
Hybrid Constraint-Based Bounded
Program Verification

Michel RUEHER

University of Nice Sophia-Antipolis / I3S – CNRS, France

Courtesy to Hélène COLLAVIZZA, Nguyen Le VINH and
Pascal Van HENTENRYCK

June, 2011

ACP Summer School
“Hybrid Methods for Constraint Programming”

Turunç



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Outline

Basics on Bounded Model Checking (BMC)

A CP framework for Bounded Program Verification

CPBPV, a Depth First Dynamic Exploration of the CFG

DPVS

The Flasher Manager Application

Discussion

2



Bounded
Program

Verification

M. Rueher

Basics on BMC
BMC: overview

Algorithm

CP & BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Basics on BMC

I Mechanically check properties of models

I Widely used in hardware verification and software
verification

I Automatic generation of counterexamples

3



Bounded
Program

Verification

M. Rueher

Basics on BMC
BMC: overview

Algorithm

CP & BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

BMC: key features

I Models→ finite automates, labelled transition
systems

I Properties:

I Safety→ something bad should not happen

I Liveness→ something good should happen

I Bound k → look only for counter examples made of k
states

4



Bounded
Program

Verification

M. Rueher

Basics on BMC
BMC: overview

Algorithm

CP & BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Algorithm for Model Checking Safety

% set of states: S, initial states: I, transition relation: T
% bad states B reachable from I via T?

bounded_model_checkerforward(I,T ,B, k)
SC = ∅; SN = I; n = 1
while SC 6= SN and n < k do

if B ∩ SN 6= ∅
then return “found error trace to bad states”;

else SC = SN ;
SN = SC ∪ T (SC);
n = n + 1;

done
return “no bad state reachable”;

5



Bounded
Program

Verification

M. Rueher

Basics on BMC
BMC: overview

Algorithm

CP & BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

BMC framework

BMC: Bounded Model Checking

• BMC: falsification of a given property is checked for a
given bound

• BMC mainly involves three steps:

1. the program is unwound k times,

2. the unwound program and the property are translated
into a big propositional formula φ
φ is satisfiable iff there exists a counterexample

of depth less than k

3. A SAT-solver or SMT-solver is used for checking the
satisfiability of φ

6



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP framework

I A CP framework for Bounded Program Verification

7



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Overall view of CP framework

I Bounded program verification
(the array lengths, the variable values and the loops
are bounded)

• Constraint stores to represent the specification and
the program

• Program is partially correct if the constraint store
implies the post-conditions

I Non deterministically exploration of execution paths

8



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP-based BMC ...

CP-based Bounded Program Verification

• CP-based BMC: falsification of a given property is
checked for a given bound

• CP-based BMC mainly involves three steps:

1. the program is unwound k times,

2. An annotated and simplified CFG is built

3. Program is translated in constraints on the fly

A list of solvers tried in sequence (LP, MILP, Boolean,
CP)

9



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP framework & BMC ...

I CP framework
• Specification→ constraints

Program→ constraints (on the fly)
• Solving Process
→ List of solvers tried in sequence

on each selected node of the CFG
→ Takes advantage of the structure of the program

I BMC based on SAT / SMT solvers
• Program & specification→ Big Boolean formula
• Solving Process
→ SAT solvers or SMT solvers (SAT solvers

& specialised solvers)
 spurious solutions→ backtracks

→ Critical issue: minimum conflict sets

10



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP framework, pre-processing

Pre-processing

1. P is unwound k times→ Puw

2. Puw → DSAPuw , Dynamic Single Assignment form
(each variable is assigned exactly once on each
program path)

3. DSAPuw is simplified according to the specific
property prop by applying slicing techniques

4. Domains of all variables are filtered by propagating
constant values along G, the simplified CFG

11



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

A small example

void foo(int a, int b)
int c, d, e, f ;
if(a >= 0) {

if(a < 10) {f = b − 1;}
else {f = b − a; }
c = a;
if(b >= 0) {d = a; e = b;}
else {d = a; e = −b;} }

else {
c = b; d = 1; e = −a;
if(a > b) {f = b + e + a;}
else {f = e ∗ a− b;} }

c = c + d + e;
assert(c >= d + e); // property p1
assert(f >= −b ∗ e); // property p2

