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Why do we need intervals?

I Modelling uncertainty
I Error in Measurement or uncertainty in measurements
I Uncertainty when estimating unknown values

I Safe Computations with floating-point numbers
I Rounding errors
I Cancellation, ...

What Every Computer Scientist Should Know About
Floating-Point Arithmetic, Goldberg, 1991

3



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming

Constraint
Programming

Applications

Problem with floating-point computations

Examples
(in simple precision)

I Absorption: 107 + 0.5 = 107

I Cancellation:
((1− 10−7)− 1) ∗ 107 = −1.192...(6= −1)

I Operations are not associative:
(10000001− 107) + 0.5 6= 10000001− (107 + 0.5)

I No exact representation:
0.1 = 0.000110011001100 . . .

Rump polynomial
I RumpFunc[x_,y_]:=(1335/4− x2)y6 + x2(11x2y2 −

121y4 − 2) + (11/2)y8 + x/(2y)
I Value computed with rational numbers:
RumpFunc[77617, 33096]= − 54767

66192 = −0.827396
I Value with floating point numbers: 0
I Value with floating point numbers when 11/2 is

replaced by 5.5 in the polynomial: 1.18059× 1021
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What is an interval?

An interval [a,b] describes a set of real
numbers x such that: a ≤ x ≤ b

Assumption:

a and b belong to finite set of numbers representable on a
computer: floating-point numbers, subset of integers,
rational numbers, ...

A Box denotes a Cartesian product of intervals

→ a box is a vector of intervals that defines the search
space of problem,
i.e., the space in which are the values of the variables
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Interval Programming

I Basics on interval arithmetic

I Interval Newton-like methods for solving a
multi-variate system of non-linear equations
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Interval arithmetic: notations
cj(x1, . . . , xn) A relation over the real numbers
x , y Real variables or vectors
X or x or Dx The domain of variable x (i.e. intervals)
X = [X ,X ] The set of real numbers x verifying
x = [x,x] X ≤ x ≤ X (resp. x ≤ x ≤ x)
C The set of constraints
D The set of domains of all the variables
R The set of real numbers
R∞ R∪ {−∞,+∞}, set of real numbers

extended with infinity symbols
F The set of floating point numbers
a+ (resp. a−) The smallest (resp. largest) number of F

strictly greater (resp. lower) than a
k̃ smallest interval containing real number k
Φcstc(P) closure (filtering) by consistency of CSP P

cstc stands for 2B,Box ,3B,Bound
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Interval arithmetic: basic definitions (1)

Interval arithmetic (Moore-1966)
is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns {x1, . . . , xn},
an interval evaluation F of f for given ranges
X = {X1, . . . ,Xn} for the unknowns is an interval Y such
that

∀{v1, . . . , vn} ∈ {X1, . . . ,Xn} : Y ≤ f (v1, . . . , vn) ≤ Y

Y ,Y : lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X
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Interval arithmetic: basic definitions (2)

Let C : In → Bool be a relation over the intervals

C is an interval extension of the relation c : Rn → Bool iff:

∀X1, . . . ,Xn ∈ I : ∃v1 ∈ X1 ∧ . . . ∧ ∃vn ∈ Xn ∧ c(v1, . . . , vn)
⇒C(X1, . . . ,Xn)

For instance, X1
.

= X2 ⇔ (X1 ∩ X2) 6= ∅ is an interval
extension of the relation x1 = x2 over the real numbers

Example:

Relation X1
.

= X2 holds if X1 = [0,17.5] and X2 = [17,27.5]
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Natural interval extension (1)

I In general, it is not possible to compute the exact
enclosure of the range for an arbitrary function over
the real numbers

→ The interval extension of a function is an interval
function that computes an outer approximation of the
range of the function over a domain
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Natural interval extension (2)

F the natural interval extension of a real function f is
obtained by replacing:

I Each constant k by its natural interval extension k̃

I Each variable by a variable over the intervals

I Each mathematical operator in f by its optimal interval
extension
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Optimal extensions for basic operators:

• [a,b]	 [c,d ] = [a− d ,b − c]

• [a,b]⊕ [c,d ] = [a + c,b + d ]

