Hybrid CSP & Global Optimization

Michel RUEHER

University of Nice Sophia-Antipolis / I3S - CNRS, France

Courtesy to Alexandre Goldsztejn, Yahia Lebbah, Claude Michel

June, 2011

ACP Summer School

"Hybrid Methods for Constraint Programming" Turunc

Outline

CSP & Global Optimization

M. Rueher

< □ ▶

We consider the continuous global optimisation problem

 $\mathcal{P} \equiv \begin{cases} \min & f(x) \\ \text{s.c.} & g_i(x) = 0, \ j = 1..k \\ & g_j(x) \le 0, \ j = k+1..m \\ & \underline{\mathbf{x}} \le x \le \overline{\mathbf{x}} \end{cases}$

with

- $\mathbf{X} = [\mathbf{x}, \mathbf{\overline{x}}]$: a vector of intervals of *R*
- $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$
- Functions f and g_i: are continuously differentiable on X

Performance

Most successful systems (Baron, α BB, ...) use local methods and linear relaxations \rightarrow **not rigorous** (work with floats)

Rigour

Mainly rely on interval computation

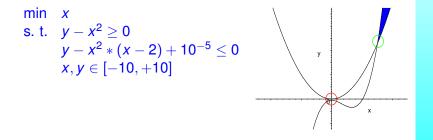
- ... available systems (e.g., Globsol) are quite slow
- Challenge: to combine the advantages of both approaches in an efficient and rigorous global optimisation framework

Example of flaw due to a lack of rigour

CSP & Global Optimization

M. Rueher

Consider the following optimisation problem:



Baron 6.0 and Baron 7.2 find 0 as the minimum ...

< □ ▶

Branch and Bound Algorithm (1)

BB Algorithm –Scheme

While $\mathcal{L} \neq \emptyset$ do % \mathcal{L} initialized with the input box

- Select a box *B* from the set of current boxes *L*
- Reduction (filtering or tightening) of B
- Lower bounding of f in box B
- Upper bounding of f in box B
- Update of <u>f</u> and <u>f</u>
- Splitting of *B* (if not empty)

Upper Bounding – Critical issue:

to prove the **existence** of a feasible point in a reduced box

Lower Bounding – Critical issue: to achieve an efficient pruning

CSP & Global Optimization

CSP & Global Optimization

M. Rueher

Function BB(IN \mathbf{x}, ϵ ; OUT $\mathcal{S}, [L, U]$)

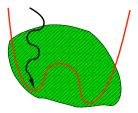
S: set of proven feasible points f_x denotes the set of possible values for *f* in **x** *nbStarts*: number of starting points in the first upper-bounding

```
\mathcal{L} := \{\mathbf{x}\}; \quad (L, U) := (-\infty, +\infty);
S := UpperBounding(\mathbf{x}', nbStarts);
while w([L, U]) > \epsilon \land \mathcal{L} \neq \emptyset do
      \mathbf{x}' := \mathbf{x}'' such that \mathbf{f}_{\mathbf{x}''} = \min\{\mathbf{f}_{\mathbf{x}''} : \mathbf{x}'' \in \mathcal{L}\}; \quad \mathcal{L} := \mathcal{L} \setminus \{\mathbf{x}\}';
      \mathbf{f}_{\mathbf{x}'} := min(\mathbf{f}_{\mathbf{x}'}, U);
      \mathbf{x}' := \mathbf{Prune}(\mathbf{x}');
      f_{x'} := LowerBound(x');
      S := S \cup UpperBounding(\mathbf{x}', 1);
      if \mathbf{x}' \neq \emptyset then (\mathbf{x}'_1, \mathbf{x}'_2) := Split(\mathbf{x}'); \ \mathcal{L} := \mathcal{L} \cup \{\mathbf{x}'_1, \mathbf{x}'_2\};
      if \mathcal{L} \neq \emptyset then (L, U) := (min\{\mathbf{f}_{\mathbf{x}''} : \mathbf{x}'' \in \mathcal{L}\}, min\{\bar{\mathbf{f}}_{\mathbf{x}''} : \mathbf{x}'' \in \mathcal{S}\})
endwhile
```

