
Hybrid Constraints over Continuous
Domains: introduction

Michel RUEHER

University of Nice Sophia-Antipolis / I3S – CNRS, France

June, 2011

ACP Summer School
“Hybrid Methods for Constraint Programming”

Turunç



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications

Outline

Motivations

Interval Programming

Constraint Programming

Applications

2



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications

Why do we need intervals?

I Modelling uncertainty
I Error in Measurement or uncertainty in measurements
I Uncertainty when estimating unknown values

I Safe Computations with floating-point numbers
I Rounding errors
I Cancellation, ...

What Every Computer Scientist Should Know About
Floating-Point Arithmetic, Goldberg, 1991

3



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications

Problem with floating-point computations

Examples
(in simple precision)

I Absorption: 107 + 0.5 = 107

I Cancellation:
((1− 10−7)− 1) ∗ 107 = −1.192...(6= −1)

I Operations are not associative:
(10000001− 107) + 0.5 6= 10000001− (107 + 0.5)

I No exact representation:
0.1 = 0.000110011001100 . . .

Rump polynomial
I RumpFunc[x_,y_]:=(1335/4− x2)y6 + x2(11x2y2 −

121y4 − 2) + (11/2)y8 + x/(2y)
I Value computed with rational numbers:
RumpFunc[77617, 33096]= − 54767

66192 = −0.827396
I Value with floating point numbers: 0
I Value with floating point numbers when 11/2 is

replaced by 5.5 in the polynomial: 1.18059× 1021

4



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications

What is an interval?

An interval [a,b] describes a set of real
numbers x such that: a ≤ x ≤ b

Assumption:

a and b belong to finite set of numbers representable on a
computer: floating-point numbers, subset of integers,
rational numbers, ...

A Box denotes a Cartesian product of intervals

→ a box is a vector of intervals that defines the search
space of problem,
i.e., the space in which are the values of the variables

5



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval Programming

I Basics on interval arithmetic

I Interval Newton-like methods for solving a
multi-variate system of non-linear equations

6



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: notations
cj(x1, . . . , xn) A relation over the real numbers
x , y Real variables or vectors
X or x or Dx The domain of variable x (i.e. intervals)
X = [X ,X ] The set of real numbers x verifying
x = [x,x] X ≤ x ≤ X (resp. x ≤ x ≤ x)
C The set of constraints
D The set of domains of all the variables
R The set of real numbers
R∞ R∪ {−∞,+∞}, set of real numbers

extended with infinity symbols
F The set of floating point numbers
a+ (resp. a−) The smallest (resp. largest) number of F

strictly greater (resp. lower) than a
k̃ smallest interval containing real number k
Φcstc(P) closure (filtering) by consistency of CSP P

cstc stands for 2B,Box ,3B,Bound

7



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: basic definitions (1)

Interval arithmetic (Moore-1966)
is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns {x1, . . . , xn},
an interval evaluation F of f for given ranges
X = {X1, . . . ,Xn} for the unknowns is an interval Y such
that

∀{v1, . . . , vn} ∈ {X1, . . . ,Xn} : Y ≤ f (v1, . . . , vn) ≤ Y

Y ,Y : lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X

8



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: basic definitions (2)

Let C : In → Bool be a relation over the intervals

C is an interval extension of the relation c : Rn → Bool iff:

∀X1, . . . ,Xn ∈ I : ∃v1 ∈ X1 ∧ . . . ∧ ∃vn ∈ Xn ∧ c(v1, . . . , vn)
⇒C(X1, . . . ,Xn)

For instance, X1
.

= X2 ⇔ (X1 ∩ X2) 6= ∅ is an interval
extension of the relation x1 = x2 over the real numbers

Example:

Relation X1
.

= X2 holds if X1 = [0,17.5] and X2 = [17,27.5]

9



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension (1)

I In general, it is not possible to compute the exact
enclosure of the range for an arbitrary function over
the real numbers

→ The interval extension of a function is an interval
function that computes an outer approximation of the
range of the function over a domain

10



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension (2)

F the natural interval extension of a real function f is
obtained by replacing:

I Each constant k by its natural interval extension k̃

I Each variable by a variable over the intervals

I Each mathematical operator in f by its optimal interval
extension

11



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Optimal extensions for basic operators:

• [a,b]	 [c,d ] = [a− d ,b − c]

• [a,b]⊕ [c,d ] = [a + c,b + d ]

