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• Linear Programming duality 
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Linear Programming duality
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Linear Programming duality

What lower bound can you derive from the constraints ?

The dual of the dual is the primal

�1

�2

x

y

(P)

(D)
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Linear Programming duality

• View the dual as the problem of the best linear 
combination of the constraints 

• Any feasible solution of the dual gives a lower bound

(P)

(D)
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AtMostNValue([X1, . . . , X6], N)

Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

**=*{1,*2}**D(X3)

*=*{1,*2,*3}*D(X4)

*=*{4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

Enforce the number of distinct values appearing in the set X to  
be at most N
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AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

**=*{1,*2}**D(X3)

*=*{1,*2,*3}*D(X4)

*=*{4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

A support of the lower bound of N= an independent set

Enforce the number of distinct values appearing in the set X to  
be at most N
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Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

**=*{1,*2}**D(X3)

*=*{1,*2,*3}*D(X4)

*=*{4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Remove all values except {1,2,4,5} since  D(X5) [D(X3) = {1, 2, 4, 5}

Enforce the number of distinct values appearing in the set X to  
be at most N
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AtMostNValue

Express reasonings on mandatory values

Note that domains of X cannot be filtered…
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Reduced cost based filtering
Consider the following example: 

The exact lower bound of N can be computed 
with the following MIP: 

yi 2 {0, 1} : do we use value i ?

(Domain of       )X2

(Domain of       )X3

(Domain of       )X1
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Reduced cost based filtering
Consider the following example: 

Consider the linear relaxation: 

Notice that we don’t need to state  
First of all, we get 

(0, 1, 0, 1, 0)
y⇤2 y⇤4

y⇤ =
24
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(P)

X1
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Note that we are not 
solving the LP again

We can build a dual 
solution by setting   
greedily to 

Reduced cost based filtering

Let’s try to filter value 1 from      : 

(P)

(D)

X1
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Reduced cost based filtering

We can build a feasible dual solution by setting     to

Thus                       is a lower bound of the modified problem  z⇤ + (1� �⇤
1)

Reduced cost of y1 (Slack of the dual constraint)

So 
Upper bound of N 

z⇤ + (1� �⇤
1) > 2 =) y1 6= 1 (X1 6= 1)
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Reduced cost based filtering

So 

Reduced cost of     : y1 rc(y1) = (1� �⇤
1) = 1

z⇤ + rc(y1) > z =) y1 6= 1 (X1 6= 1)
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Reduced cost based filtering

So 

Reduced cost of     : y1 rc(y1) = (1� �⇤
1) = 1

Reduced cost of     : y3 rc(y3) = (1� �⇤
2) = (1� 1) = 0

We cannot filter value 3 using this dual solution 

z⇤ + rc(y1) > z =) y1 6= 1 (X1 6= 1)
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Reduced cost based filtering

Value 3 is now filtered but value 1 is not filtered anymore 

�⇤ = (1, 0, 1)

But consider

y1Reduced cost of     : rc(y1) = (1� �⇤
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Reduced cost of     : y3 rc(y3) = (1� �⇤
2) = 1
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Reduced cost based filtering

• We are filtering the upper bound of      or y3

z⇤ + rc(yi) > z =) yi 6= 1

• But if     is in the optimal LP solution (the basis), its 
reduced cost is 0

• This is due to the complementary slackness theorem:

Either the variable is 0, or the slack of the dual constraint (i.e. 
the reduced cost) is 0, or both

yi

• How to filter the lower bound of    ?yi

y1
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Let’s try to prove that value 2 is mandatory i.e. filter the lower 
bound of      :  y2 y2 6= 0
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y1 � 1

1. Solve the original LP 
optimally 

2. Use the optimal dual 
solution, to build a feasible 
dual solution to the problem 
that would include  

Filter Upper bound
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Reduced cost based filtering

Let’s try to prove that value 2 is mandatory i.e. filter the lower 
bound of      :  y2 y2 6= 0

y1 6= 1

y1 � 1

1. Solve the original LP 
optimally 

2. Use the optimal dual 
solution, to build a feasible 
dual solution to the problem 
that would include  

Filter Upper bound Filter Lower bound
1. Include in the original LP 

the constraint 

2. Solve the modified 
problem and perform 
sensibility analysis on the 
right hand side of

y2 6= 0

y2  1

y2  1
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Reduced cost based filtering