Computing "sharp" upper bounds

Upper bounding

- local search
 - \rightarrow approximate feasible point x_{approx}
- epsilon inflation process and proof
 - \rightarrow provide a feasible box x_{proved}
- compute $\bar{\mathbf{f}}^* = min(\bar{\mathbf{f}}(x_{proved}), \bar{\mathbf{f}}^*)$



- Critical issue: to prove the existence of a feasible point in a reduced box
 - Singularities
 - Guess point too far from a feasible region (local search works with floats)

< □ →

Using the lower bound to get an upper-bound

CSP & Global Optimization

M. Rueher



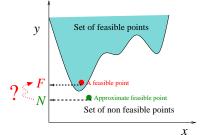
Branch&Bound step where P is the set of feasible points and R is the linear relaxation

Idea: modify the safe lower bound ... to get an upper-bound !

Lower bound: a good starting point to find a feasible upper-bound ?

CSP & Global Optimization

M. Rueher



N, optimal solution of *R*, not a feasible point of *P* but (may be) a good starting point:

- ► BB splits the domains at each iteration: smaller box ~→ N nearest from the optima of P
- Proof process inflates a box around the guess point ~-> compensate the distance from the feasible region

- Correction procedure to get a better feasible point from a given approximate feasible point
 - → to exploit Newton-Raphson for under-constrained systems of equations (and Moore-Penrose inverse)

Good convergence when the starting point is nearly feasible

< □ →

Handling square systems of equations

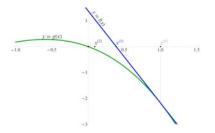
CSP & Global Optimization

M. Rueher

•
$$g = (g_1, \ldots, g_m) : \mathbb{R}^n \longrightarrow \mathbb{R}^m (n = m)$$

 $\rightarrow \text{Newton-Raphson step:} \\ x^{(i+1)} = x^{(i)} - J_g^{-1}(x^{(i)})g(x^{(i)})$

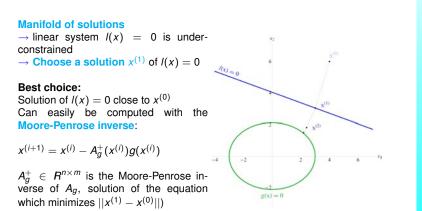
Converges well if the exact solution to be approximated is not singular



• • •

Handling under-constrained systems of equations

M. Rueher

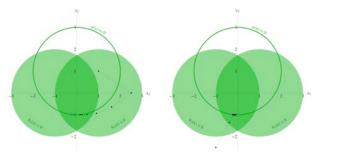


Handling under-constrained systems of equations and inequalities

- Under-constrained systems of equations and inequalities
 introduce slack variables
- Initial values for the slack variables have to be provided

Slightly positive value

- \rightarrow to break the symmetry
- \rightarrow good convergence



CSP & Global Optimization

Function UpperBounding(IN **x**, x_{LP}^* ; INOUTS')

```
% S': list of proven feasible boxes
% x_{LP}^*: the optimal solution of the LP relaxation of \mathcal{P}(\mathbf{x})
S' := \emptyset
x_{corr}^* := \text{FeasibilityCorrection}(x_{LP}^*) % Improving x_{LP}^* feasibility
\mathbf{x}_p := InflateAndProve(x_{corr}^*, \mathbf{x})
if \mathbf{x}_p \neq \emptyset then
S' := S' \cup \mathbf{x}_p
endif
return S'
```

