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Outline

1. Reduced-costs based filtering

e Linear Programming duality
e First example: AtMostNValue
 Filtering the upper bound of a 0/1 variable
* Filtering the lower bound of a 0/1 variable
e General principles
e Second example
* Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

* Linear equation, WeightedCircuit
e General principles
e Other relationships of DP and CP
3. lllustration with a real-life application
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* Linear Programming duality



Reduced cost based filtering

* Linear Programming duality [Linear Programming, Chvatal, 2003]
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Linear Programming duality

Min z = oz + 6y

2¢+3y > 10
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X,y > 0
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Linear Programming duality

Min z = 5z + 6y
(c1) 2 +3y > 10
(c2) r+y =2 9
X, > 0

What lower bound can you derive from the constraints 7
C1 implies 2z~ > 10
c1+c2 implies z* > 15
c1 +3c2 implies 2z* > 25

s there a gap left 7 No
(z,y) = (5,0) is feasible so z* < 25

v



Linear Programming duality

Min z = b5z + 6y
(c1) 2¢c+3y > 10
(c2) z+y > 5
X, > 0

What lower bound can you derive from the constraints

C1 implies z* > 10
c1+c2 implies 2z* > 15
c1 +3ce implies 2z* > 25

Goal: a linear combination of the right hand sides
e that bounds the objective from below
* and which is maximum
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Linear Programming duality

Min z = oz + 6y
(c1) 2¢ +3y > 10 A1
(c2) r+y > 5 A2
X,y > 0

Goal: a linear combination of the right hand sides:
* that bounds the objective from below
 and which leads to the maximum bound

Max w = 10)\1 =" 5/\2
2 \1 +2A2 < 5
3N+ <6
> 0

A1y A2
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Linear Programming duality

Min z =

Goal: a linear combination of the right hand sides:
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Linear Programming duality

Min z =

Goal: a linear combination of the right hand sides:
—® that bounds the objective from below
® and which leads to the maximum bound

2T + 0y
2z + 3y
LrTY
Z,Y

VIV IV
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Linear Programming duality

Minz = 5z + 6y
(c1) 2¢+3y > 10
(c2) r+y > 5
X, > 0

What lower bound can you derive from the constraints 7

Maxw = 10A1 + 5o
21 + o < 5
N1+ < 6
A1y A2 > 0

Any feasible solution of the dual gives a lower bound

c1+c¢c2 is (A,X2) =(1,1) which gives w = 19
ci +3co is (A, X2) = (1,3) which gives w = 25
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Linear Programming duality

Minz = 5z + 6y
2¢ +3y > 10 A1
(P) r+y =2 9 A2
X, > 0

What lower bound can you derive from the constraints 7

Maxw = 10A1 + 5o
201+ < 5 | T
D) 3\ 42X < 6 |Y
A1, A2 > 0

The dual of the dual is the primal
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Linear Programming duality

C; ‘v’z:l,,n

=
I\
>
>
A

)‘j > 0 ijl,,m

* View the dual as the problem of the best linear
combination of the constraints
* Any feasible solution of the dual gives a lower bound
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Reduced cost based filtering

* First example: AtMostNValue
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AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N
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AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to

be at most N

D(X;) = {1,2,3,4,5,6}
D(XB) — {172}

D(X4) = {1,2,3}
D(N) = {1,2}
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AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

D(X;) = {1,2,3,4,5,6}
D(XB) {172}

D(X4) {1,2,3}
D(N) = {1,2}

A solution: ATMOSTNVA%JE([Q, 2,2,2,4,4|,2)



SI9999 Y

AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

X)) = {1,2,3,4,5,6} D(X:) = {1,2,%4,5%8}
X2) — {2’4} (XZ) — {274}

XB) — {172} D(X3) — {172}

X4) = {1,2,3} D(X4) = {1,2,3}

X5) = {4,5} D(X5) = {4,5}

XG) — {435} D(X6) — {475}

N) = {2} D(N) = {2}

A solution: ATMOSTNVAH}JE([Q, 2,2,2,4,4|,2)



SI9999 Y

AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

Xl) — {1a2737475a6} D(Xl) — {1a27X4757K}
Xo) = {2,4} D(X2) = {2,4}

X3) = [{1,2} D(X3) = {1,2}

X4) — {17273} D(X4) — {17233}

X5) = [{4,5} D(X5) = {4,5}

XG) — {435} D(X6) — {475}

N) = {2} D(N) = {K2}

D(X3)ND(X5) =10 ‘

A solution: ATMOSTNVA%JE([Q, 2,2,2,4,4|,2)




AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to

be at most N
@ @ D(X1)=1{1,2,3,4,5, 6}
D(Xz) = {2, 4}
D(X3) ={1, 2}
@ X} D(X4) =11, 2, 3}
D(X5) ={4, 5}
D(Xs) = {4, 5}
Xf—3 D) =11.2

Intersection graph of the domains
15



AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to

be at most N
@ @ D(X1)=1{1,2,3,4,5, 6}
D(X5) = {2, 4}
D(X3) ={1, 2}
@ X} D(X4) =11, 2, 3}
D(X5) ={4, 5}
D(Xs) = {4, 5}
@ @ D(N) ={1, 2}

A support of the lower bound of N= an independent set
16



AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to

be at most N
@ @ D(X1)=1{1,2,3,4,5, 6}
D(X5) = {2, 4}
D(X3) ={1, 2}
@ X} D(X4) =11, 2, 3}
D(X5) ={4, 5}
D(Xs) = {4, 5}
@ @ D(N) ={1, 2}

Remove all values except {1 ,2,4,&157} since D(X5) U D(X3) ={1,2,4,5}



AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

* Enforcing Generalized-Arc-Consistency is NP-Hard

* Filtering algorithm can be based on:
 (Greedy computation of independent sets

» (Cost-based filtering with Lagrangian relaxation

e | P Reduced-costs
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AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

* Enforcing Generalized-Arc-Consistency is NP-Hard

* Filtering algorithm can be based on:
 (Greedy computation of independent sets
[Hebrard et al. 20006]
» (Cost-based filtering with Lagrangian relaxation

e | P Reduced-costs
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AtMostNValue

ATMOSTNVALUE(| X4, ..., Xg], V)

Enforce the number of distinct values appearing in the set X to
be at most N

* Enforcing Generalized-Arc-Consistency is NP-Hard

* Filtering algorithm can be based on:

 (Greedy computation of independent sets
[Hebrard et al. 20006]

» (Cost-based filtering with Lagrangian relaxation
[Cambazard et al. 2015]

e | P Reduced-costs

18



AtMostNValue

* However we cannot express reasonings on
mandatory values
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AtMostNValue

* However we cannot express reasonings on
mandatory values

Example: ATMOSTNVALUE(| X7, X2, X3/, N)

D(X;) = {1,2}
D(XQ) — {27 3}
D(XS) — {27 4}
D(N) = {2}
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AtMostNValue

* However we cannot express reasonings on
mandatory values

Example: ATMOSTNVALUE(| X1, X2, X3|, N)

(Xl) — {172}
D(XQ) — {27 3}
D(X3) — {27 4}
D(N) = {2}

How to propagate the fact that value 2 is mandatory

19



AtMostNValue

ATMOSTNVALUE(|X1,...,X,], Y1,..., Y|, N)

Y; € {0,1} : value j occurs at least once
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AtMostNValue

ATMOSTNVALUE(|X1,...,X,], |Y1,..., Y|, N)

Y; € {0,1} : value j occurs at least once

» Express reasonings on mandatory values

D(Xl) — {172} D(Yl) — {07 }
D(X;) = {2,3} D(Yz) = 10,1}
D(X3) = {2,4} D(Y;) = {0,1}
D(N) = {2} D(Yy) = 10,1}
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AtMostNValue

ATMOSTNVALUE(|X1,...,X,], |Y1,..., Y|, N)

Y; € {0,1} : value j occurs at least once

» Express reasonings on mandatory values

D(Xl) — {172} D(Yl) — {07 }
D(X3) = {2,3} D(Yz) = &1}
D(X3) = {2,4} D(Y;) = {0,1}
D(N) = {2} D(Yy) = 10,1}
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AtMostNValue

ATMOSTNVALUE(|X1,...,X,], Y1,..., Y|, N)

Y; € {0,1} : value j occurs at least once

» Express reasonings on mandatory values

D(Xl) — {172} D(Yl) — {Oa }
D(X3) = {2,3} D(Yz) = &1}
D(X3) = {2,4} D(Y;) = {0,1}
D(N) = {2} D(Yy) = 10,1}

Note that domains of X cannot be filtered...

