
Algorithm Selection and
Portfolios

(and Algorithm Configuration)

Lars Kotthoff
University of British Columbia

larsko@cs.ubc.ca

ACP Summer School, Cork, June 20-24 2016

1 / 85

larsko@cs.ubc.ca

Outline

▷ Motivation
▷ Algorithm Configuration
▷ Algorithm Configuration Exercises (after break)
▷ Algorithm Selection and Portfolios (tomorrow morning)

2 / 85

Big Picture

▷ advance the state of the art through meta-algorithmic
techniques

▷ rather than inventing new things, use existing things better

3 / 85

Prominent Application

Fréchette, Alexandre, Neil Newman, Kevin Leyton-Brown. “Solving the
Station Packing Problem.” In Association for the Advancement of Artificial
Intelligence (AAAI), 2016.

4 / 85

Performance Differences

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

V
irt

ua
l B

es
t S

A
T

Virtual Best CSP

Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus:
A Hierarchical Portfolio of Solvers and Transformations.” In CPAIOR, 2014.

5 / 85

Leveraging the Differences

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla: Portfolio-Based Algorithm Selection for SAT.” J. Artif. Intell. Res.
(JAIR) 32 (2008): 565–606.

6 / 85

Performance Improvements

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning

– Competitive with the state of the art

– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
,
o
p
ti
m

iz
e
d
 f
o
r

IB
M

−
B

M
C

 (
s
)

4.5-fold speedup

on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
,
o
p
ti
m

iz
e
d
 f
o
r

S
W

V
 (

s
)

500-fold speedup won category

QF BV in 2007 SMT competition
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

Hutter, Frank, Domagoj Babic, Holger H. Hoos, and Alan J. Hu.
“Boosting Verification by Automatic Tuning of Decision Procedures.” In
FMCAD ’07: Proceedings of the Formal Methods in Computer Aided Design,
27–34. Washington, DC, USA: IEEE Computer Society, 2007. 7 / 85

Algorithm Configuration

8 / 85

Algorithm Configuration

Given a (set of) problem(s), find the best parameter configuration.

9 / 85

Parameter Configurations?

▷ anything you can change
▷ e.g. search heuristic, variable ordering, type of global

constraint decomposition
▷ some will affect performance, others will have no effect at all

10 / 85

Examples

▷ Spear SAT solver, 26 parameters
▷ CPLEX MIP solver, 76 parameters
▷ WEKA machine learning package, 3 feature search methods, 8

feature evaluators, 39 classifiers (of which 12 can be combined
with other classifiers)…

11 / 85

Automated Algorithm Configuration

▷ no background knowledge on parameters
▷ algorithm treated as a “black box”
▷ as little manual intervention as possible

12 / 85

Motivation

“Unlike our human subjects, [the system] experimented
with a wide variety of combinations of heuristics. Our
human subjects rarely had the inclination or patience to
try many alternatives, and on at least one occasion
incorrectly evaluated alternatives that they did try […].”

Minton, Steven. “Automatically Configuring Constraint Satisfaction
Programs: A Case Study.” Constraints 1 (1996): 7–43.

13 / 85

Algorithm Configuration

Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on
Tutorial”, AAAI 2016

14 / 85

In Context

Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on
Tutorial”, AAAI 2016

15 / 85

Parameter Spaces

▷ numeric – 1, 2, 3…
▷ ordinal – a, b, c…
▷ categoric – ACP, UBC, UCC…
▷ conditional dependencies – e.g. if A is 1, B can’t be 2, C is

only active if A is >2
→ not every tool suitable for every type of parameter

16 / 85

General Approach

▷ evaluate algorithm as black box function
▷ observe effect of parameters without knowing the inner

workings
▷ balance diversification/exploration and

intensification/exploitation

17 / 85

Choosing Instances

▷ we want configurations that generalise, i.e. good for more
than one instance

▷ similar problem to machine learning – want models that
generalise

▷ split instances into training set (which we configure on) and
test set (which we only evaluate performance on)

▷ need to balance easy/hard instances in both sets

18 / 85

When are we done?

▷ most approaches incomplete
▷ cannot prove optimality, not guaranteed to find optimal

solution (with finite time)
▷ performance highly dependent on configuration space

→ How do we know when to stop?

