
Linear and dynamic
programming for constraints

Hadrien Cambazard
G-SCOP, Université Grenoble Alpes

1

Outline
1. Reduced-costs based filtering

• Linear Programming duality
• First example: AtMostNValue

• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable

• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit
• General principles
• Other relationships of DP and CP

3. Illustration with a real-life application
2

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

3

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

3

[Linear Programming, Chvatal, 2003]

What lower bound can you derive from the constraints ?

Linear Programming duality

4

What lower bound can you derive from the constraints ?
Using alone:

Linear Programming duality

4

What lower bound can you derive from the constraints ?
Using alone: {

Linear Programming duality

4

What lower bound can you derive from the constraints ?
Using alone: {

Linear Programming duality

4

What lower bound can you derive from the constraints ?
Using alone: {

Linear Programming duality

4

What lower bound can you derive from the constraints ?

And x, y positive

Using alone: {

Linear Programming duality

4

What lower bound can you derive from the constraints ?

And x, y positive

So

Using alone: {

Linear Programming duality

4

What lower bound can you derive from the constraints ?
Using and : … so

Linear Programming duality

5

What lower bound can you derive from the constraints ?
Using and : … so

Linear Programming duality

5

What lower bound can you derive from the constraints ?
Using and : … so{

Linear Programming duality

5

What lower bound can you derive from the constraints ?
Using and : … so{

Linear Programming duality

5

What lower bound can you derive from the constraints ?
Using and : … so{

Linear Programming duality

5

What lower bound can you derive from the constraints ?

And x, y positive

Using and : … so{

Linear Programming duality

5

What lower bound can you derive from the constraints ?

And x, y positive

so

Using and : … so{

Linear Programming duality

5

What lower bound can you derive from the constraints ?

And x, y positive

… so
Using and : … so{

so

Linear Programming duality

6

What lower bound can you derive from the constraints ?
implies
implies
implies

Linear Programming duality

7

What lower bound can you derive from the constraints ?

Is there a gap left ?

implies
implies
implies

Linear Programming duality

7

What lower bound can you derive from the constraints ?

Is there a gap left ? No

implies
implies
implies

Linear Programming duality

7

What lower bound can you derive from the constraints ?

Is there a gap left ? No

implies
implies
implies

Linear Programming duality

7

What lower bound can you derive from the constraints ?

implies
implies
implies

Goal: a linear combination of the right hand sides
• that bounds the objective from below
• and which is maximum

Linear Programming duality

8

Goal: a linear combination of the right hand sides:
• that bounds the objective from below
• and which leads to the maximum bound

Linear Programming duality

9

Goal: a linear combination of the right hand sides:
• that bounds the objective from below
• and which leads to the maximum bound

Linear Programming duality

�1

�2

9

Goal: a linear combination of the right hand sides:
• that bounds the objective from below
• and which leads to the maximum bound

Linear Programming duality

�1

�2

9

Goal: a linear combination of the right hand sides:
• that bounds the objective from below
• and which leads to the maximum bound

Linear Programming duality

�1

�2

9

Goal: a linear combination of the right hand sides:
• that bounds the objective from below
• and which leads to the maximum bound

Linear Programming duality

�1

�2

9

Linear Programming duality

What lower bound can you derive from the constraints ?

Any feasible solution of the dual gives a lower bound
is
is

which gives
which gives

10

Linear Programming duality

What lower bound can you derive from the constraints ?

The dual of the dual is the primal

�1

�2

x

y

(P)

(D)

11

Linear Programming duality

• View the dual as the problem of the best linear
combination of the constraints

• Any feasible solution of the dual gives a lower bound

(P)

(D)

12

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

13

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Enforce the number of distinct values appearing in the set X to
be at most N

14

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Enforce the number of distinct values appearing in the set X to
be at most N

14

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

A solution:

Enforce the number of distinct values appearing in the set X to
be at most N

14

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

A solution:

Enforce the number of distinct values appearing in the set X to
be at most N

14

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

A solution:
D(X3) \D(X5) = ;

Enforce the number of distinct values appearing in the set X to
be at most N

14

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

=*{1,*2}D(X3)

={1,*2,*3}*D(X4)

={4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

Enforce the number of distinct values appearing in the set X to
be at most N

s
15

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

=*{1,*2}D(X3)

={1,*2,*3}*D(X4)

={4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

A support of the lower bound of N= an independent set

Enforce the number of distinct values appearing in the set X to
be at most N

16

Intersec(on*graph*of*the*domain*

=*{1,*2,*3,*4,*5,*6}**D(X1)

=*{2,*4}*D(X2)

=*{1,*2}D(X3)

={1,*2,*3}*D(X4)

={4,*5}*D(X5)

**=*{4,*5}*D(X6)
**=*{1,*2}*D(N)

X1 X2

X3X4

X5 X6

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Remove all values except {1,2,4,5} since D(X5) [D(X3) = {1, 2, 4, 5}

Enforce the number of distinct values appearing in the set X to
be at most N

17

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Enforce the number of distinct values appearing in the set X to
be at most N

• Enforcing Generalized-Arc-Consistency is NP-Hard

• Filtering algorithm can be based on:
• Greedy computation of independent sets

• Cost-based filtering with Lagrangian relaxation

• LP Reduced-costs

18

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Enforce the number of distinct values appearing in the set X to
be at most N

• Enforcing Generalized-Arc-Consistency is NP-Hard

• Filtering algorithm can be based on:
• Greedy computation of independent sets

• Cost-based filtering with Lagrangian relaxation

• LP Reduced-costs

18

[Hebrard et al. 2006]

AtMostNValue
AtMostNValue([X1, . . . , X6], N)

Enforce the number of distinct values appearing in the set X to
be at most N

• Enforcing Generalized-Arc-Consistency is NP-Hard

• Filtering algorithm can be based on:
• Greedy computation of independent sets

• Cost-based filtering with Lagrangian relaxation

• LP Reduced-costs

18

[Hebrard et al. 2006]

[Cambazard et al. 2015]

AtMostNValue

• However we cannot express reasonings on
mandatory values

19

AtMostNValue

• However we cannot express reasonings on
mandatory values

Example:

19

AtMostNValue

How to propagate the fact that value 2 is mandatory ?