20



Reduced cost based filtering

 Filtering the upper bound of a 0/1 variable
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Reduced cost based filtering

Consider the following example:
D(Xl) — {172} D(XQ) — {273} D(X3) — {475} D(N) — {172}
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Reduced cost based filtering

Consider the following example:
D(Xl) — {172} D(XQ) — {273} D(X3) — {475} D(N) — {>1< 2}
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Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X3) =123 D(X3)=1{4,5} D(N)={X2}
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Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X3) =123 D(X3)=1{4,5} D(N)={X2}

The exact lower bound of N can be computed
with the following MIP:

Minz= vy1 +y2 +ys +ys Y5

Yyir  TY2
Y2 +Y3

(Domain of X7)
(Domain of X5)
(Domain of X3)
1

Ya TYs

m VIV IV

Yi

y; € {0,1} : do we use value i 7

23



Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X2) =123} D(X3)={4,5} D(N)={X2}
Consider the linear relaxation:

Min z= y1 4y2 “4ys3 +ys —+ys

Yy  TY2
Y2 Y3

Ya Y5

VIV IV IV

Yi

24



Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X2) =123} D(X3)={4,5} D(N)={X2}
Consider the linear relaxation:

Min z= y1 4y2 “4ys3 +ys —+ys

Yy  TY2
Y2 Y3

Ya Y5

VIV IV IV

Yi

Notice that we don't need to state y; <1
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Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X2) =123} D(X3)={4,5} D(N)={X2}
Consider the linear relaxation:

Min z = Y1 tY2 TYs +Ys Y5

Yy  TY2
Y2 Y3

Ya Y5

VIV IV IV

Yi

Notice that we don't need to state y; <1

-irst of all, we get z* =2
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Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X2) =123} D(X3)=1{4,5} D(N)={X2}
Consider the linear relaxation:

Min z= y1 4y2 “4ys3 +ys —+ys

Yy  TY2
Y2 Y3

Ya Y5

VIV IV IV

Yi

Notice that we don't need to state y; <1

-irst of all, we get z* =2
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Reduced cost based filtering

Consider the following example:
D(X1) = K2} D(X2) =123} D(X3)=1{4,5} D(N)={X2}
Consider the linear relaxation:

Min z= y1 4y2 “4ys3 +ys —+ys

Yy  TY2
Y2 Y3

Ya Y5

VIV IV IV

Yi

Notice that we don't need to state y; <1

-irst of all, we get z* =2

) Yo Ui
y* = (0, 1, 0, 1, 0)

24



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Minz= w1 4y “4ys “+ya —+Ys

Y1 Yo > 1
(P) Y2  +Ys3 > 1
ys +ys =2 1
Yi > 0
Max w= A “+Ao +A3
A1 < 1
A1+ Ao < 1
(D) As < 1
Ay < 1
Ay < 1
A > 0

25



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Min z= y1 4y “4ys “+vys Y5

Yyr  TY2 Z ()\1)
(P) Y2 +Y3 > 1 (A2)
ys +ys = 1 (A3)

Yi > 0

Max w= A Ao A3
A1 < 1 Eylg
A1+ Ao < 1 Y2
(D) >\2 < 1 (yB)
Ay < 1 (ys5)
A > 0

20



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Min z= y1 4y “4ys “+vys Y5

Yyr  TY2 > 1 ()\1)
(P) Y2 +Y3 > 1 (A2)
ys +ys = 1 (A3)
Yi > 0
K
Max w= A Ao A3 Y
A1 < 1 (y1) (0)
Al A2 < 1 (y2) (1)
(D) Ao < 1 (y3) (0)
A3 < 1 (y5) (0)
A > 0

20




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

~Y2

Min z = y; -
Y1 -
(P)
Yi
Max w = A\
A1
A
o)

~Y2
Y2 1Ys3

20
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}
Let’s try to filter value 1 from X ;

Minz= vy1 4y +y3 “+ys —+ys
Y1 TYo
(P) Y2 tYs3

vV IV IV

Ya TYs

1V
=

Yi

27



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}
Let’s try to filter value 1 from X ;

Minz= vyy1 4y “+ys “4+ys +ys
Y1 TY2
(P) Y2 TY3
Ya TYs

Y1
Yi

VIIVIIV IV IV

27



Reduced cost based filtering

D(X1) = K 2; D(X3) =123} D(X3)= 14,5} D(N) = {K2;}

Let’s try to filter value 1 from X ;

Minz= vyy1 4y “+ys “4+ys +ys
Y1 Y2 >
(P) Y2 Y3 >
Yg +Ys 2
Y1 >
>

Yi

27




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let’s try to filter value 1 from X ;

Minz= vy1 +y2 +y3 +ys ++ys
Y1  TY2 2 (/\1)
(P) Y2 Y3 > 1 (A2)
Yya tys =2 1 (A3)
Y1 > 1 ()
Yi > 0

A1 +y | 1
A1+ < 1

(D) s < 1
A3 < 1

A3 < 1

)‘ja Y > 0



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let’s try to filter value 1 from X ;

Minz= w1 “4+y2 “+y3 “+ys —+ys A"
Y1 +y2 = (A1) (0)
(P) Y2 TY3 > : (A2) (1)
ya__tys = 1 (A3) (1)
Y1 > 1 (7) (?)
Yi > 0
Max w= A1 +A2 +A3 |+ | We can build a dual
;\\1 . +y [ 1 solution by setting Y
1 tA2 s 1 | — Al
(D) " . greedily to (1 — A7)
A3 < 1 Note that we are not
A3 < 1 solving the LP again



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A1 +A2 +A3 +v

A1 +y < 1

A1+ < 1
A2 < 1 A= (0,1,1)

A3 < 1

A3 < 1

)\j, Y > 0

29



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

A1 +y < 1

A1 Ao < 1
A2 < 1 A= (0,1,1)

A3 < 1

A3 < 1

/\j, g 2 0

We can build a feasible dual solution by setting 7 to (1 — A})

29



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A “+X
A1
A1+

+As3

+
+

AV VAN VANE VAN VAN VAN

1
1
1
1
1
0

A = (0,1,1)

We can build a feasible dual solution by setting 7 to (1 — A})

Thus z* 4+ (1 — A]) is a lower bound of the modified problem

29



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A +Xo +A3 +v

A1 +y =<
A1 A2 <
A2 <

A3 <

A3 <

Ajy >

1
1
1
1
1
0

A = (0,1,1)

We can build a feasible dual solution by setting 7 to (1 — A})

Thus z* 4+ (1 — A]) is a lower bound of the modified problem

SO

Upper bound of N
A1) >Q) = i #£1 (X1 #1)
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w = Mg
A1
A1

+ Ao

+ A3

+
+

AV VAN VANE VAN VAN VAN

1
1
1
1
1
0

A = (0,1,1)

We can build a feasible dual solution by setting 7 to (1 — A})

Thus z* 4+ (1 — A]) is a lower bound of the modified problem

Upper bound of N

7
S0 2° +>@:> yp =1 (X1 #1)

Reduced cost of ¢4

(Slack of the dual constraint)
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w = /\1 +)\2 -|-)\3 +y

A1 +y < 1

A1+ < 1
A2 < 1 A =(0,1,1)

A3 < 1

A3 < 1

)‘ja Y > 0

So z¥+rce(y1) >z = y1 #1 (X1 # 1)

Reduced cost of y1: rc(y1) = (1 — A]) =1
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Reduced cost based filtering
D(Xl):{>1<2} D(Xz):{an} D(X3):{475} D(N):{XQ}

Max w = )\1 +)\2 —|-/\3 +y

A1 +y < 1

A1 Ao < 1
A2 < 1 A = (O, 1, 1)

A3 < 1

A3 < 1

)‘ja Y > 0

So z¥+rce(y1) >z = y1 #1 (X1 # 1)
Reduced cost of y1: rc(y1) = (1 — A]) =1

Reduced costof ¥3: re(ys) = (1 —A5) =(1—-1)=0

30



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A1 +Ao A3 +y

A1 +y < 1

A1+ < 1
A2 < 1 A= (0,1,1)

A3 < 1

A3 < 1

/\j, Y > 0

So z¥+rce(y1) >z = y1 #1 (X1 # 1)
Reduced costof y1: re(yr) = (1 = Af) =1
Reduced costof ¥3: re(ys) = (1= A5) =(1—-1)=0

We cannot filter value 3 using this dual solution
30



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A1 +A2 +A3 +v

A1 +vy < 1 :
N < 1 But consider
A2 < 1 A= (1,0,1)
A3 < 1
A3 < 1
)\j, Y > 0
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w = /\1 +/\2 -|-)\3 +y

A1 +y < 1 .
N < 1 But consider
A2 < 1 A= (1,0,1)

A3 < 1

A3 < 1

)‘ja Y > 0

Reduced cost of y1:re(y1) = (1 — A7) =0
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w = /\1 +)\2 -|-)\3 +y

A1 +y < 1 :
N < 1 But consider
A2 < 1 A= (1,0,1)
A3 < 1
A3 < 1
)‘ja Y > 0

Reduced cost of y1:re(y1) = (1 — A7) =0

Reduced cost of Y3 : re(ys) = (1 — A5) =1

31



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Max w= A1 +A2 +A3 +v

A1 +vy < 1 :
N < 1 But consider
A2 < 1 A= (1,0,1)
A3 < 1
A3 < 1
)\j, Y > 0

Reduced cost of y1:re(y1) = (1 — A7) =0
Reduced cost of Y3 : re(ys) = (1 — A5) =1