• [a,b]⊗ [c,d ] =
[min(ac,ad ,bc,bd),max(ac,ad ,bc,bd)]

• [a,b]� [c,d ] = [min(a
c ,

a
d ,

b
c ,

b
d ),max(a

c ,
a
d ,

b
c ,

b
d )]

if 0 6∈ [c,d ]
otherwise→ [−∞,+∞]

12



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension: Example

Let f = (x + y)− (y × x) be a real function

Let be X = [−2,3],Y = [−9,1]

F = (X ⊕ Y )	 (Y ⊗ X )
= ([−2,3]⊕ [−9,1])	 ([−9,1]⊗ [−2,3])
= [−11,4]	

[min(18,−27,−2,3),max(18,−27,−2,3)]
= [−11,4]	 [−27,18]
= [−29,31]

13



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: properties

I If 0 6∈ F(X), then no value exists in the box X such that
f (X ) = 0 →
Equation f (x) does not have any root in the box X

I Interval arithmetic can be implemented taking into
account round-off errors

I No monotonicity but interval arithmetic preserves
inclusion monotonicity: Y ⊆ X ⇒ F (Y ) ⊆ F (X )

I No distributivity but interval arithmetic is
sub-distributive: X (Y + X ) ⊆ XY + XZ

14



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Why is the image of an interval function not
optimal ?

I Outward Rounding (required for safe computations
with floating point numbers)

I Non continuity of interval functions: the image of an
interval is in general not an interval
→ The wrapping effect, which overestimates by a
unique vector the image of an interval vector
Example:

f (x) = 1
x with X = [−1,1]

F ([−1,1]) = 1
[−1,1] = [−∞,−1] ∪ [1,+∞]

→ = [−∞,+∞]

I Dependency problem when a variable has multiple
occurrences

15



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: dependency problem

I The dependency problem, which is due to the
independence of the different occurrences of a
variable during the interval evaluation of an expression

I Example:

Consider X = [0,5]
X − X = [0− 5,5− 0] = [−5,5] instead of [0,0] !
X 2 − X = [0,25]− [0,5] = [−5,25]
X (X − 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]

16



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: notations
cj(x1, . . . , xn) A relation over the real numbers
x , y Real variables or vectors
X or x or Dx The domain of variable x (i.e. intervals)
X = [X ,X ] The set of real numbers x verifying
x = [x,x] X ≤ x ≤ X (resp. x ≤ x ≤ x)
C The set of constraints
D The set of domains of all the variables
R The set of real numbers
R∞ R∪ {−∞,+∞}, set of real numbers

extended with infinity symbols
F The set of floating point numbers
a+ (resp. a−) The smallest (resp. largest) number of F

strictly greater (resp. lower) than a
k̃ smallest interval containing real number k
Φcstc(P) closure (filtering) by consistency of CSP P

cstc stands for 2B,Box ,3B,Bound

17



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: basic definitions (1)

Interval arithmetic (Moore-1966)
is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns {x1, . . . , xn},
an interval evaluation F of f for given ranges
X = {X1, . . . ,Xn} for the unknowns is an interval Y such
that

∀{v1, . . . , vn} ∈ {X1, . . . ,Xn} : Y ≤ f (v1, . . . , vn) ≤ Y

Y ,Y : lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X

18



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval arithmetic: basic definitions (2)

Let C : In → Bool be a relation over the intervals

C is an interval extension of the relation c : Rn → Bool iff:

∀X1, . . . ,Xn ∈ I : ∃v1 ∈ X1 ∧ . . . ∧ ∃vn ∈ Xn ∧ c(v1, . . . , vn)
⇒C(X1, . . . ,Xn)

For instance, X1
.

= X2 ⇔ (X1 ∩ X2) 6= ∅ is an interval
extension of the relation x1 = x2 over the real numbers

Example:

Relation X1
.