12



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

A small example(continued)

Initial CFG

���

�
�
�����

���

	
�
����

�

�
�

	
�
����

�

�
�
���


�
�
�����

�

���

�
�
�����

���

�
�
����

�

�
�
�����

�

���

�
�
����

�

�
�
����

�

�
��

	


���	

�
����

��
���

�

����

���� �����

�����

�
�

�
�
���
�

���

�
�
����

�
����

�

���

�
�
����

�
���


���� �����

���

�
�
����

�

�

�

�
�
����

�
����

�
����

�

�
��

�
�
����

�
����

�
����

�

���� �����

13



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

A small example(continued)

Simplified CFG

���

�
�
�����

���

	
�
����

�

�
�

	
�
����

�

�
�
���


�
�
�����

�

���

�
�
�����

���

�
�
����

�

�
�
�����

�

���

�
�
����

�

�
�
����

�

�
��

	


���	

�
����

��
���

�

����

���� �����

�����

14



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP framework, language

I Java programs and JML specifications

JML =
• Comments in java code (“javadoc” like)

(can be compiled and executed at run time)

• Properties are directly expressed on the
program variables
→ no need for abstraction

• Pre-conditions and post-relations

• Exists and Forall quantifiers

I C programs and assertions

15



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

CP framework, restrictions

I Unit code validation

I Data types : integers, arrays of integers

I Bounded programs : array lengths, number of
unfoldings of loops, size of integers are known

I Normal behaviours of the method (no exception)

I JML specification :

• post condition : the conjunction of use cases of the
method

• possibly a precondition

16



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Building the constraint store: principle

I Each expression is mapped to a constraint:
ρ transforms program expressions into constraints

I SSA-like variable renaming: σ[v] is the current
renaming of variable v

I JML :

• \forall i→ conjunction of conditions
• \exist i→ disjunction of conditions

(i has bounded values)

17



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I scalar assignment

σ2 = σ1[v/σ1(v) + 1] & c2 ≡ (ρ σ2 v) = (ρ σ1 e)

〈[v ← e , l], σ1, c1〉 7−→ 〈[l], σ2, c1 ∧ c2〉

Program

x=x+1; y=x*y; x=x+y;

Constraints
{x1 = x0 + 1, y1 = x1 ∗ y0, x2 = x1 ∗ y1}

18



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I array assignment
σ2 = σ1[a/σ1(a) + 1]
c2 ≡ (ρ σ2 a)[ρ σ1 e1] = (ρ σ1 e2)
c3 ≡ ∀i ∈ 0..a.length(ρ σ1 e1) 6= i → (ρ σ2 a)[i] = (ρ σ1 a)[i]

〈[a[e1]← e2, l], σ1 , c1〉 7−→ 〈[l], σ2, c1 ∧ c2 ∧ c3〉

Program (a.length=8)

a[i] = x;

Constraints
{a1[i0] = x0, i0 6= 0→ a1[0] = a0[0],
i0 6= 1→ a1[1] = a0[1], ..., i0 6= 7→ a1[7] = a0[7]}

guard → body is a guarded constraint

a[i] = x is the element constraint: i and x are constrained
variables whose values may be unknown

19



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I conditional instruction: if b i ; l

c ∧ (ρ σ b) is satisfiable
〈if b i ; l , σ, c〉 7−→ 〈i ; l , σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈if b i ; l , σ, c〉 7−→ 〈l , σ, c ∧ ¬(ρ σ b)〉

20



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I while instruction: while b i ; l

c ∧ (ρ σ b) is satisfiable
〈while b i ; l , σ, c〉 7−→ 〈i ; while b i ; l , σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈while b i ; l , σ, c〉 7−→ 〈l , σ, c ∧ ¬(ρ σ b)〉

21



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

Depth first search
strategies

CPBPV

DPVS

FM Application

Discussion

Depth first search strategies

I CPBPV, Depth first exploration of the CFG

22



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

CPBPV, Overall view

I Translate precondition of the specification (if it exists)
into a set of constraints PRECOND

I Translate post condition of the specification into a set
of constraints POSTCOND

I Explore each branch Bi of the program and translate
instructions of Bi into a set of constraints PROG_Bi