19 / 85

Time Budget

How much time/how many function evaluations?
▷ too much → wasted resources
▷ too little → suboptimal result
▷ use statistical tests
▷ evaluate on parts of the data
▷ for runtime: adaptive capping

20 / 85

Grid and Random Search

▷ evaluate certain points in parameter space

Bergstra, James, and Yoshua Bengio. “Random Search for
Hyper-Parameter Optimization.” J. Mach. Learn. Res. 13, no. 1 (February
2012): 281–305.

21 / 85

Population-Based Methods

▷ e.g. Racing and Genetic Algorithms
▷ start with population of random configurations
▷ eliminate “weak” individuals
▷ generate new population from “strong” individuals
▷ iterate

Birattari, Mauro, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle.
“F-Race and Iterated F-Race: An Overview.” In Experimental Methods for the
Analysis of Optimization Algorithms, 311–36. 2010.

Ansótegui, Carlos, Meinolf Sellmann, and Kevin Tierney. “A Gender-Based
Genetic Algorithm for the Automatic Configuration of Algorithms.” In CP,
142–57, 2009.

22 / 85

Local Search

▷ start with random configuration
▷ change a single parameter (local search step)
▷ if better, keep the change, else revert
▷ repeat
▷ optional (but important): restart with new random

configurations

Hutter, Frank, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.
“ParamILS: An Automatic Algorithm Configuration Framework.” J. Artif. Int.
Res. 36, no. 1 (2009): 267–306.

23 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

24 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

25 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

26 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

27 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

28 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

29 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

30 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

31 / 85

Local Search Example
Going Beyond Local Optima: Iterated Local Search

?

Selection (using Acceptance Criterion)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33

graphics by Holger Hoos

32 / 85

Model-Based Search

▷ build model of parameter-response surface
▷ allows targeted exploration of new configurations
▷ (can take instance features into account like algorithm

selection)

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential
Model-Based Optimization for General Algorithm Configuration.” In LION 5,
507–23, 2011.

33 / 85

Model-Based Search Example

● ●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

0.000

0.025

0.050

0.075

y
ei

0.00 0.25 0.50 0.75 1.00
x

type

● init

prop

type

y

yhat

ei

Iter = 1, Gap = 0.0000e+00

graphics by Bernd Bischl with mlrMBO R package 34 / 85

Model-Based Search Example

● ●

●

●

●

●

●

●

●

●0.0

0.2

0.4

0.6

0.000

0.005

0.010

0.015

0.020

y
ei

0.00 0.25 0.50 0.75 1.00
x

type

● init

prop

seq

type

y

yhat

ei

Iter = 6, Gap = 0.0000e+00

graphics by Bernd Bischl with mlrMBO R package 35 / 85

Model-Based Search Example

● ●

●

●

●

●

●

●

●

●0.0

0.2

0.4

0.6

0.000

0.002

0.004

0.006

0.008

y
ei

0.00 0.25 0.50 0.75 1.00
x

type

● init

prop

seq

type

y

yhat

ei

Iter = 13, Gap = 0.0000e+00

graphics by Bernd Bischl with mlrMBO R package 36 / 85

Model-Based Search Example

● ●

●

●

●

●

●

●

●

●0.0

0.2

0.4

0.6

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

y
ei

0.00 0.25 0.50 0.75 1.00
x

type

● init

prop

seq

type

y

yhat

ei

Iter = 20, Gap = 0.0000e+00

graphics by Bernd Bischl with mlrMBO R package 37 / 85

Practical Considerations

▷ poorly-specified parameter spaces
▷ incorrect results with some configurations
▷ crashes
▷ instances to configure on?
▷ do not configure random seeds!

38 / 85

Overtuning

▷ similar to overfitting in machine learning
▷ performance improves on training instances, but not on test

instances
▷ configuration is too “tailored”, e.g. specific to satisfiable

instances

39 / 85

Analysis of Results

▷ ablation analysis
http://www.cs.ubc.ca/labs/beta/Projects/Ablation/

▷ functional ANOVA http://www.automl.org/fanova.html

40 / 85

http://www.cs.ubc.ca/labs/beta/Projects/Ablation/
http://www.automl.org/fanova.html

Tools and Resources

HPOlib http://www.automl.org/hpolib.html
iRace http://iridia.ulb.ac.be/irace/

mlrMBO https://github.com/mlr-org/mlrMBO
SMAC http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

Spearmint https://github.com/HIPS/Spearmint
TPE https://jaberg.github.io/hyperopt/