= X2 holds if X1 = [0,17.5] and X2 = [17,27.5]

19



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension (1)

I In general, it is not possible to compute the exact
enclosure of the range for an arbitrary function over
the real numbers

→ The interval extension of a function is an interval
function that computes an outer approximation of the
range of the function over a domain

20



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension (1)

F the natural interval extension of a real function f is
obtained by replacing:

I Each constant k by its natural interval extension k̃

I Each variable by a variable over the intervals

I Each mathematical operator in f by its optimal interval
extension

21



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Optimal extensions for basic operators:

• [a,b]	 [c,d ] = [a− d ,b − c]

• [a,b]⊕ [c,d ] = [a + c,b + d ]

• [a,b]⊗ [c,d ] =
[min(ac,ad ,bc,bd),max(ac,ad ,bc,bd)]

• [a,b]� [c,d ] = [min(a
c ,

a
d ,

b
c ,

b
d ),max(a

c ,
a
d ,

b
c ,

b
d )]

if 0 6∈ [c,d ]
otherwise→ [−∞,+∞]

22



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Natural interval extension: Example

Let f = (x + y)− (y × x) be a real function

Let be X = [−2,3],Y = [−9,1]

F = (X ⊕ Y )	 (Y ⊗ X )
= ([−2,3]⊕ [−9,1])	 ([−9,1]⊗ [−2,3])
= [−11,4]	

[min(18,−27,−2,3),max(18,−27,−2,3)]
= [−11,4]	 [−27,18]
= [−29,31]

23



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: properties

I If 0 6∈ F(X), then no value exists in the box X such that
f (X ) = 0 →
Equation f (x) does not have any root in the box X

I Interval arithmetic can be implemented taking into
account round-off errors

I No monotonicity but interval arithmetic preserves
inclusion monotonicity: Y ⊆ X ⇒ F (Y ) ⊆ F (X )

I No distributivity but interval arithmetic is
sub-distributive: X (Y + X ) ⊆ XY + XZ

24



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Why is the image of an interval function not
optimal ?

I Outward Rounding (required for safe computations
with floating point numbers)

I Non continuity of interval functions: the image of an
interval is in general not an interval
→ The wrapping effect, which overestimates by a
unique vector the image of an interval vector
Example:

f (x) = 1
x with X = [−1,1]

F ([−1,1]) = 1
[−1,1] = [−∞,−1] ∪ [1,+∞]

→ = [−∞,+∞]

I Dependency problem when a variable has multiple
occurrences

25



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: dependency problem

I The dependency problem, which is due to the
independence of the different occurrences of a
variable during the interval evaluation of an expression

I Example:

Consider X = [0,5]
X − X = [0− 5,5− 0] = [−5,5] instead of [0,0] !
X 2 − X = [0,25]− [0,5] = [−5,25]
X (X − 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]

26



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: using different literal
forms (1)

I Factorized form (Horner for polynomial system) or
distributed form

I First-order Taylor development of f

Ftay(X ) = f (x) + J(X ).(X − x)

with ∀x ∈ X , J() being the Jacobian of f

27



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: using different literal
forms (2)

I In general, first order Taylor extensions yield a better
enclosure than the natural extension on small
intervals

I Taylor extensions have a quadratic convergence
whereas the natural extension has a linear
convergence

I In general, neither Fnat nor Ftay won’t allow to compute
the exact range of a function f

28



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval extension: using different literal
forms (3)

Consider f (x) = 1− x + x2, and X = [0,2]

ftay([0,2])= f (x) + (2X − 1)(X − x)
= f (1) + (2[0, 2]− 1)([0,2]− 1) = [−2,4]

fnat([0,2])= 1− X + X 2 = [1,1]− [0,2] + [0, 2]2 = [−1,5]

ffactor([0,2]) = 1 + X (X − 1) = [1, 1] + [0,2]([0,2]− [1,1])
= [−1,3]

whereas the range of f over X = [0,2] is [0.75,3]

29



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval Analysis methods

Goal: to determine the zeros of a system of n equations
fi(x1, . . . , xn) in n unknowns xi inside the interval vector

X = {X1, . . . ,Xn} with xi ∈ Xi for i = 1, . . . ,n

I Gauss-Seidel iterative method

I Interval Newton algorithm

30



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Gauss-Seidel iterative method

Consider the case of interval linear equations:

A.x = b

with A an interval matrix and b an interval vector
For each unknowns Xi , the Gauss-Seidel algorithm is
defined by the following iterative process:

X k+1
i ← [(bi −

i−1∑
j=1

Ai,jX k+1
j −

n∑
j=i+1

Ai,jX k
j )/Ai,i ]∩X k

i

Pre-conditioning→ to shrink the width of the intervals

31



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval Newton algorithm (1)

Principle of the Newton operator:

Consider f : R → R, the mean value theorem says:
∃a ∈ [v ,u] : f (u)− f (v) = (u − v)f ′(a) and thus,

v = u − f (u)
f ′(a) if v is a zero of f

If a ∈ I then f (a) ∈ F (I), and v ∈ ũ − F (ũ)
F ′(I) = N(F ,F ′, ũ, I)

