variables yi must contain at least      and
at most      1’s. 

IP formulation is

or 

Filtering: Sequence
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The transpose of the matrix has the consecutive ones property . 

We will see later that it is therefore totally unimodular and can be 
solved as an LP (all LP solutions are integral).

Filtering: Sequence
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The transpose of the matrix has the consecutive ones property . 

We will see later that it is therefore totally unimodular and can be 
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Filtering: Sequence
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The transpose of the matrix has the consecutive ones property . 

We will see later that it is therefore totally unimodular and can be 
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Subtract each row from the next (after adding row of zeros):

Filtering: Sequence
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The transpose of the matrix has the consecutive ones property . 

We will see later that it is therefore totally unimodular and can be 
solved as an LP (all LP solutions are integral).

In fact, it can be solved and filtered as a network flow problem .

Subtract each row from the next (after adding row of zeros):

Filtering: Sequence



This is a network flow problem.  
The network is… 

Filtering: Sequence



This is a network flow problem.  
The network is… 

Filtering: Sequence
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The network
can be analyzed
for filtering in the
same way as the
cardinality
network.

Filtering: Sequence
y1 y2 y3

y4

y5

y6

y7
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The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables xi

Filtering: genSequence
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The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables in x = (x1, …, xn).

It may be possible to permute rows so that the matrix has the 
consecutive ones property.  This allows the network flow model to be 
used.  

This can be checked in O(m + n + r) time, where r = number of 
nonzeros in matrix.

Filtering: genSequence
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The genSequence constraint allows arbitrary stretches of variables:

where

and Xi is a subset of consecutive variables in x = (x1, …, xn).

It may be possible to permute rows so that the matrix has the 
consecutive ones property.  This allows the network flow model to be 
used.  

This can be checked in O(m + n + r) time, where r = number of 
nonzeros in matrix.

Even without consecutive ones, there may be an equivalent network 
flow matrix.  This can be checked in O(mr) time.

Filtering: genSequence



Integral Polyhedra

Total Unimodularity
Network Flow Matrices

Interval Matrices
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June 2011    Slide 259



Integral polyhedron

An integral polyhedron is one whose vertices have all integral 
coordinates.

If the continuous relaxation of an MILP model describes an integral 
polyhedron, the model can be solved as an LP.  (All vertices are 
integral.)
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Integral polyhedron

An integral polyhedron is one whose vertices have all integral 
coordinates.

If the continuous relaxation of an MILP model describes an integral 
polyhedron, the model can be solved as an LP.  (All vertices are 
integral.)

Classic result:  Total unimodularity

A matrix is totally unimodular if every square submatrix has 
determinant 0, 1, or −1.

CP Summer School
June 2011    Slide 261



Integral polyhedron

An integral polyhedron is one whose vertices have all integral 
coordinates.

If the continuous relaxation of an MILP model describes an integral 
polyhedron, the model can be solved as an LP.  (All vertices are 
integral.)

Classic result:  Total unimodularity

A matrix is totally unimodular if every square submatrix has 
determinant 0, 1, or −1.

Theorem. Matrix  A with integral components is totally unimodular 
if and only if  Ax ≥ b, x ≥ 0  describes an integral polyhedron for any 
integral b.
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Total unimodularity

Lemma.  The following preserve total unimodularity:

• Transposition

• Swapping rows or columns

• Negating a column

• Adding a unit column.
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Total unimodularity

Lemma.  The following preserve total unimodularity:

• Transposition

• Swapping rows or columns

• Negating a column

• Adding a unit column.

Key Theorem.  Matrix  A  is totally unimodular if and only if every 
subset  J of columns has a partition J = J1 ∪ J2 such that for each 
row i of A,
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A A
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− ≤∑ ∑



Total unimodularity

Corollary. A network flow matrix is totally unimodular.
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Total unimodularity

Corollary.  A matrix with the consecutive ones property (interval 
matrix) is totally unimodular.
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Cutting Planes

0-1 Knapsack Cuts
Gomory Cuts

Mixed Integer Rounding Cuts
Example: Product Configuration
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Cutting 
plane

Feasible solutions

Continuous 
relaxation

To review…

A cutting plane (cut, valid inequality) for 
an MILP model:

• …is valid

- It is satisfied by all feasible solutions 
of the model.