23



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

CPBPV, the validation process

I For each branch Bi , solve CSPi = PROG_Bi ∧
PRECOND ∧ NOT(POSTCOND)

• If for each branch Bi CSPi is inconsistent , then the
program is conform with its specification

• If for a branch Bi CSPi has a solution , then this
solution is a test case which illustrates a
non-conformity

!© Inconsistencies of CSPi are detected at each node
of the control flow graph

24



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (1)

/*@ requires (\forall int i;i>=0
@ && i<t.length-1;t[i]<=t[i+1])
@ ensures
@ (\result!=-1 ==> t[\result] == v) &&
@ (\result==-1 ==>

\forall int k; 0<=k<t.length; t[k]!=v)
@*/

1 static int binary_search(int[] t, int v)
2 int l = 0;
3 int u = t.length-1;
4 while (l <= u)
5 int m = (l + u) / 2;
6 if (t[m]==v) return m;
7 if (t[m] > v)
8 u = m - 1;
9 else
10 l = m + 1; // ERROR else u = m - 1;
11 return -1;

25



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (2)

• Precondition

\forall int i;i>=0
&& i<t.length-1;t[i]<=t[i+1]

CSP← t0[0] ≤ t0[1] ∧ t0[1] ≤ t0[2] ∧ ... ∧ t0[6] ≤ t0[7]

• Initialization

int l=0;int u=t.length-1;

CSP← CSP ∧ l0 = 0 ∧ u0 = 7

26



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (2)

• Precondition

\forall int i;i>=0
&& i<t.length-1;t[i]<=t[i+1]

CSP← t0[0] ≤ t0[1] ∧ t0[1] ≤ t0[2] ∧ ... ∧ t0[6] ≤ t0[7]

• Initialization

int l=0;int u=t.length-1;

CSP← CSP ∧ l0 = 0 ∧ u0 = 7

27



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (3)

I Loop

while (l<=u)

Enter into the loop since l0 ≤ u0 is consistent
with the current constraint store
CSP← CSP ∧ l0 ≤ u0

I Assignment

int m=(l+u)/2;

CSP← CSP ∧m0 = (l0 + u0)/2 = 3

28



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (3)

I Loop

while (l<=u)

Enter into the loop since l0 ≤ u0 is consistent
with the current constraint store
CSP← CSP ∧ l0 ≤ u0

I Assignment

int m=(l+u)/2;

CSP← CSP ∧m0 = (l0 + u0)/2 = 3

29



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (4)

I Conditional

if (t[m]==v) return m;

t0[m0] = v0 is consistent with the constraint store
so take the if part
CSP← CSP ∧ t0[m0] = v0

I Complete execution path p whose constraint store
cp is:
cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = 3 ∧ t0[m0] = v0

30



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (4)

I Conditional

if (t[m]==v) return m;

t0[m0] = v0 is consistent with the constraint store
so take the if part
CSP← CSP ∧ t0[m0] = v0

I Complete execution path p whose constraint store
cp is:
cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = 3 ∧ t0[m0] = v0

31



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (5)

Return statement has been reached

I add negation of post condition and link JML \result
variable with returned value m0

\result!=-1 ==> t[\result] == v) &&
(\result==-1 ==> \forall int k;

0<=k<t.length; t[k]!=v)

\m0! = −1 ∧ t0[m0]! = v0∨
\m0 = −1 ∧ (t0[0] = v0 ∨ t0[1] = v0 ∨ ... ∨ t0[6] = v0)

I solve the CSP
There is No solution so the program is correct along
this execution path

Go back to conditional if (t[m]==v) to explore
the else part

32



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search (5)

Return statement has been reached

I add negation of post condition and link JML \result
variable with returned value m0

\result!=-1 ==> t[\result] == v) &&
(\result==-1 ==> \forall int k;

0<=k<t.length; t[k]!=v)

\m0! = −1 ∧ t0[m0]! = v0∨
\m0 = −1 ∧ (t0[0] = v0 ∨ t0[1] = v0 ∨ ... ∨ t0[6] = v0)

I solve the CSP
There is No solution so the program is correct along
this execution path

Go back to conditional if (t[m]==v) to explore
the else part

33



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Implementation

I Dedicated solvers
• ad-hoc simplifier : trivial simplifications and calculus

on constants
• linear solver (LP algorithm) + MIP solver
• Boolean solver (SAT solver)

(Boolean relaxation of the non linear constraints)
• CSP solver : used if none of the other solver did find

an inconsistency

I Prototype
• Solvers : Ilog CPLEX11 and JSolver4verif
• Written in Java using JDT (eclipse) for parsing Java

programs

!! CPLEX is unsafe but Neumaier & Shcherbina
→ method for computing a certificate of infeasibility

34



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation : if
c then ... else ...