• [a,b]⊗ [c,d ] =
[min(ac,ad ,bc,bd),max(ac,ad ,bc,bd)]

• [a,b]� [c,d ] = [min(a
c ,

a
d ,

b
c ,

b
d ),max(a

c ,
a
d ,

b
c ,

b
d )]

if 0 6∈ [c,d ]
otherwise→ [−∞,+∞]
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Natural interval extension: Example

Let f = (x + y)− (y × x) be a real function

Let be X = [−2,3],Y = [−9,1]

F = (X ⊕ Y )	 (Y ⊗ X )
= ([−2,3]⊕ [−9,1])	 ([−9,1]⊗ [−2,3])
= [−11,4]	

[min(18,−27,−2,3),max(18,−27,−2,3)]
= [−11,4]	 [−27,18]
= [−29,31]
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Interval extension: properties

I If 0 6∈ F(X), then no value exists in the box X such that
f (X ) = 0 →
Equation f (x) does not have any root in the box X

I Interval arithmetic can be implemented taking into
account round-off errors

I No monotonicity but interval arithmetic preserves
inclusion monotonicity: Y ⊆ X ⇒ F (Y ) ⊆ F (X )

I No distributivity but interval arithmetic is
sub-distributive: X (Y + X ) ⊆ XY + XZ
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Why is the image of an interval function not
optimal ?

I Outward Rounding (required for safe computations
with floating point numbers)

I Non continuity of interval functions: the image of an
interval is in general not an interval
→ The wrapping effect, which overestimates by a
unique vector the image of an interval vector
Example:

f (x) = 1
x with X = [−1,1]

F ([−1,1]) = 1
[−1,1] = [−∞,−1] ∪ [1,+∞]

→ = [−∞,+∞]

I Dependency problem when a variable has multiple
occurrences
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Interval extension: dependency problem

I The dependency problem, which is due to the
independence of the different occurrences of a
variable during the interval evaluation of an expression

I Example:

Consider X = [0,5]
X − X = [0− 5,5− 0] = [−5,5] instead of [0,0] !
X 2 − X = [0,25]− [0,5] = [−5,25]
X (X − 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]
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Interval arithmetic: basic definitions (1)

Interval arithmetic (Moore-1966)
is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns {x1, . . . , xn},
an interval evaluation F of f for given ranges
X = {X1, . . . ,Xn} for the unknowns is an interval Y such
that

∀{v1, . . . , vn} ∈ {X1, . . . ,Xn} : Y ≤ f (v1, . . . , vn) ≤ Y

Y ,Y : lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X
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Interval arithmetic: basic definitions (2)

Let C : In → Bool be a relation over the intervals

C is an interval extension of the relation c : Rn → Bool iff:

∀X1, . . . ,Xn ∈ I : ∃v1 ∈ X1 ∧ . . . ∧ ∃vn ∈ Xn ∧ c(v1, . . . , vn)
⇒C(X1, . . . ,Xn)

For instance, X1
.

= X2 ⇔ (X1 ∩ X2) 6= ∅ is an interval
extension of the relation x1 = x2 over the real numbers

Example:

Relation X1
.

= X2 holds if X1 = [0,17.5] and X2 = [17,27.5]
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Natural interval extension (1)

I In general, it is not possible to compute the exact
enclosure of the range for an arbitrary function over
the real numbers

→ The interval extension of a function is an interval
function that computes an outer approximation of the
range of the function over a domain
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Natural interval extension (1)

F the natural interval extension of a real function f is
obtained by replacing:

I Each constant k by its natural interval extension k̃

I Each variable by a variable over the intervals

I Each mathematical operator in f by its optimal interval
extension
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Optimal extensions for basic operators:

• [a,b]	 [c,d ] = [a− d ,b − c]

• [a,b]⊕ [c,d ] = [a + c,b + d ]

• [a,b]⊗ [c,d ] =
[min(ac,ad ,bc,bd),max(ac,ad ,bc,bd)]

• [a,b]� [c,d ] = [min(a
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a
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b
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otherwise→ [−∞,+∞]
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Natural interval extension: Example