• …cuts off solutions of the continuous 
relaxation.

- This makes the relaxation tighter.
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Motivation

• Cutting planes (cuts) tighten the continuous relaxation of an 
MILP model.

• Knapsack cuts

- Generated for individual knapsack constraints.

- We saw general integer knapsack cuts earlier.

- 0-1 knapsack cuts and lifting techniques are well studied 
and widely used.

• Rounding cuts

- Generated for the entire MILP, they are widely used.

- Gomory cuts for integer variables only.

- Mixed integer rounding cuts for any MILP.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 
variables.

The analysis is different from that of general knapsack constraints, 
to exploit the special structure of 0-1 inequalities.
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0-1 Knapsack Cuts

0-1 knapsack cuts are designed for knapsack constraints with 0-1 
variables.

The analysis is different from that of general knapsack constraints, 
to exploit the special structure of 0-1 inequalities.

Consider a 0-1 knapsack packing constraint ax ≤ a0.  (Knapsack 
covering constraints are similarly analyzed.)

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality                           is a 0-1 knapsack cut for 
ax ≤ a0

1j
j J

x J
∈

≤ −∑

Only minimal covers need be considered.
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Example

Index set J is a cover if 0j
j J

a a
∈

>∑

The cover inequality                           is a 0-1 knapsack cut for 
ax ≤ a0

1j
j J

x J
∈

≤ −∑

J = {1,2,3,4} is a cover for

1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

Only minimal covers need be considered.

This gives rise to the cover inequality

1 2 3 4 3x x x x+ + + ≤
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Sequential lifting

• A cover inequality can often be strengthened by lifting it into a 
higher dimensional space.

• That is, by adding variables.

• Sequential lifting adds one variable at a time.

• Sequence-independent lifting adds several variables at once.
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Sequential lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add a term to the left-hand side 1j k k
j J

x x Jπ
∈

+ ≤ −∑

where πk is the largest coefficient for which the inequality is still valid.

So,
{ } 00,1

for 

1 max
j

k j j j kx
j J j J

j J

J x a x a aπ
∈

∈ ∈
∈

 
= − − ≤ − 

 
∑ ∑

This can be done repeatedly (by dynamic programming).
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Example

To lift

add a term to the left-hand side

This yields

{ }
{ }5 1 2 3 4 1 2 3 40,1

for {1,2,3,4}

3 max 6 5 5 5 17 8
jx

j

x x x x x x x xπ
∈

∈

= − + + + + + + ≤ −

Further lifting leaves the cut unchanged.

But if the variables are added in the order x6, x5, the result is different:

1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 5 3x x x x xπ+ + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where

1 2 3 4 52 3x x x x x+ + + + ≤

1 2 3 4 5 6 3x x x x x x+ + + + + ≤
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Sequence-independent lifting

• Sequence-independent lifting usually yields a weaker cut than 
sequential lifting.

• But it adds all the variables at once and is much faster.

• Commonly used in commercial MILP solvers.
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Sequence-independent lifting

To lift a cover inequality 1j
j J

x J
∈

≤ −∑

add terms to the left-hand side ( ) 1j j k
j J j J

x a x Jρ
∈ ∉

+ ≤ −∑ ∑

where

with

{ }
{ }

1if   and  0, , 1

( ) ( ) / if   and  1, , 1

( ) / if 

j j

j j j

p p

j A u A j p

u j u A A u A j p

p u A A u

ρ
+ ≤ ≤ − ∆ ∈ −

= + − ∆ − ∆ ≤ < − ∆ ∈ −
 + − ∆ − ∆ ≤

…

…

0j
j J

a a
∈

∆ = −∑

{ }1, ,J p= …

1

j

j k
k

A a
=

=∑

0 0A =
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Example

To lift

Add terms
1 2 3 4 3x x x x+ + + ≤

1 2 3 4 5 6(8) (3) 3x x x x x xρ ρ+ + + + + ≤

Given 1 2 3 4 5 66 5 5 5 8 3 17x x x x x x+ + + + + ≤

where ρ(u) is given by

This yields the lifted cut

1 2 3 4 5 6(5 / 4) (1/ 4) 3x x x x x x+ + + + + ≤
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Gomory Cuts

• When an integer programming 
problem has a nonintegral solution, 
we can generate at least one Gomory 
cut to cut off that solution.