I If c can be simplified into constant value “true” or
“false”, select the branch which corresponds to c

I If c is linear
1. add decision c in linear_CSP
2. solve linear_CSP

I if linear_CSP has no solution, condition c is not
feasible for the current path
 choose another path

I if linear_CSP has a solution, we can’t conclude
anything on complete_CSP
 investigate both branches c and ¬c

35



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation : if
c then ... else ...

I If c is NOT linear :
1. abstract decision c and add it in boolean_CSP
2. solve boolean_CSP

I boolean_CSP has no solution choose another
path

I if boolean_CSP has a solution investigate both
branches c and ¬c

Boolean abstraction
• hash-table of decisions : keys are decisions, values

are Boolean variables
• sub-expressions are shared→ rewriting

36



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation :
loops

Let c be the entrance condition

• if c is trivially simplified to “true” or “false”
 enter or exit the loop

• if {c + linear_CSP } is inconsistent
 add ¬c to the CSPs and exit the loop

In other cases, unfold loop max times:

• If max is reached
 add ¬c to the CSPs and exit the loop
• Else investigate both paths

37



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Experiments

We compared CPBVP with the following frameworks:

I ESC/Java, an Extended Static Checker for Java
 run-time errors in JML-annotated Java programs (static
analysis of the code and its annotations)

I CBMC, a Bounded Model Checker for ANSI-C and C++
programs
 verification of array bounds (buffer overflows), pointer
safety, exceptions, and user-specified assertions

I BLAST, a software model checker for C program
(Berkeley Lazy Abstraction Software Verification Tool)

I EUREKA, a C bounded model checker which uses an SMT
solver instead of an SAT solver

I Why, a verification platform which integrates provers (proof
assistants such as Coq, PVS, HOL 4,...) and decision
procedures (Simplify, Yices, ...)

38



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search

length 8 16 32 64 128
CPBPV time 1.08s 1.69s 4.04s 17.01s 136.80s
CBMC time 1.37s 1.43s KO
Why inv 11.18s

– KO
ESC/Java Error

BLAST KO

• EUREKA tool : cannot handle because of expression m = (u + l)/2
• CP execution paths explored given by the recurrence relation:

P(2) = P(4); P(2n) = 2P(n) + log(n)

length CPBPV ESC/Java CBMC WHY inv BLAST
8 0.027s 1.21 s 1.38s KO KO

16 0.037s 1.347 s 1.69s KO KO
32 0.064s 1.792 s 7.62s KO KO
64 0.115s 1.886 s 27.05s KO KO
128 0.241s 1.964 s 189.20s KO KO

Table: Experimental Results for an Incorrect Binary Search

• CBMC and ESC/Java only show the decisions taken along the faulty
path (they do not provide any value for the array nor the searched
data) 39



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search

length 8 16 32 64 128
CPBPV time 1.08s 1.69s 4.04s 17.01s 136.80s
CBMC time 1.37s 1.43s KO
Why inv 11.18s

– KO
ESC/Java Error

BLAST KO

• EUREKA tool : cannot handle because of expression m = (u + l)/2
• CP execution paths explored given by the recurrence relation:

P(2) = P(4); P(2n) = 2P(n) + log(n)

length CPBPV ESC/Java CBMC WHY inv BLAST
8 0.027s 1.21 s 1.38s KO KO

16 0.037s 1.347 s 1.69s KO KO
32 0.064s 1.792 s 7.62s KO KO
64 0.115s 1.886 s 27.05s KO KO
128 0.241s 1.964 s 189.20s KO KO

Table: Experimental Results for an Incorrect Binary Search

• CBMC and ESC/Java only show the decisions taken along the faulty
path (they do not provide any value for the array nor the searched
data) 40