Value 3 is now filtered but value 1 is not filtered anymore
31



Reduced cost based filtering
D(Xl):{>1<2} D(X2>:{27m D(X3):{475} D(N):{Xz}

 We are filtering the upper bound of y1 or y3

2F+re(y;) >z = y; # 1
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N) = K2}

 We are filtering the upper bound of y1 or y3

2F+re(y;) >z = y; # 1

o Butif ¥iis in the optimal LP solution (the basis), its
reduced cost is O

 Thisis due to the complementary slackness theorem:

Either the variable is O, or the slack of the dual constraint (i.e.
the reduced cost) is 0, or both

32



Reduced cost based filtering
D(Xl):{>1<2} D(XQ):{va D(X3):{475} D(N):{Xz}

 We are filtering the upper bound of y1 or y3
2F+re(y;) >z = y; # 1

o Butif ¥iis in the optimal LP solution (the basis), its
reduced cost is O

 Thisis due to the complementary slackness theorem:

Either the variable is O, or the slack of the dual constraint (i.e.
the reduced cost) is 0, or both

 How to filter the lower bound of y;7

32



Reduced cost based filtering

 Filtering the lower bound of a 0/1 variable

33



Reduced cost based filtering
D(Xl):{>1<2} D(X2>:{27m D(X3):{475} D(N):{Xz}

Let’s try to prove that value 2 is mandatory i.e. filter the lower
bound of Yo : Yo #~ 0

34



Reduced cost based filtering
D(Xl):{>1<2} D(Xz):{an} D(X3):{475} D(N):{XQ}

Let’s try to prove that value 2 is mandatory i.e. filter the lower
bound of ys : Yo # 0

Filter Upper bound y1 # 1

1. Solve the original LP
optimally

2. Use the optimal dual
solution, to build a feasible
dual solution to the problem
that would includey; > 1

34



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let’s try to prove that value 2 is mandatory i.e. filter the lower

bound of ys : Yo # 0

Filter Upper bound 41 # 1

1. Solve the original LP
optimally

2. Use the optimal dual

solution, to build a feasible
dual solution to the problem

that would includey; = 1

Filter Lower bound ¢y # 0

1.

Include in the original LP
the constraint y2 < 1

. Solve the modified

poroblem and perform
sensibility analysis on the
right hand side of y2 <1

34




Reduced cost based filtering
D(X1) = K2} D(X3) =1{2,38} D(X3)={4,5} D(N)={X2}
Let's try to prove that value 2 is mandatory :

Minz= y1 +y2 +ys “+vys —+ys

Y1 +yo > 1

(P) Y2 t+Y3 > 1
ya +ys = 1

Y2 < 1

Yi > 0
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Reduced cost based filtering
D(X1) = K2} D(X3) =1{2,38} D(X3)={4,5} D(N)={X2}
Let's try to prove that value 2 is mandatory :

Minz= y1 +y2 +ys “4vys —+ys

Y1  +y2 > 1

(P) Y2 t+Y3 > 1
ys +ys =2 1

Yo < 1

> 0

N\

Note that the upper-
bound constraint

IS now added before
solving the LP
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Minz= y1 +y2 +ys “4vys —+ys A
Y1 t+Y2 > 1 (/\1) (1)
(P) Yo Y3 > 1 (A2) (1)
ys +ys = 1 (A3) (1)
Y2 < 1 0) (—1)
>0

N\

Note that the upper-
bound constraint

IS now added before
solving the LP

35



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Minz= wy1 +y2 +y3 “+ys +ys
Y1 +yY2 > 1
(P) Y2 t+Y3 > 1
Yys +Ys =2 1
Y2 < 1
Yi > 0
Maxw= A1 +Ao +A3 [+0
A1 < 1
A1 +Ao +0 < 1
Ao < 1
(D) As < 1
A3 < 1
Aj > 0
7 < 0

S19)

\

Note that the upper-
bound constraint

IS now added before
solving the LP



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Min z= y1 +y2 +ys “+ys +Ys
y1  +y2 > 1
(P) Y2 tYs3 > 1
ys +ys = 1
Y2 < |1 —e¢€
Yi > 0
Maxw= A1 “+A2 “+A3 |+0
A1 < 1
A1 +Ao +0] < 1
Ao < 1
(D) s < 1
A3 < 1
Aj > 0
0 <0




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Min z= y1 +y2 +ys “+ys +Ys
y1  +y2 > 1
(P) Y2 tYs3 > 1
ys +ys = 1
Y2 < |1 —e¢€
Yi > 0
Maxw= A1 A2 A3 [+0 —eb
A1 < 1
A1 +Ao +0] < 1
Ao < 1
(D) s < 1
A3 < 1
Aj > 0
0 <0




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

3
Min z= y1 +y2 +ys “+ys +Ys A
Y1 +y2 > 1 (A1) (1)
(P) Y2  +Y3 > 1 (A2) (1)
yas +ys = 1 (A3) (1)
Y2 < [1—c¢€ (0) (1)
Yi > 0
Maxw= A 4X» +Xs |+0—eB Decreasing the upper-
A1 < 1 pound by € Increases
A1 A9 +0| < 1 the objective of at
A2 < 1 least —c6*
(D) As < 1
A3 < 1
Aj > 0
0 .= 0




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Minz= y1 +y2 +ys “+vys —+vys A
Y1 +Yy2 > 1 (A1) (1)
(P) Y2 +Ys3 > 1 (A2) (1)
Yye +ys =2 1 (A3) (1)
Y2 < [1—c¢€ (0) (1)
Yi > 0
Max w= A +Xo +Xs |+0|—ef Decreasing the upper-
A < 1 poound by € increases
A1+ +0| < 1 the objective of at
A2 < 1 least —cb*
(D) s < 1
A3 < 1 Feasibility of the dual
Aj > 0 solution is not affected
0 .= 0] Dbythe change!

C
d



Reduced cost based filtering
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Reduced cost based filtering

Maxw:)\1+)\2+)\3—|—9 y2<1

A*
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Reduced cost based filtering

N:axw:)\1+)\2+)\3+9 y2§1
N:axw’:)\l—l—)\z—l—)\g—l—(l—e)é’ yQS(l_e)

A*

37
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Niaxw:)\1+)\2+)\3+9

Reduced cost based filtering

\Y

:an/:)\1—|—)\2—|—)\3—|—(1—€)(9 yQS

Yo < 1

(1 —¢)

D > >
W N

S S N

A NN TN TN
A ' i A A A

A*
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Reduced cost based filtering

N:axw/:)\1—|—)\2—|—)\3—|—(1—€)(9 yQS

w'* = w* — ef*

i exact increase .

N:axw:)\1+)\2+)\3+9 y2§1

(1 —¢)

D > > >~

Pt

()
S’ N’ N’

A 1 1 3 reed

A*

4 r r
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Reduced cost based filtering

N:an:)\l—l—)\Q—l—)\g—FH

/%

i exact increase .

.
.
.
.
x* .
.
G
G
G
G
G
.
.

W _ UJ* o 6(9*
lower bound of the

37

Yo < 1

N:axw’:)\l—l—)\z—l—)\g—l—(l—e)é’ y2§(1_€)

Increase

w'™* > w* — ef*

NN STN TS

D > > >~

—
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Reduced cost based filtering

Max w = A1 + A2 + Az + 0 y2 < 1 )\*
Max w' = A1 + Ao+ Az + (1 — )8 y2 <[(L — €) 83 Eg
(A3) (1)
e ) (-1)

lower bound of the
Increase

)\ w/* Z w* . 66*

i exact increase .

Decreasing the upper-

---------- the objective of at
least —eb*
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

38




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A1 “+Ao2 “+A3 +0 —el
A1 < 1

A1 +Ao +0| < 1

Ao < 1

(D) As < 1

A3 < 1

y > 0

v < 0

S0, (by sensitivity analysis) if we forbid value 2 i.e. if we set
the upper bound of y5 to O, the increase is at least of —0*
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Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

S0, (by sensitivity analysis) if we forbid value 2 i.e. if we set
the upper bound of y5 to O, the increase is at least of —0*

2= =2—(—-1)>2Z2=2 = y2 #0 (Yo =1)

38




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

A*

NN TN N
D D N N
~— R 0 =
e S’ “eaus”’
NN TN N
[ S T W -
SN S N

Max w = )\1 +/\2 +)\3 +9
A1 < 1
A1 +Ao +0| < 1
Ao < 1
(D) As < 1
A3 < 1
Y > 0
v < 0

It we ignore @ and compute the reduced cost of Yo :

39




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

It we ignore @ and compute the reduced cost of Yo :

39




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

A*

NN TN N
D D N N
~— R 0 =
e S’ “eaus”’
NN TN N
[ S T W -
SN S N

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

It we ignore @ and compute the reduced cost of Yo :

re(ys) =1 — A7 — A5 = —1

39




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

It we ignore @ and compute the reduced cost of Yo :

re(ys) =1 — A7 — A5 = —1

And the filtering rule can be seen as

39




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N)= K2}

Let's try to prove that value 2 is mandatory :

Maxw= A +X» +A3 +0|—e0
A1 < 1

A1 +As +0 < 1

Ao < 1

(D) As < 1

A3 < 1

by > 0

v, < 0

It we ignore @ and compute the reduced cost of Yo :
re(ys) =1 — A7 — A5 = —1

And the filtering rule can be seen as
2t —re(y2) >7 = y2 #0 (Y2 =1)




Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N) = K2}

e To filter the lower bound of Y2 ?