Let’s try to prove that value 2 is mandatory : 

(P)

(D)

Decreasing the upper-
bound by    increases 
the objective of at 
least

✏

�✏✓⇤

Feasibility of the dual 
solution is not affected 
by the change !36
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the upper bound of      to 0, the increase is at least ofy2 �✓⇤
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Reduced cost based filtering

Let’s try to prove that value 2 is mandatory : 

(D)

z⇤ � ✓⇤ = 2� (�1) > z = 2 =) y2 6= 0 (Y2 = 1)

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set 
the upper bound of      to 0, the increase is at least ofy2 �✓⇤
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Reduced cost based filtering

Let’s try to prove that value 2 is mandatory : 

(D)

rc(y2) = 1� �⇤
1 � �⇤

2 = �1

If we ignore    and compute the reduced cost of      : ✓ y2

And the filtering rule can be seen as :
z⇤ � rc(y2) > z =) y2 6= 0 (Y2 = 1)
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Reduced cost based filtering

• To filter the lower bound of      ?y2

z⇤ � rc(yi) > z =) yi 6= 0

We include the upper bound constraints in the LP: yi  1

And compute the reduced cost by ignoring the dual 
variables of these constraints 
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Reduced cost based filtering

• To filter the upper bound of      or y3

z⇤ + rc(yi) > z =) yi 6= 1

But if     is in the optimal LP solution (the basis), its 
reduced cost is 0 (complementary slackness)

yi

y1

• To filter the lower bound of      ?y2

z⇤ � rc(yi) > z =) yi 6= 0

We include the upper bound constraints in the LP: yi  1

And compute the reduced cost by ignoring the dual 
variables of these constraints 
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Reduced cost based filtering

• To filter the upper bound of      or y3

z⇤ + rc(yi) > z =) yi 6= 1

y1

• To filter the lower bound of      ?y2

z⇤ � rc(yi) > z =) yi 6= 0

In any case, the reduced cost can be interpreted as a 
lower bound of the variation of the objective function 

per unit of change of the variable
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Reduced cost based filtering 

• Linear Programming duality 
• First example: AtMostNValue 
• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 
• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, …
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Consider one variable 
  
and suppose the LP is  
solved with the simplex 
algorithm handling 
bounds directly

General principles

(D)

(P)

xk 2 [xk, xk]
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General principles

(D)
xk 2 [xk, xk]
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Lower bound

• In any case, the reduced cost can be interpreted as a lower 
bound of the increase of the objective per unit of change of 

xk
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General principles
Upper bound

Lower bound
ed

b c

• Floor and ceil if x are integers in the original problem

• In any case, the reduced cost can be interpreted as a lower 
bound of the increase of the objective per unit of change of 

xk

46

[Nemhauser and Wolsey. Integer and Combinatorial Optimization. 1988] ?
• Technique referred to as Variable Fixing



Reduced cost based filtering 

• Linear Programming duality 
• First example: AtMostNValue 
• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 
• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, …
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D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}
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Reduced cost based filtering 

• Linear Programming duality 
• First example: AtMostNValue 
• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 
• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, …
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LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)
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• Global cardinality with costs (ref ? folklore ?)



LP relaxations used for global constraints

• Cumulative (LP formulation with cutting planes)

(Picture)from)the)global&constraint&catalog))

51

[Hooker.	
  2002]

• Bin-Packing (Arc-flow formulation …)
[Valério	
  de	
  Carvalho	
  1999]

!
!

!
!

ItemsBins
+

packing

[Cambazard.	
  2010]



• Linear relaxation of global constraints 
[Refalo, 2000]: Linear formulation of Constraint 

Programming models and Hybrid Solvers 
★ AllDifferent 
★ Element 
★ Among 
★ Cycle 

• Cost-based filtering 
[Focacci, Lodi, Milano. 2002]: Embedding relaxations in 

global constraints for solving TSP and TSPTW 

LP relaxations used for global constraints

(Picture)from)[Foccaci,)2002]))



Outline
1. Reduced-costs based filtering

• Linear Programming duality 
• First example: AtMostNValue 

• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 

• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, … 

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit 
• General principles 
• Other relationships of DP and CP  

3. Illustration with a real-life application
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Dynamic programming for  
global constraints  

• Linear equation 
• General principles 
• Regular and variants 
• WeightedCircuit 
• Table constraint and MDD domains ?
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Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Is a fixed point needed between the two rules ? 

