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 Background (Parallelism, Concurrency, distributed

computing …)

 Parallelism in CP

 Distributed CSP

 Parallel propagation

 Portfolio method

 Parallel Search

 Time is money: how to manage the solving time 



Background
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 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Parallelism
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 Different kinds of parallelism

 Shared memory (multi-cores)

 Distributed

 Cloud

 Depends on the kind of communication you can have

 Memory

 Ad-hoc

 Message passing



Parallelism
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 Use machines (resources) at the same time (in 

parallel) in order to improve the resolution of a 

problem

 Non parallel = sequential

 Machine, core, resource, multi sockets, lame …

 Abstract entity = worker

 Worker = core on multicore, on multisocket etc…



Parallelism
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 Goal 

 gain a linear factor (#workers)

 gain a super-linear factor



Parallelism: example
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 Pb: count the number of houses on a maps

 //: split the problem into disjoint regions

 Solve the pb for each region independantly

 Sum up the results of each region

 We can expect a linear factor



Parallelism: example

Jean-Charles Régin, ACP Summer School, Cork, June 16

 Pb: sort an array of numbers

 //: use a merge sort

 We split the array into k disjoint groups

 1) We sort each group in //

 2) We merge the groups: hierarchically 2 by 2

 We can expect a linear gain for Point 1)

 Point 2) in linear? More Difficult



Parallelism: example
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 Search for a shortest path

 Not easy at all

 A Depth First Search?

 Very difficult to be linear

 // algorithms are quite different than sequential

ones



Parallelism: example
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 Search for the first white pixel in an image

 If you are lucky you can have a super linear gain!

 Extreme results: we can gain a lot or nothing!

 Increasing the number of workers is not a guarantee 

of improvements!



Parallelism performance
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 Nqueens problem in C

 Run in sequential

 Run in // 4 times the same problem

 Run in // 8

 Same experiments in Java



Benchmark: requires a lot of memory 
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Benchmark: almost no memory 
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Parallelism performance
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 Be careful with

 Hyper threading

 Number of memory channels



Background

Jean-Charles Régin, ACP Summer School, Cork, June 16

 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Concurrent programming
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 Model with shared memory

 Important to understand some fundamentals

concepts of parallelism

 Lock, mutual exclusion, critical section…

 In CP, often used by a master



Concurrent programming
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 The instructions between the two programs may be interleaved in 
any order

 Race condition:  If instruction 1B is executed between 1A and 3A 
the program will produce incorrect data. 

 Solution: use a lock to provide mutual exclusion. 

 A lock allows one thread to take control of a variable and prevent 
other threads from reading or writing it, until that variable is 
unlocked. 

 The thread holding the lock is free to execute its critical section (the 
section of a program that requires exclusive access to some 
variable), and to unlock the data when it is finished. 



Race condition
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 A lock manage a mutual exclusion

 Only one thread can access to the critical section

 One thread will successfully lock variable V, while the 
other thread will be locked out (unable to proceed until 
V is unlocked again).



Lock
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 Drawbacks of locks

 Possibility of program deadlock

 Deadlock : 

 If two threads each need to lock the same two 
variables using non-atomic locks, it is possible that 

 one thread will lock one of them

 the second thread will lock the second variable. 

 In such a case, neither thread can complete, and 
deadlock results.

 Solution lock of lock (atomic lock)



Lock
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 Drawbacks of locks

 May slow down the program

 Lock-free algorithm

 Try to avoid locks, use atomic operation.



Atomicity
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 An operation (or set of operations) is atomic, if it 

appears to the rest of the system to occur 

instantaneously. 

 Guarantee of isolation from concurrent processes.



Atomic operations
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 From Intel

= x read the value of x

x= write the value of x, and return it

x.fetch_and_store(y) do x=y and return the old value of x

x.fetch_and_add(y) do x+=y and return the old value of x

x.compare_and_swap(y,z) if x equals z, then do x=y. In either case, return 

old value of x.



Atomic operation
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 Attention, 

 x=12 is atomic

 x=y is NOT atomic, because one read and one write!

 x.compare-and-swap (y,z)

 if x equals z, then do x=y. In either case, return old value 
of x.

 UpdateX() {
do {
oldx=globalx
// Compute new value 
newx = ...expression involving oldx.... 
// Store new value 
// if another thread has not changed globalx. 

}while(globalx.compare_and_swap(newx,oldx)!=oldx); 



Synchronized Priority Queue
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 Usually this is the only one synchronized data 

structure that is needed in parallel CP algorithms.



Concurrent programming
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 Implementation: thread or process?