We include the upper bound constraints in the LP: ¥; < 1

And compute the reduced cost by ignoring the dual
variables of these constraints

2t —re(yi) >Z = yi 70

40



Reduced cost based filtering
D(X1) = 62} D(Xs) = {28} D(Xs)={4,5} D(N) = K2}

e To filter the lower bound of Y2 ?

We include the upper bound constraints in the LP: ¥; < 1

And compute the reduced cost by ignoring the dual
variables of these constraints

2t —re(yi) >Z = yi 70

* To filter the upper bound of Y1 o0r ys3
2 +re(y;) >z = y; # 1

But if ¥;is in the optimal LP solution (the basis), its
reduced cost is O (complementary slackness)

40



Reduced cost based filtering
D(Xl):{>1<2} D(XQ):{va D(X3):{475} D(N):{Xz}

e To filter the lower bound of Y2 ?

2 —re(y) >z = yi #0
* o filter the upper bound of y1o0r Y3

X 4re(y;) >z = y; # 1

In any case, the reduced cost can be inte

lower bound of the variation of the object

per unit of change of the variab

41
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Reduced cost based filtering

* (General principles

42



General principles

Min 2z = Xn: Ci T Consider one variable
1 Tk € [%7 aj—k]

b; Vj=1,...,m andsuppose the LP is
(P) =1 solved with the simplex

n

]
S
E
'V

> = 1,... . :
T; > 0 Vi=1,...,n algorithm handling
bounds directly
Max w = i%%
j=1
azA S ; Vizl,...,’n
(D) .7;1 77 Cz

)‘j > 0 ‘v’_7=1,,m

43



General principles

m

Max w = ij)\j
=1 Tk © [%7716]
ai:Ni < ¢ Vi=1,...,n
(D) J; i
/\j > 0 \7’]=1,,m

Proposition 1 (Reduced cost) Let z* and \* be a pair of optimal primal
and dual solution of (P) and (D), satisfying the complementary slackness. The
reduced cost of variable zy, is denoted rc(xy) and defined as :

re(zy) = ek — (Z az’j’\;)
j=1

— If x; = i, in the optimal primal basis then rc(zxyk) > 0
— If 7 = Tk in the optimal primal basis then rc(xy) < 0

— If z, < x} < T then re(xg) =0
44



General principles

Proposition 1 (Reduced cost) Let z* and \* be a pair of optimal primal

and dual solution of (P) and (D), satisfying the complementary slackness. The
reduced cost of variable zy, is denoted rc(xy) and defined as :

re(xg) = cp — (Z aijA;)
j=1

— If x} = x in the optimal primal basis then rc(xy) > 0
— If 7 = T in the optimal primal basis then rc(zy) < 0
— Ifzy < z} < Ty then re(zy) =0

Upper bound

(2 — 27

< |
If re(xk) > 0 then xx < xi re(zy)

in any solution of cost less than z

Lower bound

z—2) in any solution of cost less than z
re(xk)

49

If re(zxy) < 0 then x > Tg




General principles

Upper bound

(Z = 27)

re(xy)

If re(zg) > 0 then xx < xj in any solution of cost less than z

Lower bound

E—2)

re(xk)

If re(zy) < O then xp > Tg in any solution of cost less than z

* In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of Iy
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General principles

Upper bound

z— 2"
( )J in any solution of cost less than z
re(xy)

If re(xk) > 0 then g SL:L‘_;C |

Lower bound

E—2)

re(xk)

If re(xg) < 0 then xp Z[ﬁ _‘zn any solution of cost less than z

* In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of Iy

46




General principles

Upper bound

z— 2
( )J in any solution of cost less than z
re(xy)

If re(xk) > 0 then g SL:L‘_k |

Lower bound

G—2)

re(xk)

If re(xg) < 0 then xp Z[ﬁ _‘m any solution of cost less than z

* In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of Iy

e Floor and cell if x are integers in the original problem
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General principles

Upper bound

z— 2
( )J in any solution of cost less than z
re(xy)

If re(xk) > 0 then g SL:L‘_k |

Lower bound

G—2)

re(xk)

If re(xg) < 0 then xp Z[ﬁ _‘m any solution of cost less than z

* In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of Iy

* Floor and cell if x are integers in the original problem

e Technique referred to as Variable Fixing
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General principles

Upper bound

z— 2
( )J in any solution of cost less than z
re(xy)

If re(xk) > 0 then g SL:L‘_k |

Lower bound

G—2)

I >\7
fre(zg) < 0 then g _[:ck ro(zr)

_‘z’n any solution of cost less than z

* In any case, the reduced cost can be interpreted as a lower
bound of the increase of the objective per unit of change of Iy

* Floor and cell if x are integers in the original problem

e Technique referred to as Variable Fixing
[INemhauser and Wolsey. Integer and Combinatorial Optimization. 1988] ?
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Reduced cost based filtering

e Second example
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AtMostNValue
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AtMostNValue

D(Xl) — {172}7 D(XQ) — {273}7 D(XS) — {274}7 D(N) — {2}
D(Yl) — {Ov 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {07 1}

48



AtMostNValue

D(Xl) — {172}7 D(XZ) — {273}7 D(XB) — {274}7 D(N) — {2}
D(Yl) — {07 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {07 1}

Minz= vy1 —+y2 +y3 vy _ with yo € [O, 1]
Yyi  TY2 e
Y2 Y3 > 1
Y2 +Y4 > 1
Yi =

48



AtMostNValue

D(Xl) — {172}7 D(XZ) — {273}7 D(XB) — {274}7 D(N) — {2}
D(Yl) — {07 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {07 1}

Min z= y1 +y2 +ys —+ys _ with yo € [0, 1]
Yyi  TY2 e

Y2 1Y3 = 1 y* =(0,1,0,0)
Y2 +ys =2 1
Yi =

48



AtMostNValue

D(Xl) — {172}7 D(XZ) — {273}7 D(XB) — {274}7 D(N) — {2}
D(Y1> — {07 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {07 1}

Min z= y1 +y2 +ys —+ys _ with yo € [0, 1]
Yyi  TY2 e
y2  +y3 2 y* =(0,1,0,0)
Y2 +ys =2 1 -
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AtMostNValue

D(Xl) — {172}7 D(XZ) — {273}7 D(XS) — {274}7 D(N) — {2}
D(Yl) — {Ov 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {Ov 1}

Min z = Y1 +Y2 +Ys3 +Y4

Y1 1Yo > 1
Y2 +Y3 > 1
Y2 tys =2 1
Yi > 0
yi =yr and re(y1) =1 - A7 =0
ys =Yg and rc(ys) =1 — A7 — A5 — A3 =
y3 =y2 and rc(y3) =1 — A3 =0
y; =ys and rc(ys) =1 — A5 =0

48

with yo € [O, 1]

y* =(0,1,0,0)
A = (1,1,1)
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AtMostNValue

D(Xl) — {172}7 D(XZ) — {273}7 D(XS) — {274}7 D(N) — {2}
D(Yl) — {Ov 1}7 D(YQ) — {ﬂ: 1}7 D(YS) — {274}7 D(Y4) — {Ov 1}

vinz= u H12 +ys + with yo € |0, 1]
Y1 TY2 > 1

vty 2 1 g7 =(0,1,0,0)
Y2 +ys =2 1 )

yi =y and re(y;) =1 - A7 =0

y; :y_zand'rC(yQ) — :_—)\’{_)\S_Ag — _2

ys =y2 and re(y3) =1 — A3 =0

yr =y3 and re(ys) =1 — A3 =0
__ (2F =2




Reduced cost based filtering

* Assignment, Cumulative, Bin-packing, ...