If v is a zero of f then v ∈ In (n ≥ 1) where
I0 = I
Ii+1 = N(F ,F ′, center(Ii), I) ∩ Ii
. . .
In = In+1

32



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Interval Newton algorithm (2)

The Interval Newton algorithm is used to solve
non-linear systems with

Xk+1 = N(x̃k ,Xk ) ∩ Xk with N(x̃k ,Xk ) = x̃k − A.f (x̃k )
where A = [F

′
(Xk )]−1

and x̃k ∈ Xk (e.g., the mid-point of Xk )
Properties:

I If N(x̃k ,Xk ) ∩ Xk = ∅, then the system F does not
have any solution in Xk

I if N(x̃k ,Xk )k ⊂ Xk , there exists at least one solution
in Xk+1

Matrix A = [F
′
(Xk )]−1 may be costly to compute

... to determine N(x̃k ,Xk )→ solve the linear system:
F
′
(Xk )(N(x̃k ,Xk )− x̃k ) = −f (x̃k )

33



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Constraint Programming

Numeric CSP (X ,D, C):

I X = {x1, . . . , xn} is a set of variables

I D = {Dx1 , . . . ,Dxn} is a set of domains
(Dxi contains all acceptable values for variable xi )

I C = {c1, . . . , cm} is a set of constraints

34



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Overall scheme

The constraint programming framework is based on a
branch & prune schema which is best viewed as an
iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more)

sub-problems

I The pruning step→ reduces an interval when it can
prove that the upper bound or the lower bound does
not satisfy some constraint

I The branching step→ splits the interval associated
to some variable in two intervals (often with the same
width)

35



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

36



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

37



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

38



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

39



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

40



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

41



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

42



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

43



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

44



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Filtering & Solving process (example)

Courtesy to Gilles Trombettoni

45



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistencies (1)

I Informally speaking, a constraint system C satisfies a
partial consistency property if a relaxation of C is
consistent

I Consider X = [x , x ] and C(x , x1, . . . , xn) ∈ C: if
C(x , x1, . . . , xn) does not hold for any values
a ∈ [x , x ′], then X may be shrunken to X = [x ′, x ]

46



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistencies (2)

I A constraint Cj is AC-like-consistent if for any
variable xi in Xj , the bounds Di and Di have a
support in the domains of all other variables of Xj

I AC-like local consistencies are used in BNR-prolog,
Interlog, CLP(BNR), PrologIV, UniCalc, Ilog
Solver, Numerica, Icos, RealPaver, IBEX,...

47



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistencies (3)

Local consistencies are conditions that filtering
algorithms must satisfy

→ fixed point algorithm defined by the sequence {Dk} of
domains generated by the iterative application of an
operator

Op : II(IR)n −→ II(IR)n

Dk =

{
D if k = 0
Op(Dk−1) if k > 0

48



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistencies (4)

Properties of the operator Op:

I Op(D) ⊆ D (inclusion)

I Op is conservative; that is, it cannot remove any
solution

I D′ ⊆ D ⇒ Op(D′) ⊆ Op(D) (monotonicity)

The limit of the sequence {Dk} corresponds to the greatest
fixed point of the operator Op

49



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistencies (5)

I 2B–consistency (also known as hull consistency)
only requires to check the Arc–Consistency property
for each bound of the intervals

I Box–consistency is a coarser relaxation of
Arc–Consistency than 2B–consistency ... but
Box–consistency algorithms may achieve a stronger
filtering than 2B–consistency

I KB–consistency... used when no bound of the
domains can be removed with a local consistency
filtering algorithm

I Implementation issues are critical→ HC4-Revise,
Mohc-Revise

50



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

2B–consistency (1)

Variable x is 2B–consistency for constraint
f (x , x1, . . . , xn) = 0 if the lower (resp. upper) bound of the

domain X is the smallest (resp. largest) solution of
f (x , x1, . . . , xn)

Definition: 2B–consistency
Let (X ,D, C) be a CSP and C ∈ C a k -ary constraint over
(X1, . . . ,Xk )
C is 2B–consistency iff :
∀i ,Xi = �{x̃i | ∃x̃1 ∈ X1, . . . ,∃x̃i−1 ∈ Xi−1,∃x̃i+1 ∈ Xi+1, . . . ,

∃x̃k ∈ Xk : c(x̃1, . . . , x̃i−1, x̃i , x̃i+1 . . . , x̃k )}
A CSP is 2B–consistent iff all its constraints are consistent