 In the past there was a difference

 Today, almost no difference on Linux

 Processes are slower on windows (but not a lot)



Background
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 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Concurrent or distributed?
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 Since concurrent programming is not easy, we can

consider distributed programming

 We avoid shared memory

 However, some other problems appear…



Distributed/Cloud

Jean-Charles Régin, ACP Summer School, Cork, June 16

 A distributed system is a model in which components 
located on networked computers communicate and 
coordinate their actions by passing messages.

 Distributed computing refers to the use of distributed 
systems to solve computational problems.

 a problem is divided into many tasks, each of which is 
solved by one or more computers, which communicate with 
each other by message passing.

 Main issues:

 Load balancing (also for threads)

 Communication time

 Fault tolerance (not considered here)



Load balancing
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 Very important

 Load balancing distributes workloads across multiple 
computing resources, such as computers, a computer 
cluster, network links, central processing units... 

 Load balancing aims to optimize resource use

 The usage of resources (workers) is well balanced if the 
amount of work performs per each worker is globally 
equivalent

 Bad load balancing: starving. Some workers have no 
longer any work



Communication impact
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 May be the bottleneck of the application

 Cost of message transmissions

 Number of communications

 That’s the case with SAT solvers which communicates

no-goods



Background
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 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Data parallelism
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 Data parallelism focuses on distributing the data across 
different parallel computing nodes. 

 It contrasts to task parallelism as another form of parallelism.

 Data parallelism emphasizes the distributed (parallelized) 
nature of the data, as opposed to the processing (task 
parallelism).

 In a multiprocessor system executing a single set of 
instructions, data parallelism is achieved when each 
processor performs the same task on different pieces of 
distributed data

 Same task = exactly the same task. This means that the 
same branches are used when an “if” occurs. Otherwise, a 
factor 2 is lost



Data parallelism
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Data parallelism
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 Data parallelism via GPGPU

 Data locality

 Communication between CPU and GPU is slow (500 cycles)

 Stream processing

 A stream is simply a set of records that require similar computation. 
Streams provide data parallelism.

 GPUs process elements independently so there is no way to have 
shared or static data. 

 For each element we can only read from the input, perform operations 
on it, and write to the output. Never a piece of memory that is both 
readable and writable.

 Ideal GPGPU applications have large data sets, high parallelism, 
and minimal dependency between data elements.



Background
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 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Pattern: MapReduce
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 A MapReduce program is composed of a Map method that 
performs filtering and sorting (such as sorting students by first name 
into queues, one queue for each name) and a Reduce method that 
performs a summary operation (such as counting the number of 
students in each queue, yielding name frequencies). 

 The "MapReduce System“ orchestrates the processing by distributing 
the data, running the various tasks in parallel, managing all 
communications and data transfers between the various parts of the 
system, and providing for redundancy and fault tolerance.

 Hadoop in Java

 The Map and Reduce functions are both defined with respect to 
data structured in (key, value) pairs. 

 The MapReduce framework transforms a list of (key, value) pairs into 
a list of values.



Pattern: MapReduce
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Map
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 Map takes one pair of data with a type in one 
data domain, and returns a list of pairs in a 
different domain:

 Map(k1,v1) → list(k2,v2)

 The Map function is applied in parallel to every 
pair (keyed by k1) in the input dataset. 

 This produces a list of pairs (keyed by k2) for each call.

 The MapReduce framework collects all pairs with the 
same key (k2) from all lists and groups them together, 
creating one group for each key.



Reduce

Jean-Charles Régin, ACP Summer School, Cork, June 16

 The Reduce function is then applied in parallel to 

each group, which in turn produces a collection of 

values in the same domain:

 Reduce(k2, list (v2)) → list(v3)

 Each Reduce call produces 

 either one value v3 or an empty return (one call is 

allowed to return more than one value). 

 The returns of all calls are collected as the desired 

result list.



Background
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 General definition

 Concurrent programming

 Race condition, lock, atomicity

 Distributed programming

 Data parallelism

 Pattern: MapReduce

 Some general rules



Some general rules

Jean-Charles Régin, ACP Summer School, Cork, June 16

 Be careful with simulations of parallelism in 

sequential

 Restart idea: kind of parallelism

 O. Lhomme’s idea:

 A constraint is 10x slower to propagate than another one.

 We run it only for 1/10th of the nodes.

 That’s a kind of parallelism



Some general rules
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 The most important (IMHO)

 You should try to avoid doing in parallel things

that you would have not done in sequential

 Not so easy: search for the first white pixel. 