Auto-WEKA http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

Auto-sklearn https://github.com/automl/auto-sklearn

41 / 85

http://www.automl.org/hpolib.html
http://iridia.ulb.ac.be/irace/
https://github.com/mlr-org/mlrMBO
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/HIPS/Spearmint
https://jaberg.github.io/hyperopt/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://github.com/automl/auto-sklearn

Configurable SAT Solver Challenge

▷ http://aclib.net/cssc2014/
▷ idea: make solvers as configurable as possible, let the machine

do the rest
▷ avoids spurious results because of different configurations
▷ mitigates impact of instance bias

42 / 85

http://aclib.net/cssc2014/

Algorithm Configuration Exercises

▷ install Numberjack (if you haven’t already)
▷ install SMAC
▷ get

http://www.cs.ubc.ca/~larsko/numberjack-tuning.tar.gz
params.pcs parameter space definition
wrapper.py wrapper that takes parameter definitions from

SMAC and outputs result for SMAC
NQueens.py actual Numberjack model
instances-* problem instance (sizes) to run on
scenario.txt SMAC configuration file

▷ configure!
▷ smac --scenario scenario.txt

43 / 85

http://www.cs.ubc.ca/~larsko/numberjack-tuning.tar.gz

When it’s working…

▷ check correctness in wrapper
▷ find harder problem instances
▷ define additional parameters
▷ anything else you can think of!

44 / 85

Algorithm Selection

45 / 85

Motivation

Remember overtuning? What if we could leverage this?

46 / 85

Motivation
▷ different configurations (algorithms) good on different

instances
▷ have a portfolio of different configurations/algorithms and a

selector

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

V
irt

ua
l B

es
t S

A
T

Virtual Best CSP

Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus:
A Hierarchical Portfolio of Solvers and Transformations.” In CPAIOR, 2014.

47 / 85

Algorithm Selection

Given a problem, choose the best algorithm to solve it.

48 / 85

Original Model

x ∈ P
Problem space

A ∈ A
Algorithm space

p ∈ Rn

Performance
measure space

‖p‖ = Algorithm
performance

S(x)

Selection
mapping

p(A,x)

Performance
mapping

Norm
mapping

Rice, John R. “The Algorithm Selection Problem.” Advances in Computers
15 (1976): 65–118.

49 / 85

Contemporary Model

x ∈ P

Problem space
A ∈ A

Algorithm space

S

Selection model
S(x) = A

Prediction

p ∈ R
n

Performance
measure

∀x ∈ P
′
⊂ P ,

A ∈ A :
p(A,x)

Training data

Featureextraction

Feedback

50 / 85

Portfolios

▷ instead of a single algorithm, use several complementary
algorithms

▷ idea from Economics – minimise risk by spreading it out
across several securities

▷ same for computational problems – minimise risk of algorithm
performing poorly

▷ in practice often constructed from competition winners

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. “An Economics
Approach to Hard Computational Problems.” Science 275, no. 5296 (1997):
51–54. doi:10.1126/science.275.5296.51.

51 / 85

Evaluation of Portfolios

▷ single best algorithm
▷ algorithm with the best performance across all instances
▷ lower bound for performance of portfolio – hopefully we are

better!
▷ virtual best algorithm

▷ choose the best algorithm for each instance
▷ corresponds to oracle predictor or overhead-free parallel

portfolio
▷ upper bound on portfolio performance (assuming robust

performance measurements) – note difference to configuration

52 / 85

Contributions of Algorithms to Portfolios
▷ stand-alone performance – ignore that there is a portfolio
▷ marginal contribution – how much does the algorithm add to

the portfolio containing all other algorithms?
▷ Shapley value – how much does the algorithm add on average

to all possible portfolios?