• Does that achieve BC or GAC ?

No, the rules and updates are not on the same bounds

Only bounds are updated but all remaining values 
have a support so it achieves GAC

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N
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Linear equation

Q: What is the complexity of achieving GAC ?
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D(xi) ⇢ N

Q: What is the complexity of achieving BC ?

59



Linear equation
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Linear equation

Q: What is the complexity of achieving GAC ?

• Consider only {0,1} domains 
• It is as hard as subset sum: « given an integer k and a set 

S of integers, is there a subset of S that sums to k ? » 

Pn
i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

Q: What is the complexity of achieving BC ?

• BC and GAC are the same on {0,1} domains… 
• So BC is just as hard
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Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path 
problem in a graph with a pseudo-polynomial size…
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arcs in the graph
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Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path 
problem in a graph with a pseudo-polynomial size…

1

0 a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of 
arcs in the graph

ex: Value 0 of x2

Filtering: 
• remove all arcs that do not 

belong to a path-support 
• remove values when they 

loose all their supporting arcs
60
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• remove all arcs that do not 

belong to a path-support 
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Algorithm: 
1. forward pass: mark arcs in a 

breath-first search from s to t 
2. backward pass: mark arcs in 

a breath-first search from t to s 
3. remove all non-marked arcs
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Linear equation
The dynamic programming approach: formulate it a path 
problem in a graph with a pseudo-polynomial size…
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Complexity: 
(positive domains and coefficients)

O(nmc)
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Linear equation
The dynamic programming approach: formulate it a path 
problem in a graph with a pseudo-polynomial size…

S

x1 x2 x3

t c=7

0

1

2

3

4

5

6

Filtering: 
• remove all arcs that do not 

belong to a path-support 
• remove values when they 

loose all their supporting arcs

1

0

0

0
Algorithm: 
1. forward pass: mark arcs in a 

breath-first search from s to t 
2. backward pass: mark arcs in 

a breath-first search from t to s 
3. remove all non-marked arcs

Complexity: 
(positive domains and coefficients)
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Dynamic programming for  
global constraints  

• Linear equation 
• General principles 
• Regular and variants 
• WeightedCircuit 
• Reformulation of global constraints and MDD 

domains ?
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1. Formulate the problem of existence of a support as a 
path problem in a graph of pseudo-polynomial size

2. Define properly the graph model: 
• support = a path, shortest path, longest path, …  
• values of domains = arcs, nodes

3. Apply a forward-backward pass to mark edges-nodes with 
• the value of the best path supporting them

4. Remove all values not supported in the graph

General principles
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Dynamic programming for  
global constraints  

• Linear equation 
• General principles 
• Regular and variants 
• WeightedCircuit 
• Table constraint and MDD domains ?
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Dynamic programming for  
global constraints  

• Linear equation 
• General principles 
• Regular and variants 
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• Reformulation of global constraints and MDD 
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Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

P
n

i=1 di,nexti = z

: matrix of distances.       is the distance of arc (i,j)dijd

next variables must form a tour and 

70



Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

1
2

3

45

next1 = 3
next3 = 2

next5 = 1
. . .

1
3

3

2

1

z = (1 + 3 + 3 + 2 + 1) = 10

P
n

i=1 di,nexti = z

: matrix of distances.       is the distance of arc (i,j)dijd

next variables must form a tour and 
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Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

next variables must form a tour and 
P

n

i=1 di,nexti = z

: matrix of distances.       is the distance of arc (i,j)dijd

• Filter the lower bound of z by solving a relaxation of the TSP 

• Detect mandatory/forbidden arcs regarding the upper 
bound of z

• Applications in routing
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Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

next variables must form a tour and 
P

n

i=1 di,nexti = z

: matrix of distances.       is the distance of arc (i,j)dijd

• Many problems involve side-constraints such as precedences, 
time-windows, vehicle capacity, … constraining the position of 
a city/client in the tour or relative positions of clients 

• A useful variable for reasoning:
posi : position of city i in the tour 
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Weighted Circuit

nexti : immediate successor of i in the tour

z : distance of the tour
: matrix of distances.       is the distance of arc (i,j)dijd

WeightedCircuit([next1, . . . , nextn], [pos1, . . . , posn], z)

posi : position of city i in the tour 
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Weighted Circuit

nexti : immediate successor of i in the tour

z : distance of the tour
: matrix of distances.       is the distance of arc (i,j)dijd

WeightedCircuit([next1, . . . , nextn], [pos1, . . . , posn], z)

posi : position of city i in the tour 

1
2

3

45

next1 = 3
next3 = 2

next5 = 1
. . .