< □ ▶

CSP & Global Optimization M. Bueher

- Significant set of benchmarks of the COCONUT project
- Selection of 35 benchmarks where Icos did find the global minimum while relying on an unsafe local search
- 31 benchmarks are solved and proved within a 30s time out
- Almost all benchmarks are solved in much less time and with much more proven solutions

- ► OBR (optimal based reduction): known bounds of the objective function → to reduce the size of the domains
- ► Refutation techniques → boosting safe OBR

< □ ▶

Lower bounding

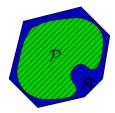
M. Rueher

Relaxing the problem

• linear relaxation R of \mathcal{P}

 $\begin{array}{ll} \min & d^T x \\ s.t. & Ax \leq b \end{array}$

- LP solver $\rightarrow \underline{\mathbf{f}}^*$
- \rightarrow numerous splitting



- Introduced by Ryoo and Sahinidis
 - to take advantage of the known bounds of the objective function to reduce the size of the domains
 - uses a well known property of the saddle point to compute new bounds for the domains with the known bounds of the objective function

Theorems of OBR

- ▶ Let [*L*, *U*] be the domain of *f*:
 - U is an upper-bound of the initial problem \mathcal{P}
 - ► *L* is a lower-bound of a convex relaxation *R* of *P*

If the constraint $\mathbf{x_i} - \overline{\mathbf{x}_i} \leq \mathbf{0}$ is active at the optimal solution of R and has a corresponding multiplier $\lambda_i^* > \mathbf{0}$ (λ^* is the optimal solution of the dual of R), then

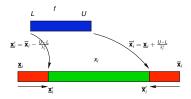
$$\mathbf{x}_i \geq \underline{\mathbf{x}}_i'$$
 with $\underline{\mathbf{x}}_i' = \overline{\mathbf{x}}_i - rac{\mathbf{U} - \mathbf{L}}{\lambda_i^*}$

if $\underline{\mathbf{x}}'_i > \underline{\mathbf{x}}_i$, the domain of x_i can be shrinked to $[\underline{\mathbf{x}}'_i, \overline{\mathbf{x}}_i]$ without loss of any global optima

▶ similar theorems for $\underline{\mathbf{x}}_i - x_i \leq 0$ and $g_i(x) \leq 0$.

OBR: intuitions

Ryoo & Sahinidis 96



$$x_i \geq \mathbf{\underline{x}}_i'$$
 with $\mathbf{\underline{x}}_i' = \mathbf{\overline{x}}_i - rac{U-L}{\lambda_i^*}$

- does not modify the very branch and bound process
- almost for free !

CSP & Global Optimization

Critical issue: basic OBR algorithm is unsafe

- it uses the dual solution of the linear relaxation
- Efficient LP solvers work with floats → the available dual solution λ* is an approximation if used in OBR ...

 $\dots \rightarrow \text{OBR}$ may remove actual optimum !

Solutions: two ways to take advantage of OBR

- 1. prove dual solution (Kearfott): combinining the dual of linear relaxation with the Kuhn-Tucker conditions
- 2. validate the reduction proposed by OBR with CP !

< □ →

Essential observation: if the constraint system

$$L \le f(x) \le U$$

 $g_i(x) = 0, \ i = 1..k$
 $g_j(x) \le 0, \ j = k + 1..m$

has no solution when the domain of x is set to $[\underline{x}_i, \underline{x}'_i]$, the reduction computed by OBR is valid

 Try to reject [x_i, x'_i] with classical filtering techniques; otherwise add this box to the list of boxes to process

< □ >

CSP & Global Optimization M. Bueher

CP algorithm

 $\mathcal{L}_r := \emptyset$ % set of potential non-solution boxes

```
for each variable x_i do
Apply OBR
and add the generated potential non-solution boxes to \mathcal{L}_r
```

```
for each box \mathbf{B}_i in \mathcal{L}_r do

\mathbf{B}'_i \coloneqq \mathbf{2B}-filtering(\mathbf{B}_i)

if \mathbf{B}'_i = \emptyset then reduce the domain of x_i

else \mathbf{B}''_i \coloneqq \mathbf{QUAD}-filtering(\mathbf{B}'_i)

if \mathbf{B}''_i = \emptyset then reduce the domain of x_i

else add \mathbf{B}_i to global list of box to be handled endif

endif
```

```
Compute <u>f</u> with QUAD_SOLVER in X
```

