
Hybrid CSP & Global Optimization

Michel RUEHER

University of Nice Sophia-Antipolis / I3S – CNRS, France

Courtesy to Alexandre Goldsztejn, Yahia Lebbah, Claude
Michel

June, 2011

ACP Summer School
“Hybrid Methods for Constraint Programming”

Turunç

CSP & Global
Optimization

M. Rueher

Outline

2

CSP & Global
Optimization

M. Rueher

The Problem

We consider the continuous global optimisation problem

P ≡

min f (x)
s.c. gi(x) = 0, j = 1..k

gj(x) ≤ 0, j = k + 1..m
x ≤ x ≤ x

with
I X = [x,x]: a vector of intervals of IR
I f : IRn → IR and gj : IRn → IR
I Functions f and gj : are continuously differentiable on X

3

CSP & Global
Optimization

M. Rueher

Trends in global optimisation

I Performance
Most successful systems (Baron, αBB, . . .) use local
methods and linear relaxations
→ not rigorous (work with floats)

I Rigour
Mainly rely on interval computation
. . . available systems (e.g., Globsol) are quite slow

I Challenge: to combine the advantages of both
approaches in an efficient and rigorous global
optimisation framework

4

CSP & Global
Optimization

M. Rueher

Example of flaw due to a lack of rigour

Consider the following optimisation problem:

min x
s. t. y − x2 ≥ 0

y − x2 ∗ (x − 2) + 10−5 ≤ 0
x , y ∈ [−10,+10]

0

y

x

Baron 6.0 and Baron 7.2 find 0 as the minimum . . .

5

CSP & Global
Optimization

M. Rueher

Branch and Bound Algorithm (1)

I BB Algorithm –Scheme
While L 6= ∅ do %L initialized with the input box
• Select a box B from the set of current boxes L
• Reduction (filtering or tightening) of B
• Lower bounding of f in box B
• Upper bounding of f in box B
• Update of f and f
• Splitting of B (if not empty)

I Upper Bounding – Critical issue:
to prove the existence of a feasible
point in a reduced box

I Lower Bounding – Critical issue:
to achieve an efficient pruning

6

CSP & Global
Optimization

M. Rueher

Branch and bound algorithm (2)

Function BB(IN x, ε; OUT S, [L,U])

S: set of proven feasible points
fx denotes the set of possible values for f in x
nbStarts: number of starting points in the first upper-bounding

L := {x}; (L,U) := (−∞,+∞);
S := UpperBounding(x′,nbStarts);
while w([L,U]) > ε ∧ L 6= ∅ do

x′ := x′′ such that fx′′ = min{fx′′ : x′′ ∈ L}; L := L \ {x}′;
fx′ := min(fx′ ,U);
x′ := Prune(x′);
fx′ := LowerBound(x′);
S := S ∪ UpperBounding(x′,1);
if x′ 6= ∅ then (x′1,x

′
2) := Split(x′); L := L ∪ {x′1,x′2};

if L 6= ∅ then (L,U) := (min{fx′′ : x′′ ∈ L},min{fx′′ : x′′ ∈ S})
endwhile

7

CSP & Global
Optimization

M. Rueher

Computing “sharp” upper bounds

I Upper bounding
• local search
→ approximate feasible

point xapprox

• epsilon inflation process
and proof
→ provide a feasible box xproved

• compute f
∗

= min(f(xproved), f
∗
)

I Critical issue: to prove the existence of a feasible
point in a reduced box
• Singularities
• Guess point too far from a feasible region (local search

works with floats)

8

CSP & Global
Optimization

M. Rueher

Using the lower bound to get an
upper-bound

L

x

y P
R

U?

Branch&Bound step where P is the set of feasible points
and R is the linear relaxation

Idea: modify the safe lower bound ...
to get an upper-bound !