51



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Box–consistency (1)

Variable x is Box–Consistent for constraint
f (x , x1, . . . , xn) = 0 if the bounds of the domain of x

correspond to the leftmost and the rightmost zero of the
optimal interval extension F (X ,X1, . . . ,Xn) of

f (x , x1, . . . , xn)

Definition: Box–consistency
Let (X ,D, C)be a CSP and C ∈ C a k -ary constraint over
(X1, . . . ,Xk )
C is Box–Consistent if, for all Xi the following relations
hold :
1. C(X1, . . . ,Xi−1, [Xi ,Xi

+),Xi+1, . . . ,Xk )

2. C(X1, . . . ,Xi−1, (Xi
−
,Xi ],Xi+1, . . . ,Xk )

52



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistency filtering (1)

Algorithms that achieve a local consistency filtering
are based upon projection functions

I Solution functions express the variable xi in terms
of the other variables of the constraint. The solution
functions of x + y = z are:
fx = z − y , fy = z − x , fz = x + y

I An approximation of the projection of the constraint
over Xi given a domain D can be computed with any
interval extension of this solution function→ we have
a way to compute πj,i(D)

I For complex constraints, no analytic solution
function may exist
Example: x + log(x) = 0

53



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistency filtering (2)

Analytic functions always exist when the variable to
express in terms of the others appears only once in the

constraint

→ Considers that each occurrence is a different new
variable
For x + log(x) = 0 we obtain x1 + log(x2) = 0
Thus fx1 = − log(x2) , fx2 = exp−x1

and πx+log(x)=0,x (X ) = − log(X ) ∩ exp−X

I This approach is used for computing
2B–consistency filtering (the initial constraints are
decomposed into primitive constraints)

I Decomposition does not change the semantics of the
initial constraints system but it amplifies the
dependency problem

54



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistency filtering (3)

Transformation of the constraint Cj(xj1 , ...xjk ) into k
mono-variable constraints by substituting all variables

but one by their intervals

I The two extremal zeros of Cj,l can be found by a
dichotomy algorithm combined with a mono-variable
version of the interval Newton method

I This approach is well adapted for
Box–consistency filtering

55



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Local consistency filtering (4)

Use the Taylor extension to transform the constraint
into an interval linear constraint

I Equation f (X ) = 0 becomes an interval linear equation
in X , which does not contain multiple occurrences

I Solving the squared interval linear system allows
much more precise approximations of projections to
be computed

56



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

3B–Consistency (1)

3B–Consistency, a relaxation of path consistency

→

checks whether 2B–Consistency can be enforced when the
domain of a variable is reduced to the value of one of its

bounds in the whole system

57



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

3B–Consistency (2)

Definition: 3B–Consistency
Let (X ,D, C) be a CSP and x a variable of X with
Dx = [a,b].
Let also:

I Let PD1
x←[a,a+) be the CSP derived from P by

substituting Dx in D with D1
x = [a,a+)

I Let PD2
x←(b−,b] be the CSP derived from P by

substituting Dx in D with D2
x = (b−,b]

X is 3B–Consistent iff
Φ2B(PD1

x←[a,a+)) 6= P∅ and Φ2B(PD2
x←(b−,b]) 6= P∅

58



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

3B–Consistency (3)

Let (X ,D, C) be a CSP and Dx = [a,b], if
Φ2B(PDx←[a, a+b

2 ]) = ∅
I then the part [a, a+b

2 ) of Dx will be removed and the
filtering process continues on the interval [a+b

2 ,b]
I otherwise, the filtering process continues on the

interval [a, 3a+b
4 ].

59



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Global Constraints (1)

I “Syntactical” approach

I “Semantic” approach

60



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Global Constraints (1)

I A global constraint to handle a tight approximation of
the constraint system with an LP solver

I Combines

• safe and rigorous linear relaxations

• local consistencies and interval methods

61



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Linearisation of x2

Example: relaxation of x2 with x ∈ [−4,5]
I Introduce a new variable

I Replace x2 by y
I Domain of y : [0,25]

I Add redudant constraints

I y ≥ 2αx − α2 with
α ∈ [−4,5]

y ≥ −8x− 16
y ≥ 10x− 25

I y ≤ (x + x)x − x ∗ x

y ≤ x + 20

62



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming
Overall scheme

Local consistencies

2B–consistency

Box–consistency

Local consistency
filtering

3B-Consistency

Global Constraints

Applications

Global Constraints (2)