SATzilla2009_R−2009−03−22 435.05627

TNM−2009−03−22 379.04912
gnovelty+2−2009−03−22 355.04639

hybridGM3−3 340.04505

adaptg2wsat2009++−2009−03−23 338.04435

T07 reference solver: gnovelty+−2007−02−08 318.04166

gNovelty+−T−2009−03−22 314.04094

march_hi−hi 313.03918

T07 reference solver: SATzilla−RANDOM 308.03953

T07 reference solver: March KS−2007−02−08 308.03854
T07 reference solver: adaptg2wsat+−2007−02−08 298.03911

iPAWS−2009−03−22 288.03806

63.32536

55.25959

44.50843

49.234

39.62439

35.03323

33.73186

57.89701

50.13046

52.41559

32.79246

30.11838

9e−05

3.00046

2.00041

5.00122

1.00019

0

2e−05

4.00051

0

0.00011

1.00011

5e−05

Standalone performance Shapley value Marginal contribution

Fréchette, Alexandre, Lars Kotthoff, Talal Rahwan, Holger H. Hoos, Kevin
Leyton-Brown, and Tomasz P. Michalak. “Using the Shapley Value to Analyze
Algorithm Portfolios.” In 30th AAAI Conference on Artificial Intelligence, 2016.

53 / 85

Parallel Porfolios

Why not simply run all algorithms in parallel?
▷ not enough resources may be available / waste of resources
▷ algorithms may be parallelized themselves
▷ memory contention
▷ …

54 / 85

Key Components of an Algorithm Selection System

▷ feature extraction
▷ performance model
▷ prediction-based selector/scheduler

optional:
▷ presolver
▷ secondary/hierarchical models and predictors (e.g. for feature

extraction time)

55 / 85

Features

▷ relate properties of problem instances to performance
▷ relatively cheap to compute
▷ specified by domain expert
▷ syntactic – analyse instance description
▷ probing – run algorithm for short time
▷ dynamic – instance changes while algorithm is running

56 / 85

Syntactic Features

▷ number of variables, number of clauses/constraints/…
▷ ratios
▷ order of variables/values
▷ clause/constraints–variable graph or variable graph:

▷ node degrees
▷ connectivity
▷ clustering coefficient
▷ …

▷ …

57 / 85

Probing Features

▷ number of nodes/propagations within time limit
▷ estimate of search space size
▷ tightness of problem/constraints
▷ …

58 / 85

Dynamic Features

▷ change of variable domains
▷ number of constraint propagations
▷ number of failures a clause participated in
▷ …

59 / 85

What Features do we need in Practice?

▷ trade-off between complex features and complex models
▷ in practice, very simple features (e.g. problem size) can

perform well

60 / 85

Types of Performance Models

▷ models for entire portfolios
▷ models for individual algorithms
▷ models that are somewhere in between (e.g. pairs of

algorithms)

61 / 85

Models for Entire Portfolios
▷ predict the best algorithm in the portfolio
▷ alternatively: cluster and assign best algorithms to clusters

optional (but important):
▷ attach a “weight” during learning (e.g. the difference between

best and worst solver) to bias model towards the “important”
instances

▷ special loss metric

Gent, Ian P., Christopher A. Jefferson, Lars Kotthoff, Ian Miguel, Neil
Moore, Peter Nightingale, and Karen E. Petrie. “Learning When to Use Lazy
Learning in Constraint Solving.” In 19th European Conference on Artificial
Intelligence, 873–78, 2010.

Kadioglu, Serdar, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney.
“ISAC – Instance-Specific Algorithm Configuration.” In 19th European
Conference on Artificial Intelligence, 751–56, 2010.

62 / 85

Models for Individual Algorithms

▷ predict the performance for each algorithm separately
▷ combine the predictions to choose the best one
▷ for example: predict the runtime for each algorithm, choose

the one with the lowest runtime

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla: Portfolio-Based Algorithm Selection for SAT.” J. Artif. Intell. Res.
(JAIR) 32 (2008): 565–606.

63 / 85

Hybrid Models

▷ get the best of both worlds
▷ for example: consider pairs of algorithms to take relations into

account
▷ for each pair of algorithms, learn model that predicts which

one is faster

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“Hydra-MIP: Automated Algorithm Configuration and Selection for Mixed
Integer Programming.” In RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion at the
International Joint Conference on Artificial Intelligence (IJCAI), 16–30, 2011.

Kotthoff, Lars. “Hybrid Regression-Classification Models for Algorithm
Selection.” In 20th European Conference on Artificial Intelligence, 480–85,
2012.

64 / 85

Overview – Machine Learning

classification regression clustering

Algorithm 1

Algorithm 2
Algorithm 2

Algorithm 1

Algorithm 2

Algorithm 1

65 / 85

Types of Predictions/Algorithm Selectors

▷ best algorithm
▷ n best algorithms ranked
▷ allocation of resources to n algorithms
▷ change the currently running algorithm?