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Tritype

Takes 3 integers (triangle sides) and returns the type
of triangle

I CP :10 paths explored among 57 – correspond to
actual inputs because of complex conditionals

I CP and Why : time does not depend on the size of the
integers

I earlier approach (Boolean abstraction, TACAS’06):
8.52s for integers coded on 16 bits, 92 spurious paths

CPBPV ESC/Java CBMC Why BLAST
time 0.287s 1.828s 0.82s 8.85s KO

41



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Sum of squares

/*@ requires (n == t.length-1)
@ & (\forall int i; i>=0 & i<tab.length;
@ (0<=t[i] & t[i]<=n)
@ & (\alldifferent t)
@ ensures \result == n*(n+1)*(2*n+1)/6 @*/

1 int sum(int[] t, int n)
2 int s = 0;
3 int i = 0;
4 while (i!=t.length)
5 s=s+t[i]*t[i]
6 i =i+1;
7 return s;

• Using global constraint alldiff
• Solving non linear problems
• 66.179s for n = 10

42



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Role of the different solvers

I CPLEX, the MIP solver, plays a key role in all these
benchmarks:

• Tritype: the CP solver is never called

• Binary search: there are only length calls to the CP
solver (and much more calls to CPLEX) but almost
75% of the CPU time is spent in the CP solver

• Sum of squares: 80% of the CPU time is spent in the
CP solver

43



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Critical issues

I We do not need the Boolean abstraction to capture the
control structure of the program

→ Use the CFG and constraints to prune the
search space

I Depth first dynamic exploration of the CFG

• Efficient if the variables are instantiated early

• Blind searching: post-condition becomes active very
late

44



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS

A Dynamic Constraint-Based BMC Strategy For
Generating Counterexamples

45



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

Motivations

Formal proof methods that ensure the absence of
all bugs are too expensive, or require manual efforts

→ Automatic generation of counterexamples
violating a property on a limited model
of the program is very useful

→ Challenge: finding bugs for realistic time periods
for real time applications

46



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

Key points of DPVS

A new search strategy for verifying a restricted class of
Java or C programs:

→ Non sequential dynamic exploration of the CFG

I CPBPV: Depth first dynamic exploration of the CFG

→ Postcondition is used very late because of the
variables renaming

I DPVS: Non-sequential exploration of the CFG

→ Starts from the postcondition and jumps to the
locations where the variables are assigned

47



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

Non sequential dynamic constraint based
exploration strategy

Why can we do it ?

Essential observation

When the program is in an SSA-like form, a path can be
built in a non-sequential dynamic way

CFG does not have to be explored in a top down (or
bottom up) way: compatible blocks can just be

collected in a non-deterministic way

48



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

Non sequential dynamic constraint based
exploration strategy

Why does it pay off

• DPVS starts from the post-condition and
dynamically collects program blocks which involve
variables of the post-condition

• Collecting as much information as possible on a given
variable

→ enforces the constraints on its domain and
reduces the search space

• Constraint solving is integrated with state
exploration to prune the state space as early as
possible

49



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple

void foo(int a, int b)
int c, d, e, f ;
if(a >= 0) {

if(a < 10) {f = b − 1;}
else {f = b − a; }
c = a;
if(b >= 0) {d = a; e = b;}
else {d = a; e = −b;} }

else {
c = b; d = 1; e = −a;
if(a > b) {f = b + e + a;}
else {f = e ∗ a− b;} }

c = c + d + e;
assert(c >= d + e); // property p1
assert(f >= −b ∗ e); // property p2

50



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple(continued)

To prove property p1, select node (12), then select node
(4)
→ the condition in node (0) must be true
S = {c1 < d0 + e0 ∧ c1 = c0 + d0 + e0 ∧ c0 = a0 ∧ a0 ≥ 0}

= {a0 < 0 ∧ a0 ≥ 0} ... inconsistent

51



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple(continued)

Select node (8)→ condition in node (0) must be false
S = {c1 < d0 + e0 ∧ c1 = c0 + d0 + e0 ∧ c0 = b0