1
3

3

2

1

z = (1 + 3 + 3 + 2 + 1) = 10

pos1 = 1
pos2 = 3
pos3 = 2
pos4 = 4
pos5 = 5

Relaxation of TSP to filter    ?z
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Weighted Circuit - TSP relaxations
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Weighted Circuit - TSP relaxations

74[Held and Karp. 1970] [Christophides et al. 1981]
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n-path relaxation
n-path relaxation: a circuit of n-arcs 

f⇤(k, i) length of an optimal path starting from 1 and reaching i       
in exactly k arcs.

:

We are looking for f⇤(n, 1)
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n-path relaxation
n-path relaxation: a circuit of n-arcs 

f⇤(k, i) length of an optimal path starting from 1 and reaching i       
in exactly k arcs.

:

We are looking for f⇤(n, 1)

f⇤(k, i) = min
j2D(predi)

(f⇤(k � 1, j) + dji) 8k, 8i s.t k 2 D(posi)

76



n-path relaxation
n-path relaxation: a circuit of n-arcs 

f⇤(k, i) length of an optimal path starting from 1 and reaching i       
in exactly k arcs.

:

We are looking for f⇤(n, 1)

f⇤(k, i) = min
j2D(predi)

(f⇤(k � 1, j) + dji) 8k, 8i s.t k 2 D(posi)

Complexity in  O(n3)

Filtering of both successors 
and positions  
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one-tree versus n-path
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one-tree versus n-path

77 [Ducomman et al. 2016 ]



Dynamic programming for  
global constraints  

• Linear equation 
• General principles 
• Regular and variants 
• WeightedCircuit 
• Reformulation of global constraints and MDD 

domains ?

78



• Reformulating global constraints with small arity 
constraints to simulate the DP algorithm with AC on the 
corresponding constraint network: 
★ Regular 
★ Bound AllDifferent 
★ Bound GCC 
★ Slides [Bessiere et al. 2008 ]

[Quimper and Walsh, 2007 ]

[Bessiere et al. 2009 ]

Reformulations of global constraints

79
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• Reformulating global constraints with small arity 
constraints to simulate the DP algorithm with AC on the 
corresponding constraint network: 
★ Regular 
★ Bound AllDifferent 
★ Bound GCC 
★ Slides [Bessiere et al. 2008 ]

[Quimper and Walsh, 2007 ]

[Bessiere et al. 2009 ]

Reformulations of global constraints

79

• MDD domains, a form of Dynamic programming ? 
• Multi-valued Decision Diagram MDD consistency 
• Explicit representation of more refined potential solution 

space 
• Limited width defines relaxation MDD 
• Overcome the current limit that : « constraints are 

communicating through domains »

[Hooker et al. 2007]

}



Outline
1. Reduced-costs based filtering

• Linear Programming duality 
• First example: AtMostNValue 

• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 

• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, … 

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit 
• General principles 
• Other relationships of DP and CP  

3. Illustration with a real-life application
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Star Scheduler

Nadia%Brauner,%Hadrien%Cambazard,%Benoît%Cance,%
Nicolas%Catusse,%Pierre%Lemaire%
Univ.&Grenoble&Alpes,&G1SCOP&

%

Anne:Marie%Lagrange,%Pascal%Rubini%
CNRS,&IPAG&

%
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Star Scheduler
Planet that orbits a star     sun6=

• Earth twin ?