• However we cannot express reasonings on
mandatory values

Example:

19

AtMostNValue

20

AtMostNValue

Express reasonings on mandatory values

20

AtMostNValue

Express reasonings on mandatory values

20

AtMostNValue

Express reasonings on mandatory values

Note that domains of X cannot be filtered…
20

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

21

Reduced cost based filtering
Consider the following example:

22

Reduced cost based filtering
Consider the following example:

22

Reduced cost based filtering
Consider the following example:

22

Reduced cost based filtering
Consider the following example:

The exact lower bound of N can be computed
with the following MIP:

yi 2 {0, 1} : do we use value i ?

(Domain of)X2

(Domain of)X3

(Domain of)X1

23

Reduced cost based filtering
Consider the following example:

Consider the linear relaxation:

24

Reduced cost based filtering
Consider the following example:

Consider the linear relaxation:

Notice that we don’t need to state

24

Reduced cost based filtering
Consider the following example:

Consider the linear relaxation:

Notice that we don’t need to state
First of all, we get

24

Reduced cost based filtering
Consider the following example:

Consider the linear relaxation:

Notice that we don’t need to state
First of all, we get

24

Reduced cost based filtering
Consider the following example:

Consider the linear relaxation:

Notice that we don’t need to state
First of all, we get

(0, 1, 0, 1, 0)
y⇤2 y⇤4

y⇤ =
24

Reduced cost based filtering

(P)

(D)

25

Reduced cost based filtering

(P)

(D)

26

Reduced cost based filtering

(P)

(D)

26

Reduced cost based filtering

(P)

(D)

26

Reduced cost based filtering

Let’s try to filter value 1 from :

(P)

X1

27

Reduced cost based filtering

Let’s try to filter value 1 from :

(P)

X1

27

Reduced cost based filtering

Let’s try to filter value 1 from :

(P)

X1

27

Reduced cost based filtering

Let’s try to filter value 1 from :

(P)

(D)

X1

27

Note that we are not
solving the LP again

We can build a dual
solution by setting
greedily to

Reduced cost based filtering

Let’s try to filter value 1 from :

(P)

(D)

X1

28

Reduced cost based filtering

29

Reduced cost based filtering

We can build a feasible dual solution by setting to

29

Reduced cost based filtering

We can build a feasible dual solution by setting to

Thus is a lower bound of the modified problem z⇤ + (1� �⇤
1)

29

Reduced cost based filtering

We can build a feasible dual solution by setting to

Thus is a lower bound of the modified problem z⇤ + (1� �⇤
1)

So
Upper bound of N

z⇤ + (1� �⇤
1) > 2 =) y1 6= 1 (X1 6= 1)

29

Reduced cost based filtering

We can build a feasible dual solution by setting to

Thus is a lower bound of the modified problem z⇤ + (1� �⇤
1)

Reduced cost of y1 (Slack of the dual constraint)

So
Upper bound of N

z⇤ + (1� �⇤
1) > 2 =) y1 6= 1 (X1 6= 1)

29

Reduced cost based filtering

So

Reduced cost of : y1 rc(y1) = (1� �⇤
1) = 1

z⇤ + rc(y1) > z =) y1 6= 1 (X1 6= 1)

30

Reduced cost based filtering

So

Reduced cost of : y1 rc(y1) = (1� �⇤
1) = 1

Reduced cost of : y3 rc(y3) = (1� �⇤
2) = (1� 1) = 0

z⇤ + rc(y1) > z =) y1 6= 1 (X1 6= 1)

30

Reduced cost based filtering

So

Reduced cost of : y1 rc(y1) = (1� �⇤
1) = 1

Reduced cost of : y3 rc(y3) = (1� �⇤
2) = (1� 1) = 0

We cannot filter value 3 using this dual solution

z⇤ + rc(y1) > z =) y1 6= 1 (X1 6= 1)

30

Reduced cost based filtering

�⇤ = (1, 0, 1)

But consider

31

Reduced cost based filtering

�⇤ = (1, 0, 1)

But consider

y1Reduced cost of : rc(y1) = (1� �⇤
1) = 0

31

Reduced cost based filtering

�⇤ = (1, 0, 1)

But consider

y1Reduced cost of : rc(y1) = (1� �⇤
1) = 0

Reduced cost of : y3 rc(y3) = (1� �⇤
2) = 1

31

Reduced cost based filtering

Value 3 is now filtered but value 1 is not filtered anymore

�⇤ = (1, 0, 1)

But consider

y1Reduced cost of : rc(y1) = (1� �⇤
1) = 0

Reduced cost of : y3 rc(y3) = (1� �⇤
2) = 1

31

Reduced cost based filtering

• We are filtering the upper bound of or y3

z⇤ + rc(yi) > z =) yi 6= 1

y1

32

Reduced cost based filtering

• We are filtering the upper bound of or y3

z⇤ + rc(yi) > z =) yi 6= 1

• But if is in the optimal LP solution (the basis), its
reduced cost is 0

• This is due to the complementary slackness theorem:

Either the variable is 0, or the slack of the dual constraint (i.e.
the reduced cost) is 0, or both

yi

y1

32

Reduced cost based filtering

• We are filtering the upper bound of or y3

z⇤ + rc(yi) > z =) yi 6= 1

• But if is in the optimal LP solution (the basis), its
reduced cost is 0

• This is due to the complementary slackness theorem:

Either the variable is 0, or the slack of the dual constraint (i.e.
the reduced cost) is 0, or both

yi

• How to filter the lower bound of ?yi

y1

32

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

33

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory i.e. filter the lower
bound of : y2 y2 6= 0

34

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory i.e. filter the lower
bound of : y2 y2 6= 0

y1 6= 1

y1 � 1

1. Solve the original LP
optimally

2. Use the optimal dual
solution, to build a feasible
dual solution to the problem
that would include

Filter Upper bound

34

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory i.e. filter the lower
bound of : y2 y2 6= 0

y1 6= 1

y1 � 1

1. Solve the original LP
optimally

2. Use the optimal dual
solution, to build a feasible
dual solution to the problem
that would include

Filter Upper bound Filter Lower bound
1. Include in the original LP

the constraint

2. Solve the modified
problem and perform
sensibility analysis on the
right hand side of

y2 6= 0

y2  1

y2  1

34

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

35

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

Note that the upper-
bound constraint
is now added before
solving the LP

35

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

Note that the upper-
bound constraint
is now added before
solving the LP

35

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

(D)
Note that the upper-
bound constraint
is now added before
solving the LP

35

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

(D)

36

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

(D)

36

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

(D)

Decreasing the upper-
bound by increases
the objective of at
least

✏

�✏✓⇤

36

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(P)

(D)

Decreasing the upper-
bound by increases
the objective of at
least

✏

�✏✓⇤

Feasibility of the dual
solution is not affected
by the change !36

Reduced cost based filtering

37

Reduced cost based filtering

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

37

Reduced cost based filtering

y2  (1� ✏)
Max w0

= �1 + �2 + �3 + (1� ✏)✓

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

37

Reduced cost based filtering

y2  (1� ✏)
Max w0

= �1 + �2 + �3 + (1� ✏)✓

✏

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

37

Reduced cost based filtering

y2  (1� ✏)
Max w0

= �1 + �2 + �3 + (1� ✏)✓

✏

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

exact increase
w0⇤ = w⇤ � ✏✓⇤

37

Reduced cost based filtering

y2  (1� ✏)
Max w0

= �1 + �2 + �3 + (1� ✏)✓

✏

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

lower bound of the
increase

w0⇤ � w⇤ � ✏✓⇤

exact increase
w0⇤ = w⇤ � ✏✓⇤

37

Reduced cost based filtering

y2  (1� ✏)
Max w0

= �1 + �2 + �3 + (1� ✏)✓

✏

�!w

Max w = �1 + �2 + �3 + ✓ y2  1

lower bound of the
increase

w0⇤ � w⇤ � ✏✓⇤

exact increase
w0⇤ = w⇤ � ✏✓⇤

Decreasing the upper-
bound by increases
the objective of at
least

✏

�✏✓⇤

37

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

38

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set
the upper bound of to 0, the increase is at least ofy2 �✓⇤

38

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

z⇤ � ✓⇤ = 2� (�1) > z = 2 =) y2 6= 0 (Y2 = 1)

So, (by sensitivity analysis) if we forbid value 2 i.e. if we set
the upper bound of to 0, the increase is at least ofy2 �✓⇤

38

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

If we ignore and compute the reduced cost of : ✓ y2

39

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

If we ignore and compute the reduced cost of : ✓ y2

39

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

rc(y2) = 1� �⇤
1 � �⇤

2 = �1

If we ignore and compute the reduced cost of : ✓ y2

39

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

rc(y2) = 1� �⇤
1 � �⇤

2 = �1

If we ignore and compute the reduced cost of : ✓ y2

And the filtering rule can be seen as :

39

Reduced cost based filtering

Let’s try to prove that value 2 is mandatory :

(D)

rc(y2) = 1� �⇤
1 � �⇤

2 = �1

If we ignore and compute the reduced cost of : ✓ y2

And the filtering rule can be seen as :
z⇤ � rc(y2) > z =) y2 6= 0 (Y2 = 1)

39

Reduced cost based filtering

• To filter the lower bound of ?y2

z⇤ � rc(yi) > z =) yi 6= 0

We include the upper bound constraints in the LP: yi  1

And compute the reduced cost by ignoring the dual
variables of these constraints

40

Reduced cost based filtering

• To filter the upper bound of or y3

z⇤ + rc(yi) > z =) yi 6= 1

But if is in the optimal LP solution (the basis), its
reduced cost is 0 (complementary slackness)

yi

y1

• To filter the lower bound of ?y2

z⇤ � rc(yi) > z =) yi 6= 0

We include the upper bound constraints in the LP: yi  1

And compute the reduced cost by ignoring the dual
variables of these constraints

40

Reduced cost based filtering

• To filter the upper bound of or y3

z⇤ + rc(yi) > z =) yi 6= 1

y1

• To filter the lower bound of ?y2

z⇤ � rc(yi) > z =) yi 6= 0

In any case, the reduced cost can be interpreted as a
lower bound of the variation of the objective function

per unit of change of the variable

41

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

42

Consider one variable

and suppose the LP is
solved with the simplex
algorithm handling
bounds directly

General principles

(D)

(P)

xk 2 [xk, xk]

43

General principles

(D)
xk 2 [xk, xk]