- Compares 4 versions of the branch and bound algorithm:
 - without OBR
 - with unsafe OBR
 - with safe OBR based on Kearfott's approach
 - with safe OBR based on CP techniques

implemented with Icos using Coin/CLP and Coin/IpOpt

- On 78 benches (from Ryoo & Sahinidis 1995, Audet thesis and the coconut library)
- All experiments have been done on PC-Notebook/1Ghz.

Experimental Results (2): Synthesis

CSP & Global Optimization

M. Rueher

Synthesis of the results:

	$\Sigma_t(s)$	%saving
no OBR	2384.36	-
unsafe OBR	881.51	63.03%
safe OBR Kearfott	1975.95	17.13%
safe OBR CP	454.73	80.93%

(with a timeout of 500s)

Safe CP-based OBR faster than unsafe OBR !

... because wrong domains reductions prevent the upper-bounding process from improving the current upper bound !!

+ CSP refutation techniques

- allow a safe and efficient implementation of OBR
- can outperform standard mathematical methods
- might be suitable for other unsafe methods

+ Safe global constraints

- provide an efficient alternative to local search:
 - \rightarrow good starting point for a Newton method \rightsquigarrow feasible region
- drastically improve the performances of the upper-bounding process

Handling software upgradeability problems

CSP & Global Optimization

- A critical issue in modern operating systems
 - → Finding the "best" solution to install, remove or upgrade packages in a given installation.
 - → The complexity of the upgradeability problem itself is NP complete
 - → modern OS contain a huge number of packages (often more than 20 000 packages in a Linux distribution)
- Several optimisation criteria have to be considered, e.g., stability, memory efficiency, network efficiency
- Mancoosi project (FP7/2007-2013, http://www.mancoosi.org/)

Solving software upgradeability problems

CSP & Global Optimization

M. Rueher

Computing a final package configuration from an intial one

- A configuration states which package is installed and which package is not installed:
 - Problem (in CUDF): list of package descriptions (with their status) & a set of packages to install/remove/upgrade
 - Final configuration: list of installed packages (uninstalled packages are not listed)
- Expected Answer: best solution according to multiple criteria

A Problem: list of package descriptions & requests (1)

CSP & Global Optimization

M. Rueher

A package description provides:

- the package name and package version
 - *p_{i,j}* = (package name *p_i*, package version *v_j*) is unique for each problem in CUDF
 - The p_{i,i} are basic variables
 - \rightarrow solvers have to instantiate $p_{i,j}$ with true or false
- Package dependencies and conflicts: set of contraints between the p_{i,j} (CNF formula)
- Provided features: if package p₁ depends on feature f_λ provided by q₁ and q₂, then installing q₁ or q₂ will fulfill p₁'s dependency on f_λ.

A Problem: list of package descriptions & requests (2)

CSP & Global Optimization

M. Rueher

Requests are:

- Commands/actions on the initial configuration: install, remove and/or upgrade package instructions
 - install p: at least one version of p must be installed in the final configuration
 - remove p: no version of p must be installed in the final configuration
 - ► upgrade p: let p_v be the highest version installed in the initial configuration, then p'_v with v' ≥ v must be the only version installed in the final configuration
- Mandatory: the final configuration must fulfill all the requests (otherwise there is no solution to the problem)
- Requests induce additional constraints on the problem to solve

Best solution

 \rightarrow multiple criteria, e.g.,

- minimize the number of removed packages, and,
- minimize the number of changed packages