- This is a special case of a 
separating cut , because it 
separates the current solution of 
the relaxation from the feasible 
set.

• Gomory cuts are widely used and 
very effective in MILP solvers.

Separating 
cut

Feasible solutions

Solution of 
continuous 
relaxation
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min

0 and integral

cx

Ax b

x

=
≥

Gomory cuts

Given an integer programming 
problem

Let (xB,0) be an optimal solution 
of the continuous relaxation, 
where

ˆ ˆ
B Nx b Nx= −

1 1ˆ ˆ,   b B b N B N− −= =

Then if xi is nonintegral in this solution, the following Gomory cut is 
violated by (xB,0):

ˆ ˆ
i i N ix N x b   + ≤   
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   

  
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

ˆ ˆ
i i N ix N x b   + ≤   

1

2

1

2 / 3B

x
x

x
   = =   

  

The Gomory cut 

is [ ] 3
2

4

4 /9 1/ 9 2 / 3
x

x
x
 

+ − ≤       
 

or 2 3 0x x− ≤ In x1,x2 space this is 1 22 3x x+ ≥
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1 2

1 2

1 2

1 2

min 2 3

3 3

4 3 6

, 0 and integral

x x

x x

x x

x x

+
+ ≥

+ ≥
≥

Example

1 2

1 2 3

1 2 4

min 2 3

3 3

4 3 6

0 and integralj

x x

x x x

x x x

x

+
+ − =

+ − =
≥

or Optimal solution of 
the continuous 
relaxation has

1/ 3 1/ 3ˆ
4 / 9 1/ 9

N
− =  − 

1ˆ
2 / 3

b
 =  
 

1

2

1

2 / 3B

x
x

x
   = =   

  

Gomory cut  x1 + 2x2 ≥ 3

Gomory cut after re-solving LP with 
previous cut.

1ˆ
2 / 3

b
 =  
 
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Mixed Integer Rounding Cuts

• Mixed integer rounding (MIR) cuts can be generated for solutions 
of any relaxed MILP in which one or more integer variables has a 
fractional value.

− Like Gomory cuts, they are separating cuts.

− MIR cuts are widely used in commercial solvers.
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min

, 0 and  integral

cx dy

Ax Dy b

x y y

+
+ =
≥

MIR cuts

Given an MILP problem
In an optimal solution of the 
continuous relaxation, let

J = { j | yj is nonbasic}

K = { j | xj is nonbasic}

N = nonbasic cols of [A D]

Then if yi is nonintegral in this solution, the following MIR cut is 
violated by the solution of the relaxation:

1 2

ˆfrac( ) 1ˆ ˆ ˆ ˆ ˆ
ˆ ˆfrac( ) frac( )

ij
i ij j ij ij j ij i

j J j J j Ki i

N
y N y N N x N b

b b
+

∈ ∈ ∈

 
     + + + + ≥      

 
∑ ∑ ∑

where { }1
ˆ ˆfrac( ) frac( )ij jJ j J N b= ∈ ≥ 2 1\J J J=
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Example

Take basic solution (x1,y1) = (8/3,17/3).

Then
1 2 1 2

1 2 1 2

3 4 6 4 1

2 3

, 0,   integerj j j

x x y y

x x y y

x y y

+ − − =
+ − − =

≥

1/ 3 2 / 3ˆ
2 /3 8 / 3

N
 =  − 

8 / 3ˆ
17 / 3

b
 =  
 

J = {2}, K = {2},  J1 = ∅,  J2 = {2}

The MIR cut is 1 2 2

1/ 3 1
1/3 (2 / 3) 8 /3

2 / 3 2 / 3
y y x+ + + + ≥       

 

or 1 2 2(1/ 2) 3y y x+ + ≥
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This example illustrates:

• Combination of propagation and relaxation.