44

General principles

Upper bound

Lower bound

45

General principles
Upper bound

Lower bound

• In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of

xk

46

General principles
Upper bound

Lower bound
ed

b c

• In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of

xk

46

General principles
Upper bound

Lower bound
ed

b c

• Floor and ceil if x are integers in the original problem

• In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of

xk

46

General principles
Upper bound

Lower bound
ed

b c

• Floor and ceil if x are integers in the original problem

• In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of

xk

46

• Technique referred to as Variable Fixing

General principles
Upper bound

Lower bound
ed

b c

• Floor and ceil if x are integers in the original problem

• In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of

xk

46

[Nemhauser and Wolsey. Integer and Combinatorial Optimization. 1988] ?
• Technique referred to as Variable Fixing

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

47

AtMostNValue

48

AtMostNValue

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

AtMostNValue

with y2 2 [0, 1]

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

AtMostNValue

with y2 2 [0, 1]

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

AtMostNValue

with y2 2 [0, 1]

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

AtMostNValue

with y2 2 [0, 1]

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

AtMostNValue

with y2 2 [0, 1]

D(Y1) = {0, 1}, D(Y2) = {0, 1}, D(Y3) = {2, 4}, D(Y4) = {0, 1}
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {2, 4}, D(N) = {2}

48

Reduced cost based filtering

• Linear Programming duality
• First example: AtMostNValue
• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable
• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

49

LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)

a

b

c

d

e

1

2

3

4

5

ca1

cij

Min
P
i,j

xijcij

50

LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)

a

b

c

d

e

1

2

3

4

5

ca1

cij

Min
P
i,j

xijcij

a b

c d

e

50

LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)

a

b

c

d

e

1

2

3

4

5

ca1

cij

Min
P
i,j

xijcij

a b

c d

e

Used as a relaxation for TSP
(relax connectivity but keep

 degree 2 constraints)

50

LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)

a

b

c

d

e

1

2

3

4

5

ca1

cij

Min
P
i,j

xijcij

a b

c d

e

Used as a relaxation for TSP
(relax connectivity but keep

 degree 2 constraints)

50

[Milano and al. 2006]

LP relaxations used for global constraints

• Assignment problem (used as a lower bound for TSP)

a

b

c

d

e

1

2

3

4

5

ca1

cij

Min
P
i,j

xijcij

a b

c d

e

Used as a relaxation for TSP
(relax connectivity but keep

 degree 2 constraints)

50

[Milano and al. 2006]

• Global cardinality with costs (ref ? folklore ?)

LP relaxations used for global constraints

• Cumulative (LP formulation with cutting planes)

(Picture)from)the)global&constraint&catalog))

51

[Hooker.	
 2002]

• Bin-Packing (Arc-flow formulation …)
[Valério	
 de	
 Carvalho	
 1999]

!
!

!
!

ItemsBins
+

packing

[Cambazard.	
 2010]

• Linear relaxation of global constraints
[Refalo, 2000]: Linear formulation of Constraint

Programming models and Hybrid Solvers
★ AllDifferent
★ Element
★ Among
★ Cycle

• Cost-based filtering
[Focacci, Lodi, Milano. 2002]: Embedding relaxations in

global constraints for solving TSP and TSPTW

LP relaxations used for global constraints

(Picture)from)[Foccaci,)2002]))

Outline
1. Reduced-costs based filtering

• Linear Programming duality
• First example: AtMostNValue

• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable

• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit
• General principles
• Other relationships of DP and CP

3. Illustration with a real-life application
53

Dynamic programming for
global constraints

• Linear equation
• General principles
• Regular and variants
• WeightedCircuit
• Table constraint and MDD domains ?

54

Linear equation

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4} Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4} Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4} Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4} Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4} Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

x1 ?

Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

x1 ?
3x1 + (�2x2 + 4x3)  7

Lower bound for the rest
of the expression

Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

3x1 + (�8 + 8)  7

x1 ?
3x1 + (�2x2 + 4x3)  7

Lower bound for the rest
of the expression

Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

3x1 + (�8 + 8)  7

x1  b 7
3c = 2

x1 ?
3x1 + (�2x2 + 4x3)  7

Lower bound for the rest
of the expression

Q: Give the arc-consistent domains

55

Linear equation

• Let’s start with linear inequalities first and enforce GAC:
3x1 � 2x2 + 4x3  7

D(x3) = {2, 3, 4}

D(x1) = {0, 1, 2, 3, 4}
D(x2) = {0, 1, 2, 3, 4}

3x1 + (�8 + 8)  7

x1  b 7
3c = 2

x1 ?
3x1 + (�2x2 + 4x3)  7

Lower bound for the rest
of the expression

Q: Give the arc-consistent domains

55

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

56

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Update the upper bound of variables with a positive coefficient
(k < n1)

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

56

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Update the upper bound of variables with a positive coefficient
(k < n1)

xk b
c� (

Pn1�1
i=1^i 6=k aixi �

Pn
i=n1

bixi)

ak
c

Lower bound for the rest of the expression

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

56

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Update the upper bound of variables with a positive coefficient
(k < n1)

xk d
(
Pn1�1

i=1 aixi �
Pn

i=n1^i 6=k bixi)� c

bk
e

• Update the upper bound of variables with a negative coefficient
(k � n1)

xk b
c� (

Pn1�1
i=1^i 6=k aixi �

Pn
i=n1

bixi)

ak
c

Lower bound for the rest of the expression

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

56

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Update the upper bound of variables with a positive coefficient
(k < n1)

xk d
(
Pn1�1

i=1 aixi �
Pn

i=n1^i 6=k bixi)� c

bk
e

• Update the upper bound of variables with a negative coefficient
(k � n1)

xk b
c� (

Pn1�1
i=1^i 6=k aixi �

Pn
i=n1

bixi)

ak
c

Lower bound for the rest of the expression

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

56

[Laurière, 1978]

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Is a fixed point needed between the two rules ?

• Does that achieve BC or GAC ?

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

57

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Is a fixed point needed between the two rules ?