Mono criteria optimization solvers

- \rightarrow using a linear combination of the criteria
- → solving each criteria sequentially

MILP model: handling dependencies

1. Conjunction:

$$\mathcal{D}epend(p_v) = \bigwedge_{i=1}^n p_i \quad \rightsquigarrow \quad -\mathbf{n} * \mathbf{p}_v + \sum_{i=1}^n p_i >= 0$$

if $p_v = 1$ (installed), then all $p_i = 1$; if $p_v = 0$ (not installed), then the p_i can take any value

2. Disjunction

$$\mathcal{D}epend(p_v) = \bigvee_{k=1}^{l_m} p_k \quad \rightsquigarrow \quad -\mathbf{p_v} + \sum_{k=1}^{l_m} p_k >= 0$$

thus, if $p_v = 1$, at least one of the p_k will be installed.

< <p>Image: Image: Imag

CSP & Global Optimization

Conflict property: a simple conjunction of packages \rightarrow inequality:

$$\mathbf{n'} * \mathbf{p_v} + \sum_{p_c \in Conflict(p_v)} p_c <= \mathbf{n'}$$

where $Conflict(p_v)$ is the set of package conflicting with p_v and $n' = Card(Conflict(p_v))$

- \rightarrow if p_v is installed, none of the p_v conflicting packages can be installed
- \rightarrow if p_v is not installed, then the conflicting packages can freely be either installed or not

M. Rueher

 ${}^{\bullet} \square \rightarrow$

MILP: handling multi criteria (1)

Assume the following *n* criteria:

$$min \sum_{i=1}^{m} c_i^1 . x_i, \ldots, min \sum_{i=1}^{m} c_i^n . x_i$$

considered in a lexical order.

To solve them using a mono criteria optimiser, we can:

1. use a linear combination of the criteria

2. sequentialy solving

. . .

•
$$o_1 = \min \sum_{i=1}^m c_i^1 x_i s.t.Ct$$
,

• then
$$o_2 = \sum_{i=1}^m c_i^2 x_i$$
 s.t. $\sum_{i=1}^m c_i^1 x_i <= o_1, Ct$,

M. Rueher

Paranoid

First criterion: minimize the number of removed functionalities among the installed ones

 $\min \sum_{p \in F_{T, nstalled}} -p$

 where F_{Installed} is the set of installed functionalities
 Second criterion: minimize the number of modifications; if package p, version i is installed keep it installed, if package p version u it is not installed keep it uninstalled

$$\min \sum_{p_i \in P_{\mathcal{I}nstalled}} -p_i + \sum_{p_u \in P_{\mathcal{U}ninstalled}} p_u$$

where $P_{\text{Installed}}$ is the set of installed versioned packages and $P_{\text{Uninstalled}}$ is the set of uninstalled versioned packages.

► paranoid:

minimizing the packages removed in the solution $\frac{\&}{2}$

minimizing packages changed by the solution

► trendy:

minimizing packages removed in the solution

&

minimizing outdated packages in the solution

&

minimizing package recommendations not satisfied

minimizing extra packages installed.

CSP & Global Optimization M. Rueher

Running different criteria combinations

CSP & Global Optimization

M. Rueher

rand915 from sarge-etch-lenny set with mccs

Combination	Time (s)	Removed	Notuptodate	Unsat
no criteria	2.24	810	129	40
lexicographic	37.98	47	435	195
lexsemiagregate	19.52	47	435	47
leximax	238.35	133	132	100
agregate	19.38	233	31	18

with *Cplex (12)* on a T7700 @ 2.40GHz laptop running linux

< □ ▶

- A set of 200 problems, ranging from random problems to real one and from 20000 up to 50000 packages
- MILP solvers & Pseudo boolean solvers
 - \rightarrow Good performance for one or two criteria
 - \rightarrow Available in the *experimental version of* **apt-get**, debian package manager
- Homework : find a nice and efficient CP model :)