• Processing of variable indices.

• Continuous relaxation of element constraint.

Example: Product Configuration
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Memory

Memory

Memory

Memory

Memory

Memory

Power
supply

Power
supply

Power
supply

Power
supply

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Disk 
drive

Choose what type of each component, and how many

Personal computer

The problem
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Amount of attribute j
produced 

(< 0 if consumed): 
memory, heat, power, 

weight, etc.

Quantity of 
component i

installed

Model of the problem

Amount of attribute j
produced by type ti

of component i

ti  is a variable 
index

Unit cost of producing 
attribute j
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To solve it:

• Branch on domains of ti and qi.

• Propagate element constraints and bounds on vj. 

– Variable index is converted to specially structured 
element constraint.

– Valid knapsack cuts are derived and propagated.

• Use linear continuous relaxations .

– Special purpose MILP relaxation for element.
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min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Propagation

This is propagated 
in the usual way
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This is rewritten as

Propagation

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑
This is propagated 
in the usual way

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This can be propagated by 
(a) using specialized filters for element constraints of this form… 

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This is propagated by 
(a) using specialized filters for element constraints of this form, 
(b) adding knapsack cuts for the valid inequalities:

is current 
domain of vj

Propagation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

{ }
{ }

max , all 

min , all 

ti

ti

jijk ik D
i

ijk i jk D
i

A q v j

A q v j

∈

∈

≥

≤

∑

∑

[ , ]j jv vand (c) propagating the knapsack cuts.
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This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation
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This is relaxed by relaxing this 
and adding the knapsack cuts.

This is relaxed as

jjj vvv ≤≤

min

, all 

,  all 

i

j j
j

j i ijt
ik

j j j

c v

v q A j

L v U j

=

≤ ≤

∑

∑

Relaxation

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…
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This is relaxed by replacing each element constraint 
with a disjunctive convex hull relaxation:

( )1

,  all 

element ,( , , , ), ,  all ,

j i
i

i i ij i ijn i

v z j

t q A q A z i j

=∑

…

,    
t ti i

i ijk ik i ik
k D k D

z A q q q
∈ ∈

= =∑ ∑

Relaxation
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So the following LP relaxation is solved at each node 
of the search tree to obtain a lower bound:

{ }
{ }

min

, all 

,  all 

,  all 

,  all 

knapsack cuts for max ,  all 

knapsack cuts for min ,  all 

0, all ,

ti

ti

ti

ti

j j
j

j ijk ik
i k D

j ik
k D

j j j

i i i

ijk i jk D
i

ijk i jk D
i

ik

c v

v A q j

q q i

v v v j

q q q i

A q v j

A q v j

q i k

∈

∈

∈

∈

=

=

≤ ≤
≤ ≤

≥

≤

≥

∑

∑∑

∑

∑

∑

Relaxation
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Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example:  Continuous Global Optimization
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Motivation

• Lagrangean relaxation can provide better bounds than LP 
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP 
duality.

- This is a key technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by 
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

min ( )

( ) 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize ) the hard constraints 
by moving them into the objective function.
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound 
on the objective function that is implied by the constraints.

It is related to an 
inference problem
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  { }min ( ) ( )
x S

v f x g xλ
∈

≤ −
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min ( ) ( )
x S

v f x g xλ
∈

≤ −

Surrogate
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min ( )

( ) 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ( )

λ
θ λ

≥

or where

{ }( ) min ( ) ( )
x S

f x g xθ λ λ
∈

= −

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean 
relaxation

Vector of
Lagrange 
multipliers

The Lagrangean dual can be viewed as the problem 
of finding the Lagrangean relaxation that gives the 
tightest bound.

These constraints 
are dualized
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest 
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

( , ) min 3 4 ( 3 ) (2 5)

min (3 2 ) (4 3 ) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥= 


1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥= 

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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7),  θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7 
(no strong duality).CP Summer School
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual 
provides the same bound (9 2/7) as the 
continuous relaxation of the IP.