“Semantic” approach

→ Distance constraint

63



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Applications

I Safe global Optimisation

I Program verification

64



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Global Numerical Optimization: problem

We consider the continuous global optimisation problem

P ≡


min f (x)
s.c. gi(x) = 0, j = 1..k

gj(x) ≤ 0, j = k + 1..m
x ≤ x ≤ x

with
I X = [x,x]: a vector of intervals of IR
I f : IRn → IR and gj : IRn → IR
I Functions f and gj : are continuously differentiable on X

65



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Trends in global optimisation

I Performance
Most successful systems (Baron, αBB, . . . ) use local
methods and linear relaxations
→ not rigorous (work with floats)

I Rigour
Mainly rely on interval computation
. . . available systems (e.g., Globsol) are quite slow

I Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework

66



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min x
s. t. y − x2 ≥ 0

y − x2 ∗ (x − 2) + 10−5 ≤ 0
x , y ∈ [−10,+10]

0

y

x

Baron 6.0 and Baron 7.2 find 0 as the minimum . . .

67



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Branch and Bound Algorithm

I BB Algorithm:
While L 6= ∅ do %L initialized with the input box
• Select a box B from the set of current boxes L
• Reduction (filtering or tightening) of B
• Lower bounding of f in box B
• Upper bounding of f in box B
• Update of f and f
• Splitting of B (if not empty)

I Upper Bounding – Critical issue: to prove the
existence of a feasible point in a small box
→ Using CP refutation capabilities

I Lower Bounding – Critical issue: to achieve an
efficient pruning
→ Using Hybrid constraints to boost safe OBR

68



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

A challenging finite-domain optimization
application

Handling software upgradeability problems

I A critical issue in modern operating systems

→ Finding the “best” solution to install, remove or
upgrade packages in a given installation.

→ The complexity of the upgradeability problem itself is
NP complete

→ modern OS contain a huge number of packages (often
more than 20 000 packages in a Linux distribution)

I Mancoosi (European project FP7/2007-2013)
http://www.mancoosi.org/

69

http://www.mancoosi.org/


Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Solving software upgradeability problems

Computing a final package configuration from an initial one

I A configuration states which package is installed and
which package is not installed:

I Problem (in CUDF): list of package descriptions (with
their status) & a set of packages to
install/remove/upgrade

I Final configuration: list of installed packages
(uninstalled packages are not listed)

I Expected Answer: best solution according to
multiple criteria
Several optimisation criteria have to be considered,
e.g., stability, memory efficiency, network efficiency

I Difficult to tackle with CP tools

70



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

CP-based Bounded program verification

I Goals of BMC
• Mechanically check properties of models
• Widely used in hardware and software verification
• Automatic generation of counterexamples

I Principles of BMC
• Bounded program verification: the array lengths, the

variable values and the loops are bounded
• Falsification of a property is checked for a given bound
→ program is unwound k times,

71



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

CP-based BMC

• Constraint stores to represent the specification and
the program
→ Program is translated in constraints on the fly

• Program is partially correct if the constraint store
implies the post-conditions

• A list of solvers tried in sequence (LP, MILP, Boolean,
CP)

• Non deterministically exploration of execution paths

72



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Refining AI-based Approximations

Programs are run on the floats but:

I Specification, properties of programs
→ Reasoning with real numbers

I Programs are sometimes written with a the semantics
of real numbers “in mind”

Abstract Interpretation

I Differences between real numbers and floats reveal
problems with floats
→ Approximations over floats and over the real
numbers

73



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications
Global Optimization

A challenging
finite-domain
optimization application

CP-based BMC

Refining AI-based
Approximations

Objective & Approach

I Goal: refine the approximations computed by
abstract interpretation for domains of the program
variables

I Method: Using local consistencies over real
numbers and floating-point numbers to “shave” the
domains

74


	Motivations
	Interval Programming
	Notations
	Basic definitions
	Natural interval extension
	Natural interval extension
	Properties
	Notations
	Basic definitions
	Natural interval extension
	Natural interval extension
	Properties
	Different literal forms
	Interval Analysis methods

	Constraint Programming
	Overall scheme
	Local consistencies
	2B--consistency 
	Box--consistency 
	Local consistency filtering
	3B-Consistency
	Global Constraints

	Applications
	Global Numerical Optimization: problem
	A challenging finite-domain optimization application
	CP-based Bounded program verification
	Refining AI-based Approximations