Kotthoff, Lars. “Ranking Algorithms by Performance.” In LION 8, 2014.

Kadioglu, Serdar, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. “Algorithm Selection and Scheduling.” In 17th International
Conference on Principles and Practice of Constraint Programming, 454–69,
2011.

Stergiou, Kostas. “Heuristics for Dynamically Adapting Propagation in
Constraint Satisfaction Problems.” AI Commun. 22, no. 3 (2009): 125–41.

66 / 85

Time of Prediction

before problem is being solved
▷ select algorithm(s) once
▷ no recourse if predictions are bad

while problem is being solved
▷ continuously monitor problem features and/or performance
▷ can remedy bad initial choice or react to changing problem

67 / 85

Types of Machine Learning

Lots!

▷ depends on the type of prediction to make (e.g. label –
classification, number – regression)

▷ in general, all kinds of machine learning applicable
▷ good results in practice with methods that use some kind of

meta-learning, e.g. random forests

68 / 85

Example System – SATzilla

▷ 7 SAT solvers, 4811 problem instances
▷ syntactic (33) and probing features (15)
▷ ridge regression to predict log runtime for each solver, choose

the solver with the best predicted performance
▷ later version uses random forests to predict better algorithm

for each pair, aggregation through simple voting scheme
▷ pre-solving, feature computation time prediction, hierarchical

model
▷ won several competitions

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla: Portfolio-Based Algorithm Selection for SAT.” J. Artif. Intell. Res.
(JAIR) 32 (2008): 565–606.

69 / 85

Putting Configuration and Selection together – Hydra

▷ find best configuration
▷ find configuration that complements existing configuration

best
▷ iterate
▷ stop when no further improvement

Xu, Lin, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra: Automatically
Configuring Algorithms for Portfolio-Based Selection.” In Twenty-Fourth
Conference of the Association for the Advancement of Artificial Intelligence
(AAAI-10), 210–16, 2010.

70 / 85

Benchmark library – ASlib

▷ https://github.com/coseal/aslib_data
▷ currently 17 data sets/scenarios with more in preparation
▷ SAT, CSP, QBF, ASP, MAXSAT, OR
▷ includes data used frequently in the literature that you may

want to evaluate your approach on
▷ more scenarios in the pipeline
▷ http://aslib.net

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri
Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin
Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. “ASlib: A Benchmark
Library for Algorithm Selection.” To appear in Artificial Intelligence Journal.

71 / 85

https://github.com/coseal/aslib_data
http://aslib.net

EDA – Overview of algorithm performance
▷ runstatus
▷ performance plots
▷ (cumulative) density plots
▷ scatter plot for pairs of algorithms
▷ algorithm performance correlation

72 / 85

EDA – Selector performance comparison

▷ (basic) classification, regression, clustering selectors
▷ different machine learning techniques
▷ comparison to virtual best and single best

73 / 85

Algorithm Selection Challenge

▷ http://challenge.icon-fet.eu/
▷ ran on ASlib data
▷ all submissions and evaluation available

74 / 85

http://challenge.icon-fet.eu/

Tools

autofolio https://bitbucket.org/mlindauer/autofolio/
LLAMA https://bitbucket.org/lkotthoff/llama
SATzilla http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

75 / 85

https://bitbucket.org/mlindauer/autofolio/
https://bitbucket.org/lkotthoff/llama
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

(Much) More Information

http://larskotthoff.github.io/assurvey/

Kotthoff, Lars. “Algorithm Selection for Combinatorial Search Problems: A
Survey.” AI Magazine 35, no. 3 (2014): 48–60.

76 / 85

http://larskotthoff.github.io/assurvey/

Demo(ish) – LLAMA

77 / 85

LLAMA

▷ R package
▷ access to most machine learning methods in R
▷ implements the most common approaches from the literature

and a few extra ones
▷ open source

78 / 85

30 second tutorial – LLAMA and ASlib

library(llama)
library(aslib)

scenario = parseASScenario("QBF -2011/")
data = convertToLlamaCVFolds(scenario)

learner = makeLearner("classif.randomForest")
model = classify(learner , data)

mean(parscores(data, model))
> 9774.813
mean(parscores(data, vbs))
> 8337.099
mean(parscores(data, singleBest))
> 15228.53