This is because the Lagrangean relaxation 
can be solved as an LP:

Lagrangean duality is useful when the 
Lagrangean relaxation is tighter than an LP 
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

( , ) min (3 2 ) (4 3 ) 5

min (3 2 ) (4 3 ) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…
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Properties of the Lagrangean dual

Weak duality:  For any feasible x* and any λ* ≥ 0,  f(x*) ≥ θ(λ*).

In particular, min ( )

( ) 0

f x

g x

x S

≥
≥

∈

0
max ( )

λ
θ λ

≥

Concavity: θ(λ) is concave.  It can therefore be maximized by 
local search methods.

Complementary slackness :  If x* and λ* are optimal, and there 
is no duality gap, then λ*g(x*) = 0.
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Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk. 

The stepsize αk must be adjusted so that the sequence 
converges but not before reaching a maximum.
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Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree 
very rapidly.  

• Lagrangean relaxation may allow very fast calculation of a lower 
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which 
is an LP) and use the same Lagrange multipliers to get an LP 
bound at other nodes.
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

( )

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching 
constraints, 
etc.

Here θ(λ*) is still a lower bound on the optimal 
value of the LP and can be quickly calculated 
by solving a specially structured LP.

Special structure,
e.g. variable bounds

CP Summer School
June 2011    Slide 314



min ( )

( ) 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.

Domain Filtering
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min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
gi(x) ≥ 0 would change by some amount ∆i.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to gi(x) − ∆i ≥ 0. 

So it would increase the optimal value at least  λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs.  Dual 
multipliers for LP are a special case of Lagrange multipliers.)
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We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Since  ∆i = gi(x) − gi(x*) = gi(x),  this implies the inequality
*

*( )i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Example:  Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON) 
combine OR-style relaxation with CP-style interval arithmetic and 
domain filtering.

• These methods can be combined with domain filtering based on 
Lagrange multipliers.
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Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1],  [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈
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To solve it:

• Search : split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering. 

– Use Lagrange multipliers to infer valid inequality for 
propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear 
continuous relaxation.
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Interval propagation

Propagate intervals 
[0,1], [0,2] 

through constraints 
to obtain 

[1/8,7/8], [1/4,7/4] 

x1

x2
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Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.
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where domain of xj is [ , ]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −
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The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =



Solve linear relaxation.

x1

x2

Relaxation (function factorization)



x1

x2

Since solution is infeasible, 
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈



x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈



Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 

solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈



Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 

solution

x1

x2

x1

x2
Solution of 

relaxation is 
not quite 
feasible, 

value = 1.854

Also use 
Lagrange 

multipliers for 
domain 

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈



1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

Relaxation (function factorization)



This yields a valid inequality for propagation:

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of 
relaxation Lagrange multiplier

Value of incumbent 
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =



Dynamic Programming in CP

Example: Capital Budgeting
Domain Filtering

Recursive Optimization
Filtering for Stretch
Filtering for Regular



Motivation

• Dynamic programming (DP) is a highly versatile technique that 
can exploit recursive structure in a problem.  

• Domain filtering is straightforward for problems modeled as a 
DP.

• DP is also important in designing filters for some global 
constraints, such as stretch and regular.

• Nonserial DP is related to bucket elimination in CP and exploits 
the structure of the primal graph.

• DP modeling is the art of keeping the state space small while 
maintaining a Markovian property.

• We will examine only one simple example of serial DP.



Example: Capital Budgeting

We wish to built power plants with a total cost of at most 12 million 
Euros. 

There are three types of plants, costing 4, 2 or 3 million Euros 
each.  We must build one or two of each type. 