49



P relaxations used for global constraints

 Assignment problem (used as a lower bound for TSP)

50



P relaxations used for global constraints

 Assignment problem (used as a lower bound for TSP)

@—®
(e)—(D

50



P relaxations used for global constraints

 Assignment problem (used as a lower bound for TSP)
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Used as a relaxation for TSP
(relax connectivity but keep
degree 2 constraints)
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P relaxations used for global constraints

 Assignment problem (used as a lower bound for TSP)

@—®
(e)—(D

o]

Used as a relaxation for TSP
(relax connectivity but keep
degree 2 constraints)

[Milano and al. 2006]
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P relaxations used for global constraints

 Assignment problem (used as a lower bound for TSP)

@—®
(e)—(D

o]

Used as a relaxation for TSP
(relax connectivity but keep
degree 2 constraints)

Min Z L4iiCijg
1,]

[Milano and al. 2006]

* Global cardinality with costs (ref ? folklore ?)
o0



P relaxations used for global constraints

 Cumulative (LP formulation with cutting planes)

[Hooker. 2002]

W =

— O

1 2 3 4 5 6 7 8 9

(Picture from the global constraint catalog)

* Bin-Packing (Arc-flow formulation ...)
[Valério de Carvalho 1999] [Cambazard. 2010]

HHH e | = !-U

Bins Items packing




P relaxations used for global constraints

* Linear relaxation of global constraints
[Refalo, 2000]: Linear formulation of Constraint
Programming models and Hybrid Solvers
* AllDifferent

Global constraint

* Element B
* Among o | g

. . & t-based
* CyC | e optimization ‘f:i‘ljtzrin;s

component _~._

< algorithm

~domain reduction
variable instantiation

(Picture from [Foccaci, 2002])

e Cost-based filtering
[Focacci, Lodi, Milano. 2002]: Embedding relaxations in
global constraints for solving TSP and TSPTW



Outline

2. Dynamic programming filtering algorithms

* Linear equation, WeightedCircuit
e General principles
e Other relationships of DP and CP
3. lllustration with a real-life application
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Dynamic programming for
global constraints

* Linear equation
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Linear equation
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 S 7
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3331 — 2$2 45133 S 7
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D(x3) =12,3,4}
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 < 7

D(Zli‘l) — {O, :_, 2,3, 4}
D(z5) = {0,1,2,3,4} Q: Give the arc-consistent domains

D(z3) =12,3,4}
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 < 7

D<x1) — {07 L, 27&%}
D(z5) = {0,1,2,3,4} Q: Give the arc-consistent domains

D(z3) =12,3,4}
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 < 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(z3) =12,3,4}
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 < 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3331 — 2$2 45133 < 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}

Ty !
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3371 — 2$2 4513’3 S 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}

Lower bound for the rest
X1 ? / of the expression

371 +|(—272 + 4x3)|< T
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3371 — 2$2 4513’3 S 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}

Lower bound for the rest
X1 ? / of the expression

371 +|(—272 + 4x3)|< T
371 + (—8+48) <7
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3371 — 2%2 4513’3 S 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}

Lower bound for the rest
X1 ? / of the expression

371 +|(—272 + 4x3)|< T
371 + (—8+48) <7

1 < [£] =2
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Linear equation

e |et’s start with linear inequalities first and enforce GAC:

3371 — 2$2 4513’3 S 7

D<x1) — {07 L, 27&%}
D(z5) = {8,1,2,3,4} Q: Give the arc-consistent domains

D(x3) = {2, 3,4}

Lower bound for the rest
X1 ? / of the expression

371 +|(—272 + 4x3)|< T
371 + (—8+48) <7

71 < [£] =[2

55



Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N
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Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

 Update the upper bound of variables with a positive coefficient
(k < nl)
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Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

 Update the upper bound of variables with a positive coefficient

(k < Tll) .
Lower bound for the rest of the expression
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Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

 Update the upper bound of variables with a positive coefficient

(k < nl) .
Lower bound for the rest of the expression

ni—1
C— (Zz 11/\@#/{ (il — Zz ni i ZE@)

A

Tk — |

J

* Update the upper bound of variables with a negative coefficient

o (T s — g T
i=1 %idi ™ 2 sj=ny nitk Viti) T C
Z 4 [ W
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Linear equation

[Lauriere, 1978]

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

 Update the upper bound of variables with a positive coefficient

(k < Tll) .
Lower bound for the rest of the expression

ni—1
C— (Zz 11/\@#/{ (il — Zz ni i ZE@)

A

Tk — |

J

* Update the upper bound of variables with a negative coefficient

o (T s — g T
i=1 %idi ™ 2 sj=ny nitk Viti) T C
Z 4 [ W

56




Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

* |s a fixed point needed between the two rules 7

 Does that achieve BC or GAC ?

57



Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

* |s a fixed point needed between the two rules 7

No, the rules and updates are not on the same bounds

 Does that achieve BC or GAC ?
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Linear equation

2?211—1 A; i — Zz 1 b; iTi < C
Suppose for sake of simplicity: Vi a;,b; € N* and D(xz;) C N

* |s a fixed point needed between the two rules 7

No, the rules and updates are not on the same bounds

 Does that achieve BC or GAC ?

Only bounds are updated but all remaining values
have a support so it achieves GAC

57



Linear equation
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Linear equation

 Consider now: 2{1’}1 -+ 3332 —+ 4263 =7

D(Zli‘l) — {O, 1, 2}
D(xZ) — {07 }
D(xB) — {Ov }
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Linear equation

 Consider now: 2{1’}1 -+ 3332 —+ 4263 =7

D(xl) — {07 17 2}
D(z5) = 10,1} Q: Give the arc-consistent domains

D(xB) — {Ov }
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Linear equation

 Consider now: 2{1’}1 -+ 3332 —+ 4263 =7
D(z5) = 10,1} Q: Give the arc-consistent domains

D(xB) — {Ov }
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Linear equation

 Consider now: 2(1}1 -+ 3332 —+ 4263 =7
D(xo) = {8, 1} Q: Give the arc-consistent domains

D(xS) — {Ov }
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Linear equation

 Consider now: 2(1}1 -+ 3332 —+ 4263 =7
D(xo) = {8, 1} Q: Give the arc-consistent domains
D(Qj‘g) — {Ov }

Q: How does a CP solver usually filters that constraint ?
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Linear equation

 Consider now: 2(1}1 -+ 3332 —+ 4263 =7
D(xo) = {8, 1} Q: Give the arc-consistent domains
D(Qj‘g) — {Ov }

Q: How does a CP solver usually filters that constraint ?

Q: What values are removed in the example with this technigue
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Linear equation

 Consider now: 2(,61 -+ 3332 —+ 4563 =7
D(xo) = {8, 1} Q: Give the arc-consistent domains
D(ng) — {Ov }

Q: How does a CP solver usually filters that constraint ?

Apply previous filtering algorithm for both (until fixed-point) :
2331 I 3332 T 4$3 2 7
2331 3332 4$3 S 7

Q: What values are removed in the example with this technigue
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Linear equation

 Consider now: 2(,61 -+ 3332 —+ 4%3 =7
D(xo) = {8, 1} Q: Give the arc-consistent domains
D(ng) — {07 }

Q: How does a CP solver usually filters that constraint ?

Apply previous filtering algorithm for both (until fixed-point) :
2331 I 3332 T 4$3 2 7
2331 3332 4$3 S 7

Q: What values are removed in the example with this technigue

None
58



Linear equation

S g =

Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N

Q: What is the complexity of achieving GAC 7

Q: What is the complexity of achieving BC ?
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Linear equation
D i1 GiTi = C
Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N
Q: What is the complexity of achieving GAC 7

e Consider only {0,1} domains
e |tis as hard as subset sum: « given an integer k and a set
S of integers, is there a subset of S that sums to k 7 »

Q: What is the complexity of achieving BC ?
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Linear equation
D i1 GiTi = C
Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N
Q: What is the complexity of achieving GAC 7

e Consider only {0,1} domains
e |tis as hard as subset sum: « given an integer k and a set
S of integers, is there a subset of S that sums to k 7 »

Q: What is the complexity of achieving BC ?

« BC and GAC are the same on {0,1} domains...
« S0 BC is just as hard

59



Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...
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 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...
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Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

<
O __>@ 7 asupport =apath fromstot
ex: (2,1,0)

Q
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Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

7 a support = a path from s to t
ex: (2,1,0)
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Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value O of x2
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Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

O:": 7  asupport =a path fromstot

ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value O of x2
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Linear equation
21 + 3w2 +4x3 =7 D(x1) ={0,%2} D(z2) ={81} D(x3)=1{0,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...
o
0 S

7 a support = a path from s to t
ex: (2,1,0)

a value of a domain = a set of
arcs in the graph

ex: Value O of x2

Filtering:

 remove all arcs that do not
belong to a path-support

e remove values when they
loose all their supporting arcs

60



Linear equation

201 + 3x2 +4x3 =7 D(x1) =1{0,%2} D(z2)={81} D(x3)=10,1}

 The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

Filtering:

 remove all arcs that do not
belong to a path-support

* remove values when they
loose all their supporting arcs

Algorithm:

1. forward pass: mark arcs in a

oreath-first search from s to t

2. backward pass: mark arcs in
a breath-first search fromtto s

) o o 0o 0o 0o o0 O

3. remove all non-marked arcs

61



Linear equation

The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

Filtering:
<  remove all arcs that do not
’ belong to a path-support
 remove values when they
loose all their supporting arcs

c=/

Algorithm:

1. forward pass: mark arcs in a

oreath-first search from s to t

2. backward pass: mark arcs in
a breath-first search fromtto s

3. remove all non-marked arcs

) o o 0o 0o 0o o0 O

Complexity: O(nmc)
, (positive domains and coefficients)



Linear equation

The dynamic programming approach: formulate it a path
problem in a graph with a pseudo-polynomial size...