Let f = (x + y)− (y × x) be a real function

Let be X = [−2,3],Y = [−9,1]

F = (X ⊕ Y )	 (Y ⊗ X )
= ([−2,3]⊕ [−9,1])	 ([−9,1]⊗ [−2,3])
= [−11,4]	

[min(18,−27,−2,3),max(18,−27,−2,3)]
= [−11,4]	 [−27,18]
= [−29,31]
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Interval extension: properties

I If 0 6∈ F(X), then no value exists in the box X such that
f (X ) = 0 →
Equation f (x) does not have any root in the box X

I Interval arithmetic can be implemented taking into
account round-off errors

I No monotonicity but interval arithmetic preserves
inclusion monotonicity: Y ⊆ X ⇒ F (Y ) ⊆ F (X )

I No distributivity but interval arithmetic is
sub-distributive: X (Y + X ) ⊆ XY + XZ

24



Hybrid
Constraints over

Continuous
Domains

M. Rueher

Motivations

Interval
Programming
Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Notations

Basic definitions

Natural interval
extension

Natural interval
extension

Properties

Different literal forms

Interval Analysis
methods

Constraint
Programming

Applications

Why is the image of an interval function not
optimal ?

I Outward Rounding (required for safe computations
with floating point numbers)

I Non continuity of interval functions: the image of an
interval is in general not an interval
→ The wrapping effect, which overestimates by a
unique vector the image of an interval vector
Example:

f (x) = 1
x with X = [−1,1]

F ([−1,1]) = 1
[−1,1] = [−∞,−1] ∪ [1,+∞]

→ = [−∞,+∞]

I Dependency problem when a variable has multiple
occurrences
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Interval extension: dependency problem

I The dependency problem, which is due to the
independence of the different occurrences of a
variable during the interval evaluation of an expression

I Example:

Consider X = [0,5]
X − X = [0− 5,5− 0] = [−5,5] instead of [0,0] !
X 2 − X = [0,25]− [0,5] = [−5,25]
X (X − 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]
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Interval extension: using different literal
forms (1)

I Factorized form (Horner for polynomial system) or
distributed form

I First-order Taylor development of f

Ftay(X ) = f (x) + J(X ).(X − x)

with ∀x ∈ X , J() being the Jacobian of f
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Interval extension: using different literal
forms (2)

I In general, first order Taylor extensions yield a better
enclosure than the natural extension on small
intervals

I Taylor extensions have a quadratic convergence
whereas the natural extension has a linear
convergence

I In general, neither Fnat nor Ftay won’t allow to compute
the exact range of a function f
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Interval extension: using different literal
forms (3)

Consider f (x) = 1− x + x2, and X = [0,2]

ftay([0,2])= f (x) + (2X − 1)(X − x)
= f (1) + (2[0, 2]− 1)([0,2]− 1) = [−2,4]

fnat([0,2])= 1− X + X 2 = [1,1]− [0,2] + [0, 2]2 = [−1,5]

ffactor([0,2]) = 1 + X (X − 1) = [1, 1] + [0,2]([0,2]− [1,1])
= [−1,3]

whereas the range of f over X = [0,2] is [0.75,3]
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Interval Analysis methods

Goal: to determine the zeros of a system of n equations
fi(x1, . . . , xn) in n unknowns xi inside the interval vector

X = {X1, . . . ,Xn} with xi ∈ Xi for i = 1, . . . ,n

I Gauss-Seidel iterative method

I Interval Newton algorithm
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Gauss-Seidel iterative method

Consider the case of interval linear equations:

A.x = b

with A an interval matrix and b an interval vector
For each unknowns Xi , the Gauss-Seidel algorithm is
defined by the following iterative process:

X k+1
i ← [(bi −

i−1∑
j=1

Ai,jX k+1
j −

n∑
j=i+1

Ai,jX k
j )/Ai,i ]∩X k

i

Pre-conditioning→ to shrink the width of the intervals
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Interval Newton algorithm (1)

Principle of the Newton operator:

Consider f : R → R, the mean value theorem says:
∃a ∈ [v ,u] : f (u)− f (v) = (u − v)f ′(a) and thus,

v = u − f (u)
f ′(a) if v is a zero of f

If a ∈ I then f (a) ∈ F (I), and v ∈ ũ − F (ũ)
F ′(I) = N(F ,F ′, ũ, I)

If v is a zero of f then v ∈ In (n ≥ 1) where
I0 = I
Ii+1 = N(F ,F ′, center(Ii), I) ∩ Ii
. . .
In = In+1
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Interval Newton algorithm (2)

The Interval Newton algorithm is used to solve
non-linear systems with

Xk+1 = N(x̃k ,Xk ) ∩ Xk with N(x̃k ,Xk ) = x̃k − A.f (x̃k )
where A = [F

′
(Xk )]−1

and x̃k ∈ Xk (e.g., the mid-point of Xk )
Properties:

I If N(x̃k ,Xk ) ∩ Xk = ∅, then the system F does not
have any solution in Xk

I if N(x̃k ,Xk )k ⊂ Xk , there exists at least one solution
in Xk+1

Matrix A = [F
′
(Xk )]−1 may be costly to compute

... to determine N(x̃k ,Xk )→ solve the linear system:
F
′
(Xk )(N(x̃k ,Xk )− x̃k ) = −f (x̃k )
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Constraint Programming

Numeric CSP (X ,D, C):

I X = {x1, . . . , xn} is a set of variables

I D = {Dx1 , . . . ,Dxn} is a set of domains
(Dxi contains all acceptable values for variable xi )

I C = {c1, . . . , cm} is a set of constraints
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Overall scheme

The constraint programming framework is based on a
branch & prune schema which is best viewed as an
iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more)

sub-problems

I The pruning step→ reduces an interval when it can
prove that the upper bound or the lower bound does
not satisfy some constraint

I The branching step→ splits the interval associated
to some variable in two intervals (often with the same
width)
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Local consistencies (1)

I Informally speaking, a constraint system C satisfies a
partial consistency property if a relaxation of C is
consistent

I Consider X = [x , x ] and C(x , x1, . . . , xn) ∈ C: if
C(x , x1, . . . , xn) does not hold for any values
a ∈ [x , x ′], then X may be shrunken to X = [x ′, x ]
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Local consistencies (2)

I A constraint Cj is AC-like-consistent if for any
variable xi in Xj , the bounds Di and Di have a
support in the domains of all other variables of Xj

I AC-like local consistencies are used in BNR-prolog,
Interlog, CLP(BNR), PrologIV, UniCalc, Ilog
Solver, Numerica, Icos, RealPaver, IBEX,...
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Local consistencies (3)

Local consistencies are conditions that filtering
algorithms must satisfy

→ fixed point algorithm defined by the sequence {Dk} of
domains generated by the iterative application of an
operator

Op : II(IR)n −→ II(IR)n

Dk =

{
D if k = 0
Op(Dk−1) if k > 0
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Local consistencies (4)

Properties of the operator Op:

I Op(D) ⊆ D (inclusion)

I Op is conservative; that is, it cannot remove any
solution

I D′ ⊆ D ⇒ Op(D′) ⊆ Op(D) (monotonicity)

The limit of the sequence {Dk} corresponds to the greatest
fixed point of the operator Op
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Local consistencies (5)

I 2B–consistency (also known as hull consistency)
only requires to check the Arc–Consistency property
for each bound of the intervals

I Box–consistency is a coarser relaxation of
Arc–Consistency than 2B–consistency ... but
Box–consistency algorithms may achieve a stronger
filtering than 2B–consistency

I KB–consistency... used when no bound of the
domains can be removed with a local consistency
filtering algorithm

I Implementation issues are critical→ HC4-Revise,
Mohc-Revise
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2B–consistency (1)

Variable x is 2B–consistency for constraint
f (x , x1, . . . , xn) = 0 if the lower (resp. upper) bound of the

domain X is the smallest (resp. largest) solution of
f (x , x1, . . . , xn)