The problem has a simple knapsack packing model:

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈Number of 

factories of type j



Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

The recursion for ax ≤ b might be

1( ) ( )
k xk

k k k k k k
x D

f s f s a x+
∈

= +∑

= # of paths 
from state sk
to feasible 
solutions

State is sum 
of first k terms 

of ax

f4(14)=0
f4(11)=1

f3(8) = f4(8+3⋅1) + f4(8+3⋅2)} = 1 + 0 = 1

x3=2

x3=1

State sk

Stage k



Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

The recursion for ax ≤ b might be

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1
Boundary condition:

1
1 1

1 if 
( )

0 otherwise
n

n n

s b
f s +

+ +

≤= 


fk(sk) for each state sk

1( ) ( )
k xk

k k k k k k
x D

f s f s a x+
∈

= +∑

Feasible if:

1(0) 0f >



Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1

fk(sk) for each state sk

The problem is feasible.

Each path to 1 is a feasible 
solution.

Path 1:  x = (1,2,1)

Path 2:  x = (1,1,2)

Path 3:  x = (1,1,1)

Possible costs are 9,11,12.



Example: Capital Budgeting

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

2

0

0

0

0

0

0

0

0

1

3

3

1

1

1

fk(sk) for each state sk

Key property:

The DP model is Markovian

Possible transitions depend only 
on current state…

…not how the state was 
reached.



Domain Filtering

{ }
1 2 34 2 3 12

1,2j

x x x

x

+ + ≤
∈

x3=1

To filter domains: observe what 
values of xk occur on feasible 
paths.

x3=2

x3=1

{ }
3

1,2xD =

x2=2

x2=1

{ }
2

1,2xD =

x1=1

{ }
1

1xD =



Recursive Optimization

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1( ) max ( )
k xk

k k k k k k k kx D
f s c x f s a x+∈

= + +

= value on max 
value path from 
sk to final stage

(value to go)

Arc value

f4(14)=−∞
f4(11)=0

f3(8) = max{12⋅1+f4(8+3⋅1), 12⋅2+f4(8+3⋅2)} 
= max{12,−∞} = 12

12⋅2

12⋅1

Maximize 
revenue



Recursive optimization

24

−∞

12

49

34

0

0

0

Boundary condition:

1
1 1

0 if 
( )

otherwise
n

n n

s b
f s +

+ +

≤= −∞
fk(sk) for each state sk

{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

The recursion includes arc values:

{ }1( ) max ( )k k k k k k k kf s c x f s a x+= + +

−∞

−∞

−∞

−∞

−∞

−∞

−∞

Optimal value:

1(0)f



{ }

1 2 3

1 2 3

max 15 10 12

4 2 3 12

1,2j

x x x

x x x

x

+ +
+ + ≤

∈

fk(sk) for each state sk

The maximum revenue is 49.

The optimal path is easy to 
retrace.

(x1,x2,x3) = (1,1,2)

Recursive optimization

24

−∞

12

49

34

0

0

0

−∞

−∞

−∞

−∞

−∞

−∞

−∞



Example:

where 
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Filtering: Stretch



Example:

where 
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

Filtering: Stretch



Example:

where 
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

One feasible solution.

Filtering: Stretch



Example:

where 
x = (x1, …, xn)
pattern P = {(a,b), (b,a), (b,c), (c,b)}

Shifts must occur in stretches of length 2 or 3.
Workers cannot change directly between shifts a and c.

Assume variable domains:

The other feasible solution.

Filtering: Stretch



Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch ):

(day,shift)



Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch ):

(day,shift)

Model is Markovian because pattern constraint involves 
only 2 consecutive states.



Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch ):

Remove states that are not backward reachable from a feasible 
end state.

(day,shift)



Example:

Filtering: Stretch

State transition graph (transitions defined by choice of stretch ):

Domains can now be filtered:

(day,shift)



Encode the stretch example as a finite deterministic automaton A: 

Filtering: Regular

Initial
state

Circled nodes 
are accepting 
(terminal)
states

Transitions defined by choice of shift .



Encode the stretch example as a finite deterministic automaton A: 

Filtering: Regular

Initial
state

Circled nodes 
are accepting 
(terminal)
states

Transitions defined by choice of shift .

Now impose the constraint



Filtering can be done on a DP state transition graph:

Filtering: Regular



Filtering can be done on a DP state transition graph:

Filtering: Regular

Remove states that are not backward reachable from an accepting 
state in the final stage.