[Trick. 2003]

) o o 0o 0o 0o o0 O

Filtering:
<  remove all arcs that do not
’ belong to a path-support
 remove values when they
loose all their supporting arcs

c=/

Algorithm:

1. forward pass: mark arcs in a

oreath-first search from s to t

2. backward pass: mark arcs in
a breath-first search fromtto s

3. remove all non-marked arcs

Complexity: O(nmc)
, (positive domains and coefficients)



Linear equation

D i1 GiTi = C

Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N

f (2, K) =true if sum K can be reached with Z1, ..., X;
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Linear equation

D i1 GiTi = C

Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N
f(i, K) =true if sum K can be reached with 21, . . ., Z;

f(Z7K) — \/UkED(ZUZ)f(Z o ]‘7K B a’ivk)

We are looking for f(n, c)
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Linear equation
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Linear equation

D i1 GiTi = C

Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N

f (2, K) =true if sum K can be reached with Z1, ..., X;

f(Z7K) — ”UkED(CBZ)f(Z o ]‘7K B a’ivk)

f(0,K)=false K #0
£(0,0) = true

We are looking for f(n, c)
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Linear equation

D i1 GiTi = C

Suppose for sake of simplicity: V¢ a; € N*and D(x;) C N

f (2, K) =true if sum K can be reached with Z1, ..., X;

f(Z7K) — ”UkED(CEZ)f(Z o ]‘7K B a”ivk)

f(0,K)=false K #0
£(0,0) = true

We are looking for f(n, c)

Complexity: O(nmc)
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Dynamic programming for
global constraints

* (General principles
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General principles

1. Formulate the problem of existence of a support as a
path problem in a graph of pseudo-polynomial size

2. Detine properly the graph model:
e support = a path, shortest path, longest path, ...
e values of domains = arcs, nodes

3. Apply a forward-backward pass to mark edges-nodes with
e the value of the best path supporting them

4. Remove all values not supported in the graph

65



Dynamic programming for
global constraints

Reqgular and variants
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Regular and variants

Automaton
. Regular . R,.EGULAR([Xl, A .X,J. [Pesant, 2004]

— Propagation based on breath-first-search in the unfolded automaton
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Regular and variants

Automaton
* Regular: REGULAR([Xl,...,Xn]. [Pesant, 2004]

— Propagation based on breath-first-search in the unfolded automaton

* Costregular: REGULAR([X1,....X,],A) A D0 cix, =Z

— Propagation based on shortest/longest path in the unfolded
automaton [Demassey, Pesant, Rousseau, 2004]
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Regular and variants

Automaton
* Regular: REGULAR,([Xl,...,Xn], [Pesant, 2004]

— Propagation based on breath-first-search in the unfolded automaton

* Costregular: REGULAR([Xq,..., Xo,A) N> cix, =Z

— Propagation based on shortest/longest path in the unfolded
automaton [Demassey, Pesant, Rousseau, 2004]

 Multi-cost regular : MurLTI-cosT REGULAR([ X1, ..., X,.].[Z, ..., Z*], A)

REGULAR([X1,..., Xy],A) A (X, ¢ix. =Z2",Vr=0,...,R)

— Propagation based on resource constrained shortest/longest path

— Sequencing and counting at the same time
* Personnel scheduling
* Routing

— Example: combine Regular and GCC
67

[Menana, Demassey, 2009]



Regular and variants
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Regular and variants

 Multi-cost regular :
REGULAR([X1,..., Xn],A) A (X1 ¢ix. =Z",Vr=0,...,R)
« Example: .
— Schedule 7 shifts of type: night (N), day (D), rest (R) A1 Ao X3 Xy X5 X6 A7

— (1) “A Rest must follow a Night shift” unmnnun

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”
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Regular and variants

 Multi-cost regular :
REGULAR([X1,..., X,],A) A (O ¢y, =Z"Vr=0,...,R)
* Example: ;
— Schedule 7 shifts of type: night (N), day (D), rest (R) A1 Ao X3 Xy X5 X6 A7

— (1) “A Rest must follow a Night shift” nnmnnun

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R,D R =2

N D RN

@
@ e GCC([X4,...,X7],[3,0,1],[3,7,1])
R
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Regular and variants

* Multi-cost regular :
REGULAR([X1,..., X,],A) A (X ¢ix. =Z",Vr=0,...,R)
* Example: ;
— Schedule 7 shifts of type: night (N), day (D), rest (R) A1 Az A3 Ag A5 A6 A7

— (1) “A Rest must follow a Night shift” unmnnnu

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R,D R—9

‘ Xy Xo X3 Xy X5 Xg Xy Xy Xo X3 Xy X5 Xg X7
N chlr 111|122 2o |o|o|o|olofo

@ e cvlo|o|o]o|olo]lo cxl1 1111 ]1]1]1
= ‘f}?o olo|Oo|0]|O]|O ¢xlolololololo]o
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Regular and variants

* Multi-cost regular :
REGULAR([X1,..., X,],A) A (O ¢y, =Z"Vr=0,...,R)
* Example: ;
— Schedule 7 shifts of type: night (N), day (D), rest (R) A1 Az A3 Ag A5 A6 A7

— (1) “A Rest must follow a Night shift” nnmnnun

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R,D R —9
‘ Xy Xo X3 Xy X5 X6 Xy Xy Xo X3 Xy X5 X6 Xy
N chl1 (1 ]1]1]1]1]1 2o |o|o|o|o|o]o
@ e cviololololololo cxl1 111 ]2f2]2
A 2
= Crlo|O|O|O|O]O]|O Cglo o (oo |O]|O|O




Regular and variants

 Multi-cost regular :
REGULAR([X1,..., Xn],A) A (X1 ¢ix. =Z",Vr=0,...,R)
« Example: .
— Schedule 7 shifts of type: night (N), day (D), rest (R) A1 Ao X3 Xy X5 X6 A7

— (1) “A Rest must follow a Night shift” unmnnun

— (2) “Exactly 3 day shifts and 1 night shift must take place in the week”

R,D R=2

‘ X1 Xo X3 Xy X5 X6 X7 X1 Xo X3 Xy X5 X X7
N chl1 (1 ]1]1]1]1]1 2o |o|o|o|o|o]o
@ e cxlo |o|ofofolo]o evlrlr 11 ]1]2]12
= crlo [o o]0 |o]o]o ¢k|o o |o|o|o]olo

* D D (1,0}



Dynamic programming for
global constraints

* WeightedCircuit

69



Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, 2)

next; . immediate successor of i in the tour
z . distance of the tour
d : matrix of distances. d;; is the distance of arc (i,j)

. n
next variables must form a tour and D _;_q di next; = 2
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Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, 2)

next; . immediate successor of i in the tour
z . distance of the tour
d : matrix of distances. d;; is the distance of arc (i,j)

: n
next variables must form a tour and ) ;1 di,next; =

@ z=(1+3+3+24+1)=10

3 nexty = 3
] nexrts = 2
1 3 .
nexts = 1
(0
2

70




Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, 2)

next; : immediate successor of i in the tour
z . distance of the tour

d : matrix of distances. d;; is the distance of arc (i,j)

: n
next variables must form a tour and ) ;1 di,next; =

* Filter the lower bound of z by solving a relaxation of the TSP

* Detect mandatory/forbidden arcs regarding the upper
bound of z

e Applications in routing
71



Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, 2)

next; . immediate successor of i in the tour
z . distance of the tour
d : matrix of distances. d;; is the distance of arc (i,j)

. n
next variables must form a tour and D _;_q di next; = 2

 Many problems involve side-constraints such as precedences,
time-windows, vehicle capacity, ... constraining the position of
a city/client in the tour or relative positions of clients

* A useful variable for reasoning:
pos; : position of city I In the tour
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Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, |posy,...,posy|, 2)

next; : immediate successor of i in the tour
pos; . position of city i in the tour
2z distance of the tour

d : matrix of distances. d;; is the distance of arc (i,})
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Weighted Circuit

WEIGHTEDCIRCUIT(|nexty, ..., next,|, |posy,...,posy|, 2)

next; : immediate successor of i in the tour
pos; . position of city i in the tour
z . distance of the tour
d : matrix of distances. d;; is the distance of arc (i,})

@ r=(1+4343+2+1) =10
1 3 next; = 3 posy = 1
N nexts = 2 posz =3
1 3 posz = 2
posy = 4
=9

nexts = 1
(0

Relaxation of TSP to filter 2 ?
/3



Weighted Circuit - TSP relaxations
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Definition 1
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* Connectivity

* Degree 2
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[Held and Karp. 1970] 24



Weighted Circuit - TSP relaxations

Definition 1

/
* Connectivity

* Degree 2
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\

(

Connectivity \

v

One-Tree

[Held and Karp. 1970]

Definition 2

/
 (Circuit n arcs

* Degree 2
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A

Assignment
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Weighted Circuit - TSP relaxations

Definition 1

~ R
* Connectivity
* Degree 2

(. /

(

Connectivity \

v

One-Tree

[Held and Karp. 1970]

Definition 2

e D
e (Circuit n arcs
* Degree 2

g J

« D
| egree 2 )
A

Assignment
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Weighted Circuit - TSP relaxations

Definition 1
s R
* Connectivity

* Degree 2
- /
-
*  Connectivity
\- Peuoree2
A4
One-Tree

[Held and Karp. 1970]

Definition 2

4 D
e (Circuit n arcs
* Degree 2

\_ J

« D
. egree 2 )
A

Assignment

74

*  (Circuit n arcs

v

Shortest path with n arcs

[Christophides et al. 1981]
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n-path relaxation

support of 2 = a shortest path

value 5 of nexty

value 2 of poss

1 2 3 4 5
posItions -



Nn-path relaxation

n-path relaxation: a circuit of n-arcs

f*(k,1): length of an optimal path starting from 1 and reaching i
iIn exactly k arcs.