9

CSP & Global
Optimization

M. Rueher

Lower bound: a good starting point to find
a feasible upper-bound ?

x

y

F? N

Set of feasible points

Set of non feasible points
Approximate feasible point

A feasible point

N, optimal solution of R, not a feasible point of P but (may
be) a good starting point:
I BB splits the domains at each iteration:

smaller box N nearest from the optima of P
I Proof process inflates a box around the guess point

compensate the distance from the feasible region

10

CSP & Global
Optimization

M. Rueher

Method

I Correction procedure to get a better feasible point
from a given approximate feasible point

→ to exploit Newton-Raphson for under-constrained
systems of equations (and Moore-Penrose inverse)

Good convergence when the starting point is nearly
feasible

11

CSP & Global
Optimization

M. Rueher

Handling square systems of equations

I g = (g1, . . . ,gm) : IRn −→ IRm (n = m)
→ Newton-Raphson step:

x (i+1) = x (i) − J−1
g (x (i))g(x (i))

Converges well if the exact solution to be
approximated is not singular

12

CSP & Global
Optimization

M. Rueher

Handling under-constrained systems of
equations

Manifold of solutions
→ linear system l(x) = 0 is under-
constrained
→ Choose a solution x (1) of l(x) = 0

Best choice:
Solution of l(x) = 0 close to x (0)

Can easily be computed with the
Moore-Penrose inverse:

x (i+1) = x (i) − A+
g (x (i))g(x (i))

A+
g ∈ IRn×m is the Moore-Penrose in-

verse of Ag , solution of the equation
which minimizes ||x (1) − x (0)||)

13

CSP & Global
Optimization

M. Rueher

Handling under-constrained systems of
equations and inequalities

I Under-constrained systems of equations and inequalities
 introduce slack variables

I Initial values for the slack variables have to be provided

Slightly positive value
→ to break the symmetry
→ good convergence

14

CSP & Global
Optimization

M. Rueher

A new upper bounding strategie

Function UpperBounding(IN x, x∗LP ; INOUTS ′)

% S ′: list of proven feasible boxes
% x∗LP : the optimal solution of the LP relaxation of P(x)
S ′ := ∅
x∗corr := FeasibilityCorrection(x∗LP) % Improving x∗LP feasibility
xp := InflateAndProve(x∗corr , x)
if xp 6= ∅ then
S ′ := S ′ ∪ xp

endif
return S ′

15

CSP & Global
Optimization

M. Rueher

Experiments

I Significant set of benchmarks of the COCONUT
project

I Selection of 35 benchmarks where Icos did find the
global minimum while relying on an unsafe local
search

I 31 benchmarks are solved and proved within a 30s
time out

I Almost all benchmarks are solved in much less time
and with much more proven solutions

16

CSP & Global
Optimization

M. Rueher

Using CSP to boost safe OBR

I OBR (optimal based reduction):
known bounds of the objective function→ to reduce
the size of the domains

I Refutation techniques→ boosting safe OBR

17

CSP & Global
Optimization

M. Rueher

Lower bounding

I Relaxing the problem
• linear relaxation R of P

min dT x
s.t . Ax ≤ b

• LP solver→ f∗

→ numerous splitting ���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

P

R

I OBR is a way to speed up the reduction process

18

CSP & Global
Optimization

M. Rueher

Optimality Base Reduction

I Introduced by Ryoo and Sahinidis

• to take advantage of the known bounds of the
objective function to reduce the size of the domains

• uses a well known property of the saddle point to
compute new bounds for the domains with the known
bounds of the objective function

19

CSP & Global
Optimization

M. Rueher

Theorems of OBR

I Let [L,U] be the domain of f :
I U is an upper-bound of the intial problem P
I L is a lower-bound of a convex relaxation R of P

If the constraint xi − xi ≤ 0 is active at the optimal
solution of R and has a corresponding multiplier
λ∗i > 0 (λ∗ is the optimal solution of the dual of R),
then

xi ≥ x′i with x′i = xi −
U− L
λ∗i

if x′i > xi , the domain of xi can be shrinked to [x′i ,xi]
without loss of any global optima

I similar theorems for xi − xi ≤ 0 and gi(x) ≤ 0.

20

CSP & Global
Optimization

M. Rueher

OBR: intuitions

I Ryoo & Sahinidis 96

xi

x′ix′i

xi
xi

x′i = xi − U−L
λ∗i

L
f

U

x′i = xi + U−L
λ∗i

xi ≥ x′i with x′i = xi −
U − L
λ∗i

• does not modify the very branch and bound
process
• almost for free !