Filtering can be done on a DP state transition graph:

Filtering: Regular

Remove states that are not backward reachable from an accepting 
state in the final stage.

Now filter the domains.



CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling



Motivation

• Branch and price allows solution of integer programming 
problems with a huge number of variables.

• The problem is solved by a branch-and-relax method.  The 
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when 
constraints are complex.

• CP-based branch and price has been successfully applied 
to airline crew scheduling, transit scheduling, and other 
transportation-related problems.



Basic Idea

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem , 
which has a small subset of the variables:

( )

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a 
negative reduced cost:

0k k kr c Aλ= − <



Adding xk to the problem would improve the solution if xk has a 
negative reduced cost:

0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to 
the restricted master problem.

So we solve the pricing problem:

Cost of column y



Basic Idea

max

 is a column of 

y

y A

λ

need not be solved to optimality, so long as we find a column with 
negative reduced cost.  

However, when we can no longer find an improving column, we 
solved the pricing problem to optimality to make sure we have the 
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy, 
CP may be a good way to solve the pricing problem.



Example: Airline Crew Scheduling

Flight data

Start 
time

Finish 
time

A roster is the sequence of flights assigned to 
a single crew member.

The gap between two consecutive flights in a 
roster must be from 2 to 3 hours.  Total flight 
time for a roster must be between 6 and 10 
hours.

For example, 
flight 1 cannot immediately precede 6 
flight 4 cannot immediately precede 5.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

We want to assign crew members to flights to minimize 
cost while covering the flights and observing complex 
work rules.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 1.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 2.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 3.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 4.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 5.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 6.



Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

In a real problem, there can be millions of rosters.



Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Optimal 
dual 

solution

u1
u2
v1
v2
v3
v4
v5
v6



Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6



Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

The reduced cost of an 
excluded roster k for 
crew member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the 
pricing problem as a 
shortest path problem.

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6



Pricing problem

Crew 
member 1

Crew 
member 2



Pricing problem
Each s-t path corresponds to a roster, 
provided the flight time is within bounds.

Crew 
member 1

Crew 
member 2



Pricing problem
Cost of flight 3 if it immediately follows 
flight 1, offset by dual multiplier for flight 1

Crew 
member 1

Crew 
member 2



Pricing problem
Cost of transferring from home to flight 1, 
offset by dual multiplier for crew member 1

Dual multiplier 
omitted to break 
symmetry

Crew 
member 1

Crew 
member 2



Pricing problem
Length of a path is reduced cost of the 
corresponding roster.

Crew 
member 1

Crew 
member 2



Crew 
member 1

Crew 
member 2

Pricing problem
Arc lengths using dual solution of LP 
relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1



Crew 
member 1

Crew 
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

Reduced cost = −1
Add x12 to problem. 

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no 
remaining variable has negative reduced cost.



Pricing problem

The shortest path problem cannot be solved by traditional shortest 
path algorithms, due to the bounds on total duration of flights.  

It can be solved by CP:

( )
{ }

min max

Path( , , ),  all flights 

flights ,   0,  all 
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights 
assigned to crew 
member i

Path 
length Graph

Path global constraint

Setsum global constraint

Duration of flight j



CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling



Motivation

• Benders decomposition allows us to apply CP and OR to 
different parts of the problem.

• It searches over values of certain variables that, when fixed, 
result in a much simpler subproblem .

• The search learns from past experience by accumulating 
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR 
conception.

• Generalized Benders methods have resulted in the greatest 
speedups achieved by combining CP and OR.

• Instance of constraint-directed search.

• Generates constraints (nogoods) by solving inference dual of 
subproblem.



Benders Decomposition in the Abstract

Benders decomposition 
can be applied to 
problems of the form

min ( , )

( , )

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )

( , )

y

f x y

S x y

y D∈

…perhaps 
because it 
decouples into 
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules 
the jobs on the machines.  

When x is fixed, the problem decouples into a separate scheduling 
subproblem for each machine.



Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk.  To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x), 
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk.   Cost in the original problem



Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

that satisfies Bk+1(x) = vk.   Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts 
generated so far



Benders Decomposition

We now solve the 
master problem

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next 
trial value xk+1.