We are looking for f*(n, 1)

/6



n-path relaxation

n-path relaxation: a circuit of n-arcs

f*(k,1): length of an optimal path starting from 1 and reaching i
iIn exactly k arcs.

We are looking for f*(n, 1)

f* (/f, Z) = min (f*(k — 1,j) + djqj) Vk,Vi s.t k €|D(pos;)
j €D (pred;)

positions 76



n-path relaxation

n-path relaxation: a circuit of n-arcs

f*(k,1): length of an optimal path starting from 1 and reaching i
iIn exactly k arcs.

We are looking for f*(n, 1)

f* (/f, Z) = min (f*(k — 1,j) + djqj) Vk,Vi s.t k €|D(pos;)
j €D (pred;)

Filtering of both successors
and positions

Complexity in O(n?)

positions 76



one-tree versus n-path

N-Path without position
information

Z=9

N-Path with position
One-Tree iInformation
(one-arborescence) z=9

77




one-tree versus n-path

N-Path without position
information

Z=9

N-Path with position
One-Tree iInformation
(one-arborescence) z=9

- [Ducomman et al. 2016 |




Dynamic programming for
global constraints

* Reformulation of global constraints and MDD
domains ?

/8



Reformulations of global constraints

* Reformulating global constraints with small arity
constraints to simulate the DP algorithm with AC on the
corresponding constraint network:

* Regular [Quimper and Walsh, 2007 ]
* Bound AllDifferent
* Bound GCC

* Slides [Bessiere et al. 2008 ]

} [Bessiere et al. 2009 |
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Reformulations of global constraints

* Reformulating global constraints with small arity
constraints to simulate the DP algorithm with AC on the

corresponding constraint network:

* Reqular [Quimper and Walsh, 2007 ]
* Bound AllDifferent } ‘Bessiere et al. 2009 ]

* Bound GCC

* Slides [Bessiere et al. 2008 ]

« MDD domains, a form of Dynamic programming 7
 Multi-valued Decision Diagram MDD consistency
* Explicit representation of more refined potential solution
space [Hooker et al. 2007]
e Limited width defines relaxation MDD
 Overcome the current limit that : « constraints are
communicating through domains »
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Outline

3. lllustration with a real-life application
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- Star Scheduler

Planet that orbits a star -~ sun
e Earth twin 7

~ 2000 planets discovered
* A few dozens with direct imaging

 Some light years distance from earth
e million times less brilliant than their stars

New Observation tools:
VLT SPHERE

 Anne-Marie Lagrange

* Beta pictoris b (2008)



Star Scheduler

Extrasolar planet observation
From earth: the VLT (Chili)

* M} * @  The Astrophysicists
" {g( T e Survey potential stars
o  Book a fixed set of nights within the budget

About 100.000 euros a night

 Decide the observation schedule for each
night to maximize scientific interest

33



Star Scheduler

Extrasolar planet observation
From earth: the VLT (Chili)

Main constraints

e Visibility period of the stars
e Position in the sky intluence
e Quality of the observation
e [ ength of the observation
 Some stars are scientifically more
important than others
. CaLi4bration (runs, earthquake)




Star Scheduler

77, d’| - visibility interval

p! : duration of
the observation

w, : scientific interest

85



- — ©.. Star scheduler

e dl—r7 |
The meridian instant m; = —5— is a mandatory instant of
: : . ' d? —
observation, that is for every star i: p] > =5

The observations must be scheduled by non-decreasing
meridian time

86
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e dl—r7 |
The meridian instant m; = —=— is a mandatory instant of
I . ] . dj_,r‘j
observation, that is for every star i: p; > =5

The observations must be scheduled by non-decreasing
meridian time

87



- — ©.. Star scheduler

e dl—r7 |
The meridian instant m; = —5— is a mandatory instant of
: : . ' d? —
observation, that is for every star i: p] > =5

The observations must be scheduled by non-decreasing
meridian time

38
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night 2

Star Scheduler

. o ™ - v =]
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Star Scheduler

™

L
night 2

!

night 1

- ™ < (Fa) o

A solution
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@ ... StarScheduler

A MIP moael

»= 1 Iiff 1 Is observed in night j

D Zg — ~i

J ~J
visibility interval RN 7 |
of night | ti+plz) <dlz) + M(1—2))

»|= starting time of |

J J
zi o+ 2z < Yiq,io

+115 =1iff i1 and i2 are

11 <12 If on the

— "|observed the same night

same night ts, +pg1 <ty + M1 -y i)
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. 1 Star Scheduler
A MIP model

e — AU
L ; : | /
4 v " 7
o Q / r ' 3 pa X
ol — ' ”
> — ] \ ‘(‘. ‘
") A s ol
2 ) . r ’ 4 \‘.\\
L) ™ g y " "a. 71"
' \\\ - ', .“\ _\:‘- '\
p - "' ’ o
. % 4 ] ) >
\

I observations max Zz wilz;

J: nights

= 1 1ff i IS observed

= 1 iff 1is observed in night |

i —F
visibility interval ;25 S|t
of night | t ]

J J
z: +z < Yiq,io

+1

11 <12 If on the

»|= starting time of |

+plal <dlzl + M(1-2))

= 11ff 11 and 12 are
— "|observed the same night

same night ti. +p3 <t;,, + M(1— yil,iQ)
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P | .
e R - J
L : - | /
N . r | '\\- M T e N
ol -~ & o "
>3 — ‘ \ of°
" y y ", oS
. « N 29 "o _‘ ' - \\.‘
a1\ 4 " "4
. S\ ) \ . e '\_:" >
‘, .“) " P
S, N
\ )

I observations max Zz wilz;

J: nights

A MIP moael

= 1 1ff i IS observed

= 1 iff 1is observed in night |

i —F
visibility interval ;25 S|t
of night | t ]

J J
z: +z < Yiq,io

+1

11 <12 If on the

»|= starting time of |

+plal <dlzl + M(1-2))

= 11ff 11 and 12 are
— "|observed the same night

same night ti, +p3 < t;, + M(l — yil,iz)

Very poor linear relaxation, does not scale in memory O(n*m)
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Star Scheduler - A CP model

A CP model:
* Use optional tasks of CPO and NoOverlap for each night

92



Star Scheduler - A CP model

A CP model:
* Use optional tasks of CPO and NoOverlap for each night

max z = ). W;Z;

ij,g:zi Vi

zl =1< taskg 1S present Vi V]
NOOVERLAP([task!, ... taskl])  V;j
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Star Scheduler - A CP model

A CP model:
* Use optional tasks of CPO and NoOverlap for each night
max z = ). W;Z;
Zj 2 = 2 | V1
z] =1 &|task; |is present ViVy
NOOVERLAP([task?, ... taskl])  Vj

+ precedences when on the same night

+ cligue of known incompatible observations

e Best results (LNS) with a blackbox model but remains unable to
nandle the real-life dataset (800 observations, 142 nights)

* No effective filtering and no interesting global upper bound
92




Star Scheduler - The single night problem
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Star Scheduler - The single night problem
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Star Scheduler - The single night problem

: — ] [———]
C 4 2

»
3" L e ———————
C 3
W L A 1 5 [
C ]
6 [ B ]

Find and schedule a subset S of observations s.t
> . w; is maximized
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Star Scheduler - The single night problem

: S ] [— ——]

»
3 L N, ———————
[ 1
W L A 1 5 ]
C ]
6 L B ]

Find and schedule a subset S of observations s.t
> . w; is maximized
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Star Scheduler - The single night problem

- 0 000 . N s
A . 5
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Star Scheduler - The single night problem

3 | E
oy

1 E - { ]
]
[ ———]

T

j -

5

: ey ]
6 F ]

e Suppose observation 3 is scheduled
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Star Scheduler - The single night problem