21

CSP & Global
Optimization

M. Rueher

OBR Issues

I Critical issue: basic OBR algorithm is unsafe
• it uses the dual solution of the linear relaxation
• Efficient LP solvers work with floats→

the available dual solution λ∗ is an approximation
if used in OBR ...
... → OBR may remove actual optimum !

I Solutions: two ways to take advantage of OBR
1. prove dual solution (Kearfott): combininig the dual of

linear relaxation with the Kuhn-Tucker conditions
2. validate the reduction proposed by OBR with CP !

22

CSP & Global
Optimization

M. Rueher

CP approach: intuition

I Essential observation: if the constraint system

L ≤ f (x) ≤ U
gi(x) = 0, i = 1..k
gj(x) ≤ 0, j = k + 1..m

has no solution when the domain of x is set to [xi ,x′i],
the reduction computed by OBR is valid

I Try to reject [xi ,x′i] with classical filtering
techniques;
otherwise add this box to the list of boxes to process

23

CSP & Global
Optimization

M. Rueher

CP algorithm

Lr := ∅ % set of potential non-solution boxes

for each variable xi do
Apply OBR

and add the generated potential non-solution boxes to Lr

for each box Bi in Lr do
B′i := 2B-filtering(B i)
if B′i = ∅ then reduce the domain of xi
else B′′i := QUAD-filtering(B ′i)

if B′′i = ∅ then reduce the domain of xi
else add Bi to global list of box to be handled endif

endif

Compute f with QUAD_SOLVER in X

24

CSP & Global
Optimization

M. Rueher

Experiments

I Compares 4 versions of the branch and bound
algorithm:
• without OBR
• with unsafe OBR
• with safe OBR based on Kearfott’s approach
• with safe OBR based on CP techniques

implemented with Icos using Coin/CLP and
Coin/IpOpt

I On 78 benches (from Ryoo & Sahinidis 1995, Audet
thesis and the coconut library)

I All experiments have been done on
PC-Notebook/1Ghz.

25

CSP & Global
Optimization

M. Rueher

Experimental Results (2): Synthesis

Synthesis of the results:

Σt (s) %saving
no OBR 2384.36 -
unsafe OBR 881.51 63.03%
safe OBR Kearfott 1975.95 17.13%
safe OBR CP 454.73 80.93%

(with a timeout of 500s)

Safe CP-based OBR faster than unsafe OBR !

... because wrong domains reductions prevent the
upper-bounding process from improving the current upper
bound !!

26

CSP & Global
Optimization

M. Rueher

Conclusion

+ CSP refutation techniques
I allow a safe and efficient implementation of OBR
I can outperform standard mathematical methods
I might be suitable for other unsafe methods

+ Safe global constraints
I provide an efficient alternative to local search:
→ good starting point for a Newton method feasible
region

I drastically improve the performances of the
upper-bounding process

27

CSP & Global
Optimization

M. Rueher

Handling software upgradeability problems

I A critical issue in modern operating systems

→ Finding the “best” solution to install, remove or
upgrade packages in a given installation.

→ The complexity of the upgradeability problem itself is
NP complete

→ modern OS contain a huge number of packages (often
more than 20 000 packages in a Linux distribution)

I Several optimisation criteria have to be considered,
e.g., stability, memory efficiency, network efficiency

I Mancoosi project (FP7/2007-2013,
http://www.mancoosi.org/)

28

http://www.mancoosi.org/

CSP & Global
Optimization

M. Rueher

Solving software upgradeability problems

Computing a final package configuration from an intial one

I A configuration states which package is installed and
which package is not installed:
I Problem (in CUDF): list of package descriptions (with

their status) & a set of packages to
install/remove/upgrade

I Final configuration: list of installed packages
(uninstalled packages are not listed)

I Expected Answer: best solution according to
multiple criteria

29

CSP & Global
Optimization

M. Rueher

A Problem: list of package descriptions &
requests (1)

A package description provides:

I the package name and package version
I pi,j = (package name pi , package version vj) is unique

for each problem in CUDF
I The pi,j are basic variables
→ solvers have to instantiate pi,j with true or false

I Package dependencies and conflicts: set of
contraints between the pi,j (CNF formula)

I Provided features: if package p1 depends on feature
fλ provided by q1 and q2, then installing q1 or q2 will
fulfill p1’s dependency on fλ.