∧a0 < 0 ∧ d0 = 1 ∧ e0 = −a0}
= {a0 < 0 ∧ b0 < 0}

Solution {a0 = −1,b0 = −1}

52



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS, pre-processing

Pre-processing

1. P is unwound k times→ Puw

2. Puw → DSAPuw , Dynamic Single Assignment form
(each variable is assigned exactly once on each
program path)

3. DSAPuw is simplified according to the specific
property prop by applying slicing techniques

4. Domains of all variables are filtered by propagating
constant values along G, the simplified CFG

53



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS
Motivations

key points

Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS, Algorithm (scheme)

S ← negation of prop % constraint store
Q ← variables in prop % queue of variables

• While Q 6= ∅, v ← POP(Q)
• Search for a program block PB(v) where v is

defined
PUSH(Q,new_var ), new_var = new variables (6=
input variables) of PB(v)
S ← S ∪ {definition of v and conditions required to
reach definition of v }

• IF S is inconsistent, backtrack & search another
definition (otherwise the dual condition is cut off)

• IF Q = ∅ search for an instantiation of the input
variables (= counterexample)
If no solution exists, DPVS backtracks.

54



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Description of the module

• A real time industrial application from a car
manufacturer (provided by Geensoft)

• Flasher Manager (FM): controller that drives several
functions related to the flashing lights

Purpose:

• to indicate a direction change
• to lock and unlock the car from the distance
• to activate the warning lights

• Simulink model of FM→ C function f1

55



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Simulink model(1)

	
  

56



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Simulink model (2)

	
  

57



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Function f1

Simulink model of FM→ C function f1

• 81 Boolean variables (6 inputs, 2 outputs) and 28
integer variables

• 300 lines of code: nested conditionals including
linear operations and constant assignments
Piece of code:

58



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: properties

p1 The lights should never remain lit.
p2 When the warning button has been pushed and then

released, the Warning function resumes to the
Flashers_left (or Flashers_right) function, if
this function was active when the warning button was
pushed

p3 When the F signal (for flasher active) is off, then the
Flashers_left, Flashers_right and Warning
functions are desabled. On the contrary, all the
functions related to the lock and unlock of the car are
maintained

p4 The Warning function has priority over other flashing
functions

59



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: property p1

• Property p1: The lights should never remain lit

Property p1 concerns the behaviour of FM for an
infinite time period

→ p1 is violated when the lights remain on for N
consecutive time period

→ a loop (bounded by N) that counts the number of
times where the output of FM has consecutively been
true

Challenge: bound N as great as possible

60



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: property p1

Program under test for Property:

61



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

Experiments: tools

• DPVS, implemented in Comet, a hybrid optimization
platform for solving combinatorial problems

• CPBPV*, an optimized version of CPBPV based on a
dynamic top down strategy

• CBMC, one of the best bounded model checkers

Experiments were performed on a Quad-core Intel Xeon
X5460 3.16GHz clocked with 16Gb memory
All times are given in seconds.

62



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

Experiments (results)

Solving time:

N CBMC DPVS CPBPV*
5 0.03 0.02 0.84

100 57.27 1.95 TO
200 232.19 3.45 TO
400 TO 4.66 TO

Pre-processing time:

N CBMC DPVS CPBPV*
5 0.366 0.480 0.480

100 65.190 9.750 9.750
200 395.46 21.65 21.65
400 TO 50.90 50.90

63



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Discussion

Experiments on the binary search

Length CBMC DPVS CPBPV*
4 5.732 0.529 0.107
8 110.081 35.074 0.298
16 TO TO 1.149
64 TO TO 27.714
128 TO TO 153.646

• DPVS and CBMC waste a lot of time in exploring
the different paths

• CPBPV* incrementally adds the decisions taken
along a path
→ well adapted for the Binary Search program

64



Bounded
Program

Verification

M. Rueher

Basics on BMC

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Discussion (continued)

• Combining strategies

• Using counter examples for errors localization

65


	Basics on Bounded Model Checking (BMC)
	A CP framework for Bounded Program Verification
	Overall view
	Building the constraint store

	CPBPV, a Depth First Dynamic Exploration of the CFG
	Overall view
	Example
	Implementation
	Experiments

	DPVS
	Motivations
	key points of DPVS
	A small exemple
	Pre-processing
	Algorithm

	The Flasher Manager Application
	Description of the module
	Simulink model
	Program under test
	Experiments
	 Tools
	 Experiments on the Flasher Manager

	Discussion