79 / 85

Getting Started – LLAMA

library(llama)

data(satsolvers)

folds = cvFolds(satsolvers)

learner = makeLearner("classif.JRip")
model = classify(learner , folds)

mean(parscores(folds , model))
> 5611.417
mean(parscores(satsolvers , vbs))
> 4645.169
mean(parscores(satsolvers , singleBest))
> 5779.526

80 / 85

Example Data

▷ 19 SAT solvers
▷ 2433 instances
▷ 36 features

81 / 85

Under the Hood
model$models[[1]]$learner.model
JRIP rules:
===========

(dyn_log_propags <= 3.169925) and (log_ranges >=
3.321928) and (sqrt_avg_domsize >= 3.162278) and
(sqrt_avg_domsize <= 3.162278) => target=riss
(12.0/0.0)

(log_values <= 8.366322) and (log_values >= 8.366322)
and (dyn_log_nodes <= 6.066089) =>
target=MPhaseSAT64 (17.0/6.0)

(dyn_log_propags >= 23.653658) and (log_values <=
9.321928) => target=march_rw (253.0/108.0)

(dyn_log_avg_weight <= 5.149405) and (percent_global <=
0.079239) and (sqrt_avg_domsize >= 3.872983) and
(dyn_log_stdev_weight >= 3.961314) and
(dyn_log_nodes <= 8.005625) => target=glucose
(33.0/3.0)

(percent_global <= 0.048745) and (dyn_log_avg_weight <=
5.931328) and (sqrt_avg_domsize >= 3.872983) and
(dyn_log_nodes >= 5) and (dyn_log_propags <=
14.391042) => target=glucose (42.0/10.0)

(sqrt_avg_domsize <= 2.475884) and (log_constraints >=
11.920353) and (dyn_log_propags <= 21.202935) and
(log_bits >= 7.459432) => target=picosat (41.0/6.0)

(dyn_log_avg_weight <= 4.766713) and (log_constraints
>= 8.686501) and (dyn_log_nodes >= 2.807355) and
(dyn_log_propags <= 14.038405) => target=picosat
(59.0/23.0)

(dyn_log_avg_weight <= 5.422233) and (log_lists <=
6.72792) and (dyn_log_nodes >= 6) and (log_bits >=
6.459432) => target=picosat (24.0/5.0)

(percent_global >= 6.1207) and (dyn_log_nodes >=
5.285402) and (percent_avg_continuity >= 44.27353)
and (dyn_log_propags <= 20.543671) => target=picosat
(23.0/6.0)

(log_values >= 10.643856) and (log_bits <= -1) and
(dyn_log_avg_weight >= 7.939873) and
(log_constraints <= 6.686501) =>
target=cryptominisat (144.0/34.0)

(log_lists >= 8.214319) and (percent_global <=
0.022831) and (dyn_log_nodes >= 6.459432) and
(log_constraints >= 12.095067) =>
target=cryptominisat (19.0/3.0)

(log_lists >= 8.214319) and (log_constraints <=
12.005975) => target=cryptominisat (63.0/28.0)

(log_constraints <= 7.491853) and (log_values >=
10.643856) and (dyn_log_avg_weight >= 11.663147) =>
target=cryptominisat (52.0/16.0)

=> target=clasp (1651.0/1161.0)

Number of Rules : 14

82 / 85

Other Models
rflearner = makeLearner("classif.randomForest")
rfmodel = classify(rflearner , folds)
mean(parscores(folds , rfmodel))
> 5598.554

rplearner = makeLearner("classif.rpart")
rpmodel = classify(rplearner , folds)
mean(parscores(folds , rpmodel))
> 5561.635

this will take a long time...
rfrlearner = makeLearner("regr.randomForest")
rfrmodel = regression(rfrlearner , folds)
mean(parscores(folds , rfrmodel))
> 5689.075

rfpmodel = classifyPairs(rflearner , folds)
mean(parscores(folds , rfpmodel))
> 5945.246

83 / 85

Summary

Algorithm Selection choose the best algorithm for solving a
problem

Algorithm Configuration choose the best parameter configuration
for solving a problem with an algorithm

▷ mature research areas
▷ can combine configuration and selection
▷ effective tools are available

84 / 85

COSEAL

Co
nf

ig
ur

at
ion

 and Selection of Algorithms

 CO S E AL

Interested? Join the COSEAL group!

http://coseal.net 85 / 85

http://coseal.net