Definition: 2B–consistency
Let (X ,D, C) be a CSP and C ∈ C a k -ary constraint over
(X1, . . . ,Xk )
C is 2B–consistency iff :
∀i ,Xi = �{x̃i | ∃x̃1 ∈ X1, . . . ,∃x̃i−1 ∈ Xi−1,∃x̃i+1 ∈ Xi+1, . . . ,

∃x̃k ∈ Xk : c(x̃1, . . . , x̃i−1, x̃i , x̃i+1 . . . , x̃k )}
A CSP is 2B–consistent iff all its constraints are consistent
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Box–consistency (1)

Variable x is Box–Consistent for constraint
f (x , x1, . . . , xn) = 0 if the bounds of the domain of x

correspond to the leftmost and the rightmost zero of the
optimal interval extension F (X ,X1, . . . ,Xn) of

f (x , x1, . . . , xn)

Definition: Box–consistency
Let (X ,D, C)be a CSP and C ∈ C a k -ary constraint over
(X1, . . . ,Xk )
C is Box–Consistent if, for all Xi the following relations
hold :
1. C(X1, . . . ,Xi−1, [Xi ,Xi

+),Xi+1, . . . ,Xk )

2. C(X1, . . . ,Xi−1, (Xi
−
,Xi ],Xi+1, . . . ,Xk )
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Local consistency filtering (1)

Algorithms that achieve a local consistency filtering
are based upon projection functions

I Solution functions express the variable xi in terms
of the other variables of the constraint. The solution
functions of x + y = z are:
fx = z − y , fy = z − x , fz = x + y

I An approximation of the projection of the constraint
over Xi given a domain D can be computed with any
interval extension of this solution function→ we have
a way to compute πj,i(D)

I For complex constraints, no analytic solution
function may exist
Example: x + log(x) = 0
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Local consistency filtering (2)

Analytic functions always exist when the variable to
express in terms of the others appears only once in the

constraint

→ Considers that each occurrence is a different new
variable
For x + log(x) = 0 we obtain x1 + log(x2) = 0
Thus fx1 = − log(x2) , fx2 = exp−x1

and πx+log(x)=0,x (X ) = − log(X ) ∩ exp−X

I This approach is used for computing
2B–consistency filtering (the initial constraints are
decomposed into primitive constraints)

I Decomposition does not change the semantics of the
initial constraints system but it amplifies the
dependency problem
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Local consistency filtering (3)

Transformation of the constraint Cj(xj1 , ...xjk ) into k
mono-variable constraints by substituting all variables

but one by their intervals

I The two extremal zeros of Cj,l can be found by a
dichotomy algorithm combined with a mono-variable
version of the interval Newton method

I This approach is well adapted for
Box–consistency filtering
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Local consistency filtering (4)

Use the Taylor extension to transform the constraint
into an interval linear constraint

I Equation f (X ) = 0 becomes an interval linear equation
in X , which does not contain multiple occurrences

I Solving the squared interval linear system allows
much more precise approximations of projections to
be computed
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3B–Consistency (1)

3B–Consistency, a relaxation of path consistency

→

checks whether 2B–Consistency can be enforced when the
domain of a variable is reduced to the value of one of its

bounds in the whole system
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3B–Consistency (2)

Definition: 3B–Consistency
Let (X ,D, C) be a CSP and x a variable of X with
Dx = [a,b].
Let also:

I Let PD1
x←[a,a+) be the CSP derived from P by

substituting Dx in D with D1
x = [a,a+)

I Let PD2
x←(b−,b] be the CSP derived from P by

substituting Dx in D with D2
x = (b−,b]

X is 3B–Consistent iff
Φ2B(PD1

x←[a,a+)) 6= P∅ and Φ2B(PD2
x←(b−,b]) 6= P∅
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3B–Consistency (3)

Let (X ,D, C) be a CSP and Dx = [a,b], if
Φ2B(PDx←[a, a+b

2 ]) = ∅
I then the part [a, a+b

2 ) of Dx will be removed and the
filtering process continues on the interval [a+b

2 ,b]
I otherwise, the filtering process continues on the

interval [a, 3a+b
4 ].
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Global Constraints (1)

I “Syntactical” approach

I “Semantic” approach
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Global Constraints (1)

I A global constraint to handle a tight approximation of
the constraint system with an LP solver