: S ] [— ——]

s | B — ]

L
E E

—_
o

e Suppose observation 3 is scheduled
e 6 Is Incompatible
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Star Scheduler - The single night problem

L 1

1 - { ]
1

[
3 |E —]
I
[ 1
4 A .| 5

o | ]

e Suppose observation 3 is scheduled

* 0 Is incompatible

e | eft and right subproblems are independent (observations are
scheduled in non-decreasing time of their meridians)




Star Scheduler - The single night problem

r
3 |k

E 000 i [— —]
1
1
]

F=s
T

—_
o

s | s ]

f(i,t) : maximum interest with observations 1 to i (schedule
order) and such that i ends before time t

max(f(i—1,t), f(i = 1,t —ps) +wi) e [l,n],t€r+pi,di]
Fiot) = f(z—1,1) e [1,n],t € [0,7; + p;]
f(i,d;) e [1,n],t €ld;, T]
0 z':O,te 0,T]

f(n,T) can be found in O(nT)
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Star Scheduler - An improved CP model

/ interest of night |

max z = ) linterest;

>, 7 < Vi
NIGHTNOOVERLAP([z{, o2, interest;) Vj

'

Update tnterest; based on the observations assigned in the night
~ilter observations that can not fit in the night anymore
-ilter interest; using DP

—orce (in the night) observations that are mandatory to reach
interest;

96




Star Scheduler - An improved CP model

/ interest of night |

max z = ) linterest;

>zl <1 Vi

NIGHTNOOVERLAP([z{, o2, interest;) Vj

+ scheduling is excluded from the search space
+ strong filtering for each night

- nights remains filtered independently, no strong lower bound

97
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Star Scheduler - Back to MIP

An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
maximum interest

98



Star Scheduler - Back to MIP

An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
maximum interest

max S:j S:keﬂj wfpf
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An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
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] = 1 1ff k-th schedule of night j is
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An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
maximum interest

— = 1 iff k-th schedule of night j is
max ;) pdo|Wip; selected
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Star Scheduler - Back to MIP

An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
maximum interest

= 1 iff k-th schedule of night j is

max ) ;) pdo. wfi selected
E_q o (exactly one schedule
ZkEQj P; J for each night)

pi €{0,1} Vk.e Q,,Vj



Star Scheduler - Back to MIP

An extended LP formulation:
* One variable (a column) = one night schedule
e Constraints of the LP:
* Exactly one schedule for each night
 One observation occurs in at most one schedule
* Objective is the find the combination of schedules with
maximum interest

— = 1 iff k-th schedule of night j is
max ;) pdo|Wip; selected

k— 1 v (exactly one schedule
2k, P 7 for each night)

Zj Zkegzj Sqlijﬂé? <1 Vi (observations are assigned to at
most one night)
pi €1{0,1} vk, Q;,V)



Star Scheduler - Back to MIP

An extended LP formulation

(}; : the set all possible schedules of night j
sf"j = 1 iff observation i belongs to the k-th schedule of night j
(sTs---.55 ) :0/1 description of the k-th schedule of night |

wh =37, w;sk ;: interest of the k-th schedule of night |

— = 1 iff k-th schedule of night j is
max ;) pdo|Wip; selected

k— 1 4 (exactly one schedule
Z’“EQJ P3 / for each night)

Zj Zkegzj Sqlijﬂé? <1 Vi (observations are assigned to at
most one night)
pi €{0,1} vk € Q;,V]



Star Scheduler - Back to MIP

= 1 iff k-th schedule of night j is

W k1—> selected p% e {0,1}
max ;2 peq, Wil :

> ke pé? — 1 (exactly one schedule for each night)

Zj D ke, Sﬁjp? < 1 (observations are assigned to at
most one night)

The LP relaxation can be solved by column generation:

* |teratively add a variable (schedule) of maximum
reduced cost

* Only a tiny fraction of the variables are needed
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Star Scheduler - Back to MIP

max Zj Zkeﬂj wécpul;

The LP relaxation can be solved by column generation:
e [teratively add a variable (schedule) of maximum reduced cost
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Star Scheduler - Back to MIP

max Zj Zkeﬂj w;cp?
Zkeﬂ- ,0? =1 Vi ()

S:j xkgg- S,If,jp;? <1Vi |(Bi)

The LP relaxation can be solved by column generation:
e [teratively add a variable (schedule) of maximum reduced cost
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Star Scheduler - Back to MIP

Zkeﬂ- ,0? =1 Vi ()

S:j xkgg- S,If,jp;? <1Vi |(Bi)

The LP relaxation can be solved by column generation:
e [teratively add a variable (sohedule) of maximum reduced cost

TC(IO;{) — _a] Z@ Sz,jﬁfb
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Star Scheduler - Back to MIP

Zkeﬂ- ,0? =1 Vi ()

S:j xkgg- S,If,jp;? <1Vi |(Bi)

The LP relaxation can be solved by column generation:
e [teratively add a variable (sohedule) of maximum reduced cost

TC(,O?) — — Q5 — Zz Sz,jﬁz
TC(P;?) — Z (w; 5@) — O
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Star Scheduler - Back to MIP

Zkeﬂ- ,0? =1 Vi ()

S:j xkgg- S,If,jp;? <1Vi |(Bi)

The LP relaxation can be solved by column generation:
e [teratively add a variable (sohedule) of maximum reduced cost

TC(,O?) — — Q5 — Zz Sz,jﬁz
TC(P;?) — Z (w; 5@) — O

* Solve the one night problem where w; is replaced by
(wi — Bi)

101



Star Scheduler - An improved CP model

max z = ) linterest;

>4 < Vi
NIGHTNOOVERLAP([z{ L., 20 interest;) Y
OBJECTIVE([2{,...,2™], 2)

Solve the LP relaxation by column generation:

e Filter the upper bound of z

* Reduced-cost filtering to exclude/force observations
into nights ?

Branch and price algorithm implemented in a CP framework
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Star Scheduler - Back to MIP

 The reduced cost of the k-th schedule of night |

TC(,O]) _w] — Gy Zz S’L]ﬁz
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Star Scheduler - Back to MIP

 The reduced cost of the k-th schedule of night |
re(py) = wi — o — Y. 87 B

 How to filter the upper bound of a z;ZvariabIe, l.e. excluding
observation i from night j 7
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Star Scheduler - Back to MIP

 The reduced cost of the k-th schedule of night |

re(py) = wi — o — Y. 87 B

 How to filter the upper bound of a z;ZvariabIe, l.e. excluding
observation i from night j 7

 What is smallest decrease of the objective over all possible
schedules that includes 1 in night J ?
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Star Scheduler - Back to MIP

 The reduced cost of the k-th schedule of night |

k k k
re(pf) = wi — oy — ) . 8¢ 0
 How to filter the upper bound of a z;ZvariabIe, l.e. excluding
observation i from night j 7

 What is smallest decrease of the objective over all possible
schedules that includes 1 in night J ?

z* 5+ max re(pf))| < 2z J 41
LP keﬂﬂsf’j:( (P5))|<z = 2] #
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Star Scheduler - Back to MIP

The reduced cost of the k-th schedule of night j
re(py) = wi — o — Y. 87 B

How to filter the upper bound of a z;Z variable, i.e. excluding
observation i from night j 7

What is smallest decrease of the objective over all possible
schedules that includes 1 in night J ?

z* 5+ max re(pf))| < 2z J 41
LP keﬂﬂsf’j:( (P5))|<z = 2] #

The two steps backward-forward resolution of the DP
provides exactly this information.
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5

Branch and price proves to be extremely efficient
(benchmark of 21 instances):

* The real-life instance (800 observations, 142 nights) is
solved optimally in less than 10 minutes

18 Instances are solved optimally between 1 to 20 minutes

e 3 instances remains open in 2h time limit but the optimality
gap is less than 0.11 %

» All feasible solutions significantly improves the MIP/CP

approach
104
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B . AT Results

[Catusse et al. 2016]

Branch and price proves to be extremely efficient
(benchmark of 21 instances):

* The real-life instance (800 observations, 142 nights) is
solved optimally in less than 10 minutes

18 Instances are solved optimally between 1 to 20 minutes

e 3 instances remains open in 2h time limit but the optimality
gap is less than 0.11 %

» All feasible solutions significantly improves the MIP/CP

approach
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Outline

1. Reduced-costs based filtering

e Linear Programming duality
e First example: AtMostNValue
e Filtering the upper bound of a 0/1 variable
e Filtering the lower bound of a 0/1 variable
* General principles
e Second example
* Assignment, Cumulative, Bin-packing, ...

2. Dynamic programming filtering algorithms

* | inear equation, WeightedCircuit
* General principles
e Other relationships of DP and CP
3. lllustration with a real-life application
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Conclusion

Focus of this talk:

Investigate/understand filtering techniques beyond polynomial
sub-problems (beyond local-consistencies)

elp us to grow a better understanding of OR
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