• Does that achieve BC or GAC ?

No, the rules and updates are not on the same bounds

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

57

Linear equation
Pn1�1

i=1 aixi �
Pn

i=n1
bixi  c

• Is a fixed point needed between the two rules ?

• Does that achieve BC or GAC ?

No, the rules and updates are not on the same bounds

Only bounds are updated but all remaining values
have a support so it achieves GAC

ai, bi 2 N⇤Suppose for sake of simplicity: 8i and D(xi) ⇢ N

57

Linear equation

58

Linear equation

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

Q: How does a CP solver usually filters that constraint ?

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

Q: How does a CP solver usually filters that constraint ?

Q: What values are removed in the example with this technique ?

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

Q: How does a CP solver usually filters that constraint ?

2x1 + 3x2 + 4x3 � 7
2x1 + 3x2 + 4x3  7

Apply previous filtering algorithm for both (until fixed-point) :

Q: What values are removed in the example with this technique ?

58

Linear equation

Q: Give the arc-consistent domains

• Consider now:

D(x1) = {0, 1, 2}
D(x2) = {0, 1}
D(x3) = {0, 1}

2x1 + 3x2 + 4x3 = 7

Q: How does a CP solver usually filters that constraint ?

2x1 + 3x2 + 4x3 � 7
2x1 + 3x2 + 4x3  7

Apply previous filtering algorithm for both (until fixed-point) :

Q: What values are removed in the example with this technique ?

58
None

Linear equation

Q: What is the complexity of achieving GAC ?

Pn
i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

Q: What is the complexity of achieving BC ?

59

Linear equation

Q: What is the complexity of achieving GAC ?

• Consider only {0,1} domains
• It is as hard as subset sum: « given an integer k and a set

S of integers, is there a subset of S that sums to k ? »

Pn
i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

Q: What is the complexity of achieving BC ?

59

Linear equation

Q: What is the complexity of achieving GAC ?

• Consider only {0,1} domains
• It is as hard as subset sum: « given an integer k and a set

S of integers, is there a subset of S that sums to k ? »

Pn
i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

Q: What is the complexity of achieving BC ?

• BC and GAC are the same on {0,1} domains…
• So BC is just as hard

59

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

a support = a path from s to t
ex: (2,1,0)

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

1

0 a support = a path from s to t
ex: (2,1,0)

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

1

0 a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value 0 of x2

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

1

0 a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value 0 of x2

60

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

0

1

2

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

1

0 a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value 0 of x2

Filtering:
• remove all arcs that do not

belong to a path-support
• remove values when they

loose all their supporting arcs
60

Linear equation
D(x1) = {0, 1, 2} D(x2) = {0, 1} D(x3) = {0, 1}2x1 + 3x2 + 4x3 = 7

• The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

S

x1 x2 x3

t 7

0

1

2

3

4

5

6

Filtering:
• remove all arcs that do not

belong to a path-support
• remove values when they

loose all their supporting arcs

1

0

0

0

Algorithm:
1. forward pass: mark arcs in a

breath-first search from s to t
2. backward pass: mark arcs in

a breath-first search from t to s
3. remove all non-marked arcs

61

Linear equation
The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

S

x1 x2 x3

t c=7

0

1

2

3

4

5

6

Filtering:
• remove all arcs that do not

belong to a path-support
• remove values when they

loose all their supporting arcs

1

0

0

0
Algorithm:
1. forward pass: mark arcs in a

breath-first search from s to t
2. backward pass: mark arcs in

a breath-first search from t to s
3. remove all non-marked arcs

Complexity:
(positive domains and coefficients)

O(nmc)

62

Linear equation
The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size…

S

x1 x2 x3

t c=7

0

1

2

3

4

5

6

Filtering:
• remove all arcs that do not

belong to a path-support
• remove values when they

loose all their supporting arcs

1

0

0

0
Algorithm:
1. forward pass: mark arcs in a

breath-first search from s to t
2. backward pass: mark arcs in

a breath-first search from t to s
3. remove all non-marked arcs

Complexity:
(positive domains and coefficients)

O(nmc)

62

[Trick. 2003]

Linear equation
Pn

i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

f(i,K) x1, . . . , xi= true if sum K can be reached with

63

Linear equation
Pn

i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

f(i,K) x1, . . . , xi= true if sum K can be reached with

f(i,K) = _
vk2D(xi)f(i� 1,K � a

i

v
k

)

f(n, c)We are looking for

63

Linear equation
Pn

i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

f(i,K) x1, . . . , xi= true if sum K can be reached with

f(i,K) = _
vk2D(xi)f(i� 1,K � a

i

v
k

)

f(n, c)We are looking for

63

Linear equation
Pn

i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

f(i,K) x1, . . . , xi= true if sum K can be reached with

f(i,K) = _
vk2D(xi)f(i� 1,K � a

i

v
k

)

f(n, c)We are looking for

f(0,K) = false K 6= 0

f(0, 0) = true

63

Linear equation
Pn

i=1 aixi = c

Suppose for sake of simplicity: 8i and ai 2 N⇤
D(xi) ⇢ N

f(i,K) x1, . . . , xi= true if sum K can be reached with

f(i,K) = _
vk2D(xi)f(i� 1,K � a

i

v
k

)

f(n, c)We are looking for

f(0,K) = false K 6= 0

f(0, 0) = true

Complexity: O(nmc)
63

Dynamic programming for
global constraints

• Linear equation
• General principles
• Regular and variants
• WeightedCircuit
• Reformulation of global constraints and MDD

domains ?