I Combines

• safe and rigorous linear relaxations

• local consistencies and interval methods
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Linearisation of x2

Example: relaxation of x2 with x ∈ [−4,5]
I Introduce a new variable

I Replace x2 by y
I Domain of y : [0,25]

I Add redudant constraints

I y ≥ 2αx − α2 with
α ∈ [−4,5]

y ≥ −8x− 16
y ≥ 10x− 25

I y ≤ (x + x)x − x ∗ x

y ≤ x + 20
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Global Constraints (2)

“Semantic” approach

→ Distance constraint
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Applications

I Safe global Optimisation

I Program verification
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Global Numerical Optimization: problem

We consider the continuous global optimisation problem

P ≡


min f (x)
s.c. gi(x) = 0, j = 1..k

gj(x) ≤ 0, j = k + 1..m
x ≤ x ≤ x

with
I X = [x,x]: a vector of intervals of IR
I f : IRn → IR and gj : IRn → IR
I Functions f and gj : are continuously differentiable on X
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Trends in global optimisation

I Performance
Most successful systems (Baron, αBB, . . . ) use local
methods and linear relaxations
→ not rigorous (work with floats)

I Rigour
Mainly rely on interval computation
. . . available systems (e.g., Globsol) are quite slow

I Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework
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Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min x
s. t. y − x2 ≥ 0

y − x2 ∗ (x − 2) + 10−5 ≤ 0
x , y ∈ [−10,+10]

0

y

x

Baron 6.0 and Baron 7.2 find 0 as the minimum . . .
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Branch and Bound Algorithm

I BB Algorithm:
While L 6= ∅ do %L initialized with the input box
• Select a box B from the set of current boxes L
• Reduction (filtering or tightening) of B
• Lower bounding of f in box B
• Upper bounding of f in box B
• Update of f and f
• Splitting of B (if not empty)

I Upper Bounding – Critical issue: to prove the
existence of a feasible point in a small box
→ Using CP refutation capabilities

I Lower Bounding – Critical issue: to achieve an
efficient pruning
→ Using Hybrid constraints to boost safe OBR
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A challenging finite-domain optimization
application

Handling software upgradeability problems

I A critical issue in modern operating systems

→ Finding the “best” solution to install, remove or
upgrade packages in a given installation.

→ The complexity of the upgradeability problem itself is
NP complete

→ modern OS contain a huge number of packages (often
more than 20 000 packages in a Linux distribution)

I Mancoosi (European project FP7/2007-2013)
http://www.mancoosi.org/
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Solving software upgradeability problems

Computing a final package configuration from an initial one

I A configuration states which package is installed and
which package is not installed:

I Problem (in CUDF): list of package descriptions (with
their status) & a set of packages to
install/remove/upgrade

I Final configuration: list of installed packages
(uninstalled packages are not listed)

I Expected Answer: best solution according to
multiple criteria
Several optimisation criteria have to be considered,
e.g., stability, memory efficiency, network efficiency

I Difficult to tackle with CP tools
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CP-based Bounded program verification

I Goals of BMC
• Mechanically check properties of models
• Widely used in hardware and software verification
• Automatic generation of counterexamples

I Principles of BMC
• Bounded program verification: the array lengths, the

variable values and the loops are bounded
• Falsification of a property is checked for a given bound
→ program is unwound k times,
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CP-based BMC

• Constraint stores to represent the specification and
the program
→ Program is translated in constraints on the fly

• Program is partially correct if the constraint store
implies the post-conditions

• A list of solvers tried in sequence (LP, MILP, Boolean,
CP)

• Non deterministically exploration of execution paths
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Refining AI-based Approximations

Programs are run on the floats but:

I Specification, properties of programs
→ Reasoning with real numbers

I Programs are sometimes written with a the semantics
of real numbers “in mind”

Abstract Interpretation

I Differences between real numbers and floats reveal
problems with floats
→ Approximations over floats and over the real
numbers
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Objective & Approach

I Goal: refine the approximations computed by
abstract interpretation for domains of the program
variables

I Method: Using local consistencies over real
numbers and floating-point numbers to “shave” the
domains
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