The master problem is a relaxation of the original problem, and its 
optimal value is a lower bound on the optimal value of the original 
problem.

The subproblem is a restriction, and its optimal value is an upper 
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set 
onto x.  We hope not too many cuts are needed to find the optimum.



Classical Benders Decomposition

The classical method 
applies to problems 
of the form

min ( )

( )

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem 
is an LP

( )

min ( )

( )

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

( )max ( ) ( )

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower 
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual .  So by 
weak duality,  Bk+1(x) remains a lower bound on v.



Classical Benders

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

( ) ( ( )),  1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or 

• a mixed integer/nonlinear programming problem (MINLP).



Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master 
problem , to be solved by MILP.

• Schedule the jobs in the 
subproblem , to be solved by CP.

Time lapse between 
start of first job and 
end of last job.



Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Machine A

Machine B



Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Minimum makespan 
schedule for jobs 1, 2, 3, 5 

on machine A



Machine Scheduling

( )

min

, all 

,  all 

noOverlap ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is



Machine Scheduling

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment      the subproblem on each machine i is

( )

min

, all  with 

,  all  with 

noOverlap ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

( )

min

, all 

,  all 

noOverlap ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =



Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 




Benders cuts

We want the master problem to be an MILP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ( )2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is 

assigned to 
machine A



Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

v 10( 2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Subproblem relaxation derived 
from time windows

Subproblem relaxation derived 
from release times

Benders cut from machine A

Benders cut from machine B



Cumulative scheduling subproblem

Benders cut for min makespan ( all release times the same):

{ } { }(1 ) max min
ik ik ik

ik ij ij j j
j J j J j J

v M p x d d
∈ ∈ ∈

 
≥ − + − 

 
∑

Min makespan 
on machine i
in iteration k

Set of jobs 
assigned to 
machine i in 
iteration k



Cumulative scheduling subproblem

Benders cut for min total tardiness :

0

\

1 (1 ) ,  all 

1 (1 ) ,  all 

ik

ik ik

ik ij
j J

ik ij
j J Z

v T x i

v T x i

∈

∈

 
≥ − − 

 

 
≥ − − 

 

∑

∑
Min total 

tardiness on 
machine i

in iteration k
Set of jobs that, when 
individually removed 

from Jik, do not reduce 
min tardiness

Min tardiness when 
all jobs in Zik are 
removed from 

machine i



Cumulative scheduling subproblem

Because the tardiness Benders cuts are weak, a good subproblem 
relaxation is particularly important:

Capacity of 
machine i

where

Rate of resource 
consumption of job j

( ) ( )
1

1
, 1, ,

i i

k

k i j i j
ji

v T

T p c d n
C π π

+

=

≥

 
= − = 
 

∑

∑

ℓ

ℓ

ℓ

ℓ ℓ
ℓ …

(1) (1) ( ) ( )i i i ii i i n i np c p cπ π π π≤ ≤⋯



Cumulative scheduling subproblem

Example

( ) ( )
1

1
, 1, ,

i i

k

k i j i j
ji

v T

T p c d n
C π π

+

=

≥

 
= − = 
 

∑

∑

ℓ

ℓ

ℓ

ℓ ℓ
ℓ …

( )1 1 1(1), (2), (3) (3,1,2)π π π =

1 2 3k k kv T T T≥ + +
Relaxation:

( )
( )
( )

1
1 3

21
2 33

11
3 33

(5) 2 0

(5 6) 3

(5 6 8) 4 2

k

k

k

T

T

T

+

+

+

= − =

= + − =

= + + − =

Bound = 3

Min tardiness = 6



Some Topics Not Covered

• Polyhedral relaxations for metaconstraints (alldiff, element, 
circuit, noOverlap, cumulative, logic, etc.)

• MILP models for metaconstraints.

• Unifying role of inference duality in constraint-based search 
(e.g., Benders, DPLL, tabu search).

• Unification of exhaustive and local search.

• Constraint store as relaxation (e.g., relaxed multivalued 
decision diagram).
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