64

1. Formulate the problem of existence of a support as a
path problem in a graph of pseudo-polynomial size

2. Define properly the graph model:
• support = a path, shortest path, longest path, …
• values of domains = arcs, nodes

3. Apply a forward-backward pass to mark edges-nodes with
• the value of the best path supporting them

4. Remove all values not supported in the graph

General principles

65

Dynamic programming for
global constraints

• Linear equation
• General principles
• Regular and variants
• WeightedCircuit
• Table constraint and MDD domains ?

66

Regular and variants

67

Regular and variants

67

Regular and variants

67

Regular and variants

67

Regular and variants

68

Regular and variants

68

Regular and variants

68

Regular and variants

68

Regular and variants

68

Regular and variants

68

Dynamic programming for
global constraints

• Linear equation
• General principles
• Regular and variants
• WeightedCircuit
• Reformulation of global constraints and MDD

domains ?

69

Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

P
n

i=1 di,nexti = z

: matrix of distances. is the distance of arc (i,j)dijd

next variables must form a tour and

70

Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

1
2

3

45

next1 = 3
next3 = 2

next5 = 1
. . .

1
3

3

2

1

z = (1 + 3 + 3 + 2 + 1) = 10

P
n

i=1 di,nexti = z

: matrix of distances. is the distance of arc (i,j)dijd

next variables must form a tour and

70

Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

next variables must form a tour and
P

n

i=1 di,nexti = z

: matrix of distances. is the distance of arc (i,j)dijd

• Filter the lower bound of z by solving a relaxation of the TSP

• Detect mandatory/forbidden arcs regarding the upper
bound of z

• Applications in routing
71

Weighted Circuit
WeightedCircuit([next1, . . . , nextn], z)

nexti : immediate successor of i in the tour
z : distance of the tour

next variables must form a tour and
P

n

i=1 di,nexti = z

: matrix of distances. is the distance of arc (i,j)dijd

• Many problems involve side-constraints such as precedences,
time-windows, vehicle capacity, … constraining the position of
a city/client in the tour or relative positions of clients

• A useful variable for reasoning:
posi : position of city i in the tour

72

Weighted Circuit

nexti : immediate successor of i in the tour

z : distance of the tour
: matrix of distances. is the distance of arc (i,j)dijd

WeightedCircuit([next1, . . . , nextn], [pos1, . . . , posn], z)

posi : position of city i in the tour

73

Weighted Circuit

nexti : immediate successor of i in the tour

z : distance of the tour
: matrix of distances. is the distance of arc (i,j)dijd

WeightedCircuit([next1, . . . , nextn], [pos1, . . . , posn], z)

posi : position of city i in the tour

1
2

3

45

next1 = 3
next3 = 2

next5 = 1
. . .

1
3

3

2

1

z = (1 + 3 + 3 + 2 + 1) = 10

pos1 = 1
pos2 = 3
pos3 = 2
pos4 = 4
pos5 = 5

Relaxation of TSP to filter ?z
73

Weighted Circuit - TSP relaxations

74

Weighted Circuit - TSP relaxations

74

Weighted Circuit - TSP relaxations

74

Weighted Circuit - TSP relaxations

74

Weighted Circuit - TSP relaxations

74[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

74[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

74[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

74[Held and Karp. 1970]

Weighted Circuit - TSP relaxations

74[Held and Karp. 1970] [Christophides et al. 1981]

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

next2

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

next2

support of = a shortest path z

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

next2

support of = a shortest path z

value 5 of next4

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

pos3

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

next2

support of = a shortest path z

value 5 of next4

75

1 1

2

3

4

5

1

2

3

4

5

1

2

3

4

1

2

3

4

5

1

1

2

1

1

2

1

1
1

1

5

positions
1 2 3 4 5

pos3

n-path relaxation3 4

5

1

2

1

1
1 1

2

2

2
3 4

5

1

2

1

1
1 1

next2

support of = a shortest path z

value 5 of next4

value 2 of pos3

3

75

n-path relaxation
n-path relaxation: a circuit of n-arcs

f⇤(k, i) length of an optimal path starting from 1 and reaching i
in exactly k arcs.

:

We are looking for f⇤(n, 1)

76

n-path relaxation
n-path relaxation: a circuit of n-arcs

f⇤(k, i) length of an optimal path starting from 1 and reaching i
in exactly k arcs.

:

We are looking for f⇤(n, 1)

f⇤(k, i) = min
j2D(predi)

(f⇤(k � 1, j) + dji) 8k, 8i s.t k 2 D(posi)

76

n-path relaxation
n-path relaxation: a circuit of n-arcs

f⇤(k, i) length of an optimal path starting from 1 and reaching i
in exactly k arcs.

:

We are looking for f⇤(n, 1)

f⇤(k, i) = min
j2D(predi)

(f⇤(k � 1, j) + dji) 8k, 8i s.t k 2 D(posi)

Complexity in O(n3)

Filtering of both successors
and positions

76

one-tree versus n-path

77

one-tree versus n-path

77 [Ducomman et al. 2016]

Dynamic programming for
global constraints

• Linear equation
• General principles
• Regular and variants
• WeightedCircuit
• Reformulation of global constraints and MDD

domains ?