 2000 planets discovered  
• A few dozens with direct imaging 
• Some light years distance from earth  
• million times less brilliant than their stars 

New Observation tools:  
VLT SPHERE  

• Anne-Marie Lagrange 
• Beta pictoris b (2008)

⇡
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Star Scheduler
Extrasolar planet observation

From earth: the VLT (Chili)

The Astrophysicists
• Survey potential stars
• Book a fixed set of nights within the budget

About 100.000 euros a night
• Decide the observation schedule for each 

night to maximize scientific interest
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Star Scheduler
Extrasolar planet observation

From earth: the VLT (Chili)

Main constraints
• Visibility period of the stars 
• Position in the sky influence 

• Quality of the observation 
• Length of the observation 

• Some stars are scientifically more  
important than others 

• Calibration (runs, earthquake)
84



Star Scheduler

[rji , d
j
i [

pji

wi

: visibility interval

: duration of  
  the observation

: scientific interest
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Star Scheduler

The meridian instant                         is a mandatory instant of 
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing 
meridian time 
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Star Scheduler

The meridian instant                         is a mandatory instant of 
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing 
meridian time 
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Star Scheduler

The meridian instant                         is a mandatory instant of 
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing 
meridian time 

88



Star Scheduler
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Star Scheduler

A solution
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Star Scheduler  
A MIP model

P
j z

j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval 
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji )

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are      
observed the same night{i1 < i2 if on the 

same night

91

ti1 + pji1  ti2 +M(1� yi1,i2)



Star Scheduler  
A MIP model

max

P
i wizii: observations 

j: nights = 1 iff i is observed
P

j z
j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval 
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji )

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are      
observed the same night{i1 < i2 if on the 

same night
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Star Scheduler  
A MIP model

max

P
i wizii: observations 

j: nights = 1 iff i is observed
P

j z
j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval 
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji )

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are      
observed the same night{i1 < i2 if on the 

same night

Very poor linear relaxation, does not scale in memory O(n2m)
91

ti1 + pji1  ti2 +M(1� yi1,i2)



Star Scheduler - A CP model
A CP model: 

• Use optional tasks of CPO and NoOverlap for each night

92



Star Scheduler - A CP model
A CP model: 

• Use optional tasks of CPO and NoOverlap for each night

8 i

max z =

P
i wizi

8 jNoOverlap([taskj1, . . . , task
j
n])

zji = 1 , taskji is present

P
j z

j
i = zi

8 j
8 i

92



Star Scheduler - A CP model
A CP model: 

• Use optional tasks of CPO and NoOverlap for each night

  + precedences when on the same night 
  + clique of known incompatible observations 

• Best results (LNS) with a blackbox model but remains unable to 
handle the real-life dataset (800 observations, 142 nights) 

• No effective filtering and no interesting global upper bound

8 i

max z =

P
i wizi

8 jNoOverlap([taskj1, . . . , task
j
n])

zji = 1 , taskji is present

P
j z

j
i = zi

8 j
8 i

92



Star Scheduler - The single night problem
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Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t 
is maximized

P
i wi
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Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t 
is maximized

P
i wi
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Star Scheduler - The single night problem
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Star Scheduler - The single night problem

• Suppose observation 3 is scheduled 
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Star Scheduler - The single night problem

• Suppose observation 3 is scheduled 
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• 6 is incompatible



Star Scheduler - The single night problem

• Suppose observation 3 is scheduled 

94

• Left and right subproblems are independent (observations are 
scheduled in non-decreasing time of their meridians)

• 6 is incompatible



Star Scheduler - The single night problem

f(i, t) : maximum interest with observations 1 to i (schedule    
order) and such that i ends before time t

f(i, t) =

max(f(i� 1, t), f(i� 1, t� pi) + wi)

f(i� 1, t)

f(i, di)

0 i = 0, t 2 [0, T ]

i 2 [1, n], t 2 [ri + pi, di]

i 2 [1, n], t 2]di, T ]
i 2 [1, n], t 2 [0, ri + pi[

can be found in f(n, T ) O(nT )
95



• Update                based on the observations assigned in the night 
• Filter observations that can not fit in the night anymore 
• Filter                 using DP  
• Force (in the night) observations that are mandatory to reach 

interestj

interestj

interestj

Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

interest of night j

P
j z

j
i  1 8 i
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Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

P
j z

j
i  1 8 i

+ scheduling is excluded from the search space 
+ strong filtering for each night 

-  nights remains filtered independently, no strong lower bound

interest of night j
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Star Scheduler - Back to MIP
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Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest
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Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest

98

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i
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An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest

98

= 1 iff k-th schedule of night j is 
     selected
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An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest
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Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest

98

(exactly one schedule  
for each night)

= 1 iff k-th schedule of night j is 
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Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule 
• Constraints of the LP: 

• Exactly one schedule for each night 
• One observation occurs in at most one schedule 

• Objective is the find the combination of schedules with 
maximum interest

98

(observations are assigned to at 
most one night)

(exactly one schedule  
for each night)

= 1 iff k-th schedule of night j is 
     selected

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j
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(observations are assigned to at 
most one night)

(exactly one schedule  
for each night)

= 1 iff k-th schedule of night j is 
     selected

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

iff observation i belongs to the k-th schedule of night j
: the set all possible schedules of night j

ski,j = 1

An extended LP formulation

8 j

8 i8 i

(sk1,j , . . . , s
k
n,j) : 0/1 description of the k-th schedule of night j

8k 2 ⌦j , 8j

⌦j

wk
j =

P
i wiski,j : interest of the k-th schedule of night j
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}
max

P
j

P
k2⌦j

wk
j ⇢

k
j

= 1 iff k-th schedule of night j is 
     selected

(exactly one schedule for each night)

(observations are assigned to at 
most one night)

The LP relaxation can be solved by column generation: 

• Iteratively add a variable (schedule) of maximum 
reduced cost 

• Only a tiny fraction of the variables are needed 
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation: 
• Iteratively add a variable (schedule) of maximum reduced cost 

8 j

8 i
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation: 
• Iteratively add a variable (schedule) of maximum reduced cost 

8 j

8 i
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation: 
• Iteratively add a variable (schedule) of maximum reduced cost 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation: 
• Iteratively add a variable (schedule) of maximum reduced cost 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i

rc(⇢kj ) =
P

i(wi � �i)ski,j � ↵j
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Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation: 
• Iteratively add a variable (schedule) of maximum reduced cost 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i

• Solve the one night problem where      is replaced by  wi

(wi � �i)

rc(⇢kj ) =
P

i(wi � �i)ski,j � ↵j

101
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Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

P
j z

j
i  1 8 i

Objective([z11 , . . . , z
m
n ], z)

Solve the LP relaxation by column generation: 
• Filter the upper bound of z 
• Reduced-cost filtering to exclude/force observations 

into nights ?

Branch and price algorithm implemented in a CP framework
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Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i
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Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a     variable, i.e. excluding 
observation i from night j ? 

zji
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Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a     variable, i.e. excluding 
observation i from night j ? 

zji

• What is smallest decrease of the objective over all possible 
schedules that includes i in night j ?
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Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a     variable, i.e. excluding 
observation i from night j ? 

zji

• What is smallest decrease of the objective over all possible 
schedules that includes i in night j ?

z⇤LP + max

k2⌦j |ski,j=1
(rc(⇢kj )) < z =) zji 6= 1
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Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j 

rc(⇢kj ) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a     variable, i.e. excluding 
observation i from night j ? 

zji

• What is smallest decrease of the objective over all possible 
schedules that includes i in night j ?

• The two steps backward-forward resolution of the DP 
provides exactly this information.

z⇤LP + max

k2⌦j |ski,j=1
(rc(⇢kj )) < z =) zji 6= 1
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Star Scheduler - 
Results

Branch and price proves to be extremely efficient  
(benchmark of 21 instances): 

• The real-life instance (800 observations, 142 nights) is 
solved optimally in less than 10 minutes 

• 18 instances are solved optimally between 1 to 20 minutes 

• 3 instances remains open in 2h time limit but the optimality 
gap is less than 0.11 % 

• All feasible solutions significantly improves the MIP/CP 
approach 
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Outline
1. Reduced-costs based filtering

• Linear Programming duality 
• First example: AtMostNValue 

• Filtering the upper bound of a 0/1 variable 
• Filtering the lower bound of a 0/1 variable 

• General principles 
• Second example 
• Assignment, Cumulative, Bin-packing, … 

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit 
• General principles 
• Other relationships of DP and CP  

3. Illustration with a real-life application
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Conclusion

Focus of this talk:  

Investigate/understand filtering techniques beyond polynomial 
sub-problems (beyond local-consistencies) 

Help us to grow a better understanding of OR 

106