 In parallel you may consider pixels that are not 

consider in sequential



Some general rules
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 Determinism

 We should be able to obtain the same results of a 
program if we rerun it on the same machine (same
conditions)

 The same solution must be obtained (exactly the same with
the same cost)

 We should be able to obtain the same results of a 
program if we rerun it by using a different system

 The increases of the number of workers should not changed 
the solution

 Very difficult in general



Exercices
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 Documentation:

 https://docs.python.org/2/library/multiprocessing.h

tml

 https://docs.python.org/2/library/multiprocessing.h

tml#shared-ctypes-objects



Exercices
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 Shared data val: one thread adds one to val, another multiplies val 
by 2. Each operation is repeated 200 times. Can you predict the 
final result? 

 Bank account: 3 threads want to access to a back account in order to 
withdraw some cash (10 units). Money can be withdrawn only if 
there is enough money. A fourth thread adds money to the bank
account (by increment of 9 units). Describe the behavior of the 
system:

 Without lock

 With a lock on the value

 With a lock on the test of money on the account

 Count the number of prime numbers int the range [1,1M]. To check 
whether a number x is prime or not, we try to divide x by the 
number from 2 to sqrt(x).
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Distributed CSP
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 A dedicated method for solving CSPs on a 

distributed network.

 Ad-hoc method

 For filtering algorithm

 For tree search traversal

 Difficult to integrate with an existing solver
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The Distributed Constraint Satisfaction Problem

 A system of agents collaborating through peer-to-peer 

interactions to solve a Constraint Satisfaction Problem

 P = (X, D, C, A),
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Problems of Distributed Tree based 

Search
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 Problem 1: Idleness

 Consequence of, load imbalance



Problems of Distributed Tree based 

Search
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 Problem 2: Randomization risk

 Consequence of, message interleaving

 R-Risk (Def) the standard-dev of a deterministic 

distributed tree-search algorithm applied multiple time 

to one instance.



Problems of Distributed Tree based 

Search
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 Problem 3: Selection risk

 Consequence of, wrong heuristic

 Heuristic (Def) partial order of the agents + value 

(local solution) ordering

 S-Risk (Def) of a set H of heuristics is the standard-dev 

of the performance of each h  H  applied the same 

number of time to one instance.



Distributed CSP
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 There are some solutions to these problems

 Have look at the work of Youssef Hamadi, Christian 

Bessiere etc…



Knowledge aggregation
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 Performance of maxSupport

 Hard randoms, hard quasigroups

 IDIBT, 100 instances, median

 10 partial orders: (Max-degree, domdeg,mindom,lex)



Idleness
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Parallel Propagation
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 Distributed CSPs use a worker per variable

 Parallel Propagation uses a worker per constraint

 Not really studied

 Cannot allocate one worker per constraint because of 

idleness (bad load balancing)

 Difficult to use more workers than constraints

 Strong synchronization issues



Parallel filtering algorithms

 GAC4R in // with openmp

 Propagation per variable

 Directive #pragma omp parallel for

before loops

 Performance between 350 and 425 ms on my laptop 

(instead of 715 ms)

 Performance on a 3930K : 175 ms instead of 730 ms

 Problem: we cannot parallelize again 
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Portfolio Method
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 Idea: run in parallel different methods

 Method is general:

 Variable-value strategy, 

 Model

 Solvers…

 Exploit the facts that there are 

 Great disparities between methods

 No dominant method

 Very difficult to determine a priori the best method



Portfolio Method
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 Efficient for SAT solvers

 In CP: CPHydra (E. Hebrard) is such a solver

 May lead to super linear gain!

 Consider M1, M2, M3, M4

 Running in // all the methods leads to a wall clock time of 
t=min(time(M1),time(M2),time(M3),time(M4))

 Best possible time t/4

 Worst possible time
max(time(M1),time(M2),time(M3),time(M4)) /4

 We lose a factor but we have a guarantee!



Portfolio method
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 A good idea.

 Sometimes difficult to accept intellectually.

 Never forget it and always try to compete with it.
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Parallel search for solutions

Jean-Charles Régin, ACP Summer School, Cork, June 16

 We have k workers (CPU, cores, …)

 How can we use the k workers in order to speed up 
the search for solutions ?

 Hypothesis: 

 If we split a problem into sub-pb then the sum of 
resolution times of subproblems is equal to the 
resolution time of the initial problem.

 In CP, it seems to be right, but not in MIP

 Be careful with some learning strategies



Static Decomposition

 We have k workers, 

 We split the problem into k subproblems:

 (x={1,2}) (x={3,4}),(x={5,6}),… 

 We give one subproblem to each worker

 Pros

 Very simple

 Not intrusive

 Cons

 Total time = the time of the longest subproblem

 Pb with the homogeneity of decomposition
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Static decomposition
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 