78

• Reformulating global constraints with small arity
constraints to simulate the DP algorithm with AC on the
corresponding constraint network:
★ Regular
★ Bound AllDifferent
★ Bound GCC
★ Slides [Bessiere et al. 2008]

[Quimper and Walsh, 2007]

[Bessiere et al. 2009]

Reformulations of global constraints

79

}

• Reformulating global constraints with small arity
constraints to simulate the DP algorithm with AC on the
corresponding constraint network:
★ Regular
★ Bound AllDifferent
★ Bound GCC
★ Slides [Bessiere et al. 2008]

[Quimper and Walsh, 2007]

[Bessiere et al. 2009]

Reformulations of global constraints

79

• MDD domains, a form of Dynamic programming ?
• Multi-valued Decision Diagram MDD consistency
• Explicit representation of more refined potential solution

space
• Limited width defines relaxation MDD
• Overcome the current limit that : « constraints are

communicating through domains »

[Hooker et al. 2007]

}

Outline
1. Reduced-costs based filtering

• Linear Programming duality
• First example: AtMostNValue

• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable

• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit
• General principles
• Other relationships of DP and CP

3. Illustration with a real-life application
80

Star Scheduler

Nadia%Brauner,%Hadrien%Cambazard,%Benoît%Cance,%
Nicolas%Catusse,%Pierre%Lemaire%
Univ.&Grenoble&Alpes,&G1SCOP&

%

Anne:Marie%Lagrange,%Pascal%Rubini%
CNRS,&IPAG&

%
81

Star Scheduler
Planet that orbits a star sun6=

• Earth twin ?

 2000 planets discovered
• A few dozens with direct imaging
• Some light years distance from earth
• million times less brilliant than their stars

New Observation tools:
VLT SPHERE

• Anne-Marie Lagrange
• Beta pictoris b (2008)

⇡

82

Star Scheduler
Extrasolar planet observation

From earth: the VLT (Chili)

The Astrophysicists
• Survey potential stars
• Book a fixed set of nights within the budget

About 100.000 euros a night
• Decide the observation schedule for each

night to maximize scientific interest

83

Star Scheduler
Extrasolar planet observation

From earth: the VLT (Chili)

Main constraints
• Visibility period of the stars
• Position in the sky influence

• Quality of the observation
• Length of the observation

• Some stars are scientifically more
important than others

• Calibration (runs, earthquake)
84

Star Scheduler

[rji , d
j
i [

pji

wi

: visibility interval

: duration of
 the observation

: scientific interest

85

Star Scheduler

The meridian instant is a mandatory instant of
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing
meridian time

86

Star Scheduler

The meridian instant is a mandatory instant of
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing
meridian time

87

Star Scheduler

The meridian instant is a mandatory instant of
observation, that is for every star i: pji �

dj
i�rji
2

mi =
dj
i�rji
2

The observations must be scheduled by non-decreasing
meridian time

88

Star Scheduler

89

Star Scheduler

A solution
90

Star Scheduler
A MIP model

P
j z

j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji)

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are
observed the same night{i1 < i2 if on the

same night

91

ti1 + pji1  ti2 +M(1� yi1,i2)

Star Scheduler
A MIP model

max

P
i wizii: observations

j: nights = 1 iff i is observed
P

j z
j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji)

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are
observed the same night{i1 < i2 if on the

same night

91

ti1 + pji1  ti2 +M(1� yi1,i2)

Star Scheduler
A MIP model

max

P
i wizii: observations

j: nights = 1 iff i is observed
P

j z
j
i = zi

rji z
j
i  ti

= 1 iff i is observed in night j

= starting time of i{visibility interval
of night j ti + pjiz

j
i  djiz

j
i +M(1� zji)

zji1 + zji2  yi1,i2 + 1 = 1 iff i1 and i2 are
observed the same night{i1 < i2 if on the

same night

Very poor linear relaxation, does not scale in memory O(n2m)
91

ti1 + pji1  ti2 +M(1� yi1,i2)

Star Scheduler - A CP model
A CP model:

• Use optional tasks of CPO and NoOverlap for each night

92

Star Scheduler - A CP model
A CP model:

• Use optional tasks of CPO and NoOverlap for each night

8 i

max z =

P
i wizi

8 jNoOverlap([taskj1, . . . , task
j
n])

zji = 1 , taskji is present

P
j z

j
i = zi

8 j
8 i

92

Star Scheduler - A CP model
A CP model:

• Use optional tasks of CPO and NoOverlap for each night

 + precedences when on the same night
 + clique of known incompatible observations

• Best results (LNS) with a blackbox model but remains unable to
handle the real-life dataset (800 observations, 142 nights)

• No effective filtering and no interesting global upper bound

8 i

max z =

P
i wizi

8 jNoOverlap([taskj1, . . . , task
j
n])

zji = 1 , taskji is present

P
j z

j
i = zi

8 j
8 i

92

Star Scheduler - The single night problem

93

Star Scheduler - The single night problem

93

Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t
is maximized

P
i wi

93

Star Scheduler - The single night problem

Find and schedule a subset S of observations s.t
is maximized

P
i wi

93

Star Scheduler - The single night problem

94

Star Scheduler - The single night problem

• Suppose observation 3 is scheduled

94

Star Scheduler - The single night problem

• Suppose observation 3 is scheduled

94

• 6 is incompatible

Star Scheduler - The single night problem

• Suppose observation 3 is scheduled

94

• Left and right subproblems are independent (observations are
scheduled in non-decreasing time of their meridians)

• 6 is incompatible

Star Scheduler - The single night problem

f(i, t) : maximum interest with observations 1 to i (schedule
order) and such that i ends before time t

f(i, t) =

max(f(i� 1, t), f(i� 1, t� pi) + wi)

f(i� 1, t)

f(i, di)

0 i = 0, t 2 [0, T]

i 2 [1, n], t 2 [ri + pi, di]

i 2 [1, n], t 2]di, T]
i 2 [1, n], t 2 [0, ri + pi[

can be found in f(n, T) O(nT)
95

• Update based on the observations assigned in the night
• Filter observations that can not fit in the night anymore
• Filter using DP
• Force (in the night) observations that are mandatory to reach

interestj

interestj

interestj

Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

interest of night j

P
j z

j
i  1 8 i

96

Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

P
j z

j
i  1 8 i

+ scheduling is excluded from the search space
+ strong filtering for each night

- nights remains filtered independently, no strong lower bound

interest of night j

97

Star Scheduler - Back to MIP

98

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

= 1 iff k-th schedule of night j is
 selected

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

= 1 iff k-th schedule of night j is
 selected

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

(exactly one schedule
for each night)