30

CSP & Global
Optimization

M. Rueher

A Problem: list of package descriptions &
requests (2)

I Requests are:
I Commands/actions on the initial configuration:

install, remove and/or upgrade package instructions
I install p: at least one version of p must be installed in

the final configuration
I remove p: no version of p must be installed in the final

configuration
I upgrade p: let pv be the highest version installed in the

initial configuration, then p′v with v ′ ≥ v must be the
only version installed in the final configuration

I Mandatory: the final configuration must fulfill all the
requests (otherwise there is no solution to the problem)

I Requests induce additional constraints on the
problem to solve

31

CSP & Global
Optimization

M. Rueher

Finding the best solution

I Best solution

→ multiple criteria, e.g.,
I minimize the number of removed packages, and,
I minimize the number of changed packages

I Mono criteria optimization solvers
→ using a linear combination of the criteria
→ solving each criteria sequentially

32

CSP & Global
Optimization

M. Rueher

MILP model: handling dependencies

1. Conjunction:

Depend(pv) =
n∧

i=1

pi −n ∗ pv +
n∑

i=1

pi >= 0

if pv = 1 (installed), then all pi = 1; if pv = 0 (not installed),
then the pi can take any value

2. Disjunction

Depend(pv) =
lm∨

k=1

pk −pv +
lm∑

k=1

pk >= 0

thus, if pv = 1, at least one of the pk will be installed.

33

CSP & Global
Optimization

M. Rueher

MILP model: handling conflicts

Conflict property: a simple conjunction of packages
→ inequality:

n′ ∗ pv +
∑

pc ∈ Conflict(pv)

pc <= n′

where Conflict(pv) is the set of package conflicting with pv
and n′ = Card(Conflict(pv))

→ if pv is installed, none of the pv conflicting packages
can be installed

→ if pv is not installed, then the conflicting packages can
freely be either installed or not

34

CSP & Global
Optimization

M. Rueher

MILP: handling multi criteria (1)

Assume the following n criteria:

min
m∑

i=1

c1
i .xi , . . . , min

m∑
i=1

cn
i .xi

considered in a lexical order.

To solve them using a mono criteria optimiser, we can:
1. use a linear combination of the criteria

2. sequentialy solving
I o1 = min

∑m
i=1 c1

i .xi s.t .Ct ,
I then o2 =

∑m
i=1 c2

i .xi s.t .
∑m

i=1 c1
i .xi <= o1,Ct ,

. . .

35

CSP & Global
Optimization

M. Rueher

MILP model: handling multi criteria (2)

Paranoid
I First criterion: minimize the number of removed

functionalities among the installed ones

min
∑

p ∈ F Installed

−p

where F Installed is the set of installed functionalities
I Second criterion: minimize the number of

modifications; if package p, version i is installed
keep it installed, if package p version u it is not
installed keep it uninstalled

min
∑

pi ∈ P Installed

−pi +
∑

pu ∈ P Uninstalled

pu

where P Installed is the set of installed versioned
packages and P Uninstalled is the set of uninstalled
versioned packages.

36

CSP & Global
Optimization

M. Rueher

Examples of optimization criteria

I paranoid:
minimizing the packages removed in the solution
&
minimizing packages changed by the solution

I trendy:
minimizing packages removed in the solution
&
minimizing outdated packages in the solution
&
minimizing package recommendations not satisfied
&
minimizing extra packages installed.

37

CSP & Global
Optimization

M. Rueher

Running different criteria combinations

rand915 from sarge-etch-lenny set with mccs

Combination Time (s) Removed Notuptodate Unsat
no criteria 2.24 810 129 40
lexicographic 37.98 47 435 195
lexsemiagregate 19.52 47 435 47
leximax 238.35 133 132 100
agregate 19.38 233 31 18

with Cplex (12) on a T7700 @ 2.40GHz laptop running
linux

38

CSP & Global
Optimization

M. Rueher

Experiments

I A set of 200 problems, ranging from random problems
to real one and from 20000 up to 50000 packages

I MILP solvers & Pseudo boolean solvers
→ Good performance for one or two criteria
→ Available in the experimental version of apt-get,
debian package manager

I Homework : find a nice and efficient CP model :)

39