= 1 iff k-th schedule of night j is
 selected

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i

Star Scheduler - Back to MIP

An extended LP formulation:
• One variable (a column) = one night schedule
• Constraints of the LP:

• Exactly one schedule for each night
• One observation occurs in at most one schedule

• Objective is the find the combination of schedules with
maximum interest

98

(observations are assigned to at
most one night)

(exactly one schedule
for each night)

= 1 iff k-th schedule of night j is
 selected

8 j

8 i

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

8k 2 ⌦j , 8j

8 i

(observations are assigned to at
most one night)

(exactly one schedule
for each night)

= 1 iff k-th schedule of night j is
 selected

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}

max

P
j

P
k2⌦j

wk
j ⇢

k
j

iff observation i belongs to the k-th schedule of night j
: the set all possible schedules of night j

ski,j = 1

An extended LP formulation

8 j

8 i8 i

(sk1,j , . . . , s
k
n,j) : 0/1 description of the k-th schedule of night j

8k 2 ⌦j , 8j

⌦j

wk
j =

P
i wiski,j : interest of the k-th schedule of night j

99

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

⇢kj 2 {0, 1}
max

P
j

P
k2⌦j

wk
j ⇢

k
j

= 1 iff k-th schedule of night j is
 selected

(exactly one schedule for each night)

(observations are assigned to at
most one night)

The LP relaxation can be solved by column generation:

• Iteratively add a variable (schedule) of maximum
reduced cost

• Only a tiny fraction of the variables are needed
100

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation:
• Iteratively add a variable (schedule) of maximum reduced cost

8 j

8 i

101

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation:
• Iteratively add a variable (schedule) of maximum reduced cost

8 j

8 i

101

(↵j)

(�i)

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation:
• Iteratively add a variable (schedule) of maximum reduced cost

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i

101

(↵j)

(�i)

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation:
• Iteratively add a variable (schedule) of maximum reduced cost

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i

rc(⇢kj) =
P

i(wi � �i)ski,j � ↵j

101

(↵j)

(�i)

Star Scheduler - Back to MIP

P
k2⌦j

⇢kj = 1
P

j

P
k2⌦j

ski,j⇢
k
j  1

max

P
j

P
k2⌦j

wk
j ⇢

k
j

The LP relaxation can be solved by column generation:
• Iteratively add a variable (schedule) of maximum reduced cost

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

8 j

8 i

• Solve the one night problem where is replaced by wi

(wi � �i)

rc(⇢kj) =
P

i(wi � �i)ski,j � ↵j

101

(↵j)

(�i)

Star Scheduler - An improved CP model

8 j

max z =

P
j interestj

NightNoOverlap([zj1, . . . , z
j
n], interestj)

P
j z

j
i  1 8 i

Objective([z11 , . . . , z
m
n], z)

Solve the LP relaxation by column generation:
• Filter the upper bound of z
• Reduced-cost filtering to exclude/force observations

into nights ?

Branch and price algorithm implemented in a CP framework
102

Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

103

Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a variable, i.e. excluding
observation i from night j ?

zji

103

Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a variable, i.e. excluding
observation i from night j ?

zji

• What is smallest decrease of the objective over all possible
schedules that includes i in night j ?

103

Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a variable, i.e. excluding
observation i from night j ?

zji

• What is smallest decrease of the objective over all possible
schedules that includes i in night j ?

z⇤LP + max

k2⌦j |ski,j=1
(rc(⇢kj)) < z =) zji 6= 1

103

Star Scheduler - Back to MIP
• The reduced cost of the k-th schedule of night j

rc(⇢kj) = wk
j � ↵j �

P
i s

k
i,j�i

• How to filter the upper bound of a variable, i.e. excluding
observation i from night j ?

zji

• What is smallest decrease of the objective over all possible
schedules that includes i in night j ?

• The two steps backward-forward resolution of the DP
provides exactly this information.

z⇤LP + max

k2⌦j |ski,j=1
(rc(⇢kj)) < z =) zji 6= 1

103

Star Scheduler -
Results

Branch and price proves to be extremely efficient
(benchmark of 21 instances):

• The real-life instance (800 observations, 142 nights) is
solved optimally in less than 10 minutes

• 18 instances are solved optimally between 1 to 20 minutes

• 3 instances remains open in 2h time limit but the optimality
gap is less than 0.11 %

• All feasible solutions significantly improves the MIP/CP
approach

104

Star Scheduler -
Results

Branch and price proves to be extremely efficient
(benchmark of 21 instances):

• The real-life instance (800 observations, 142 nights) is
solved optimally in less than 10 minutes

• 18 instances are solved optimally between 1 to 20 minutes

• 3 instances remains open in 2h time limit but the optimality
gap is less than 0.11 %

• All feasible solutions significantly improves the MIP/CP
approach

104

[Catusse et al. 2016]

Outline
1. Reduced-costs based filtering

• Linear Programming duality
• First example: AtMostNValue

• Filtering the upper bound of a 0/1 variable
• Filtering the lower bound of a 0/1 variable

• General principles
• Second example
• Assignment, Cumulative, Bin-packing, …

2. Dynamic programming filtering algorithms
• Linear equation, WeightedCircuit
• General principles
• Other relationships of DP and CP

3. Illustration with a real-life application
105

Conclusion

Focus of this talk:

Investigate/understand filtering techniques beyond polynomial
sub-problems (beyond local-consistencies)

Help us to grow a better understanding of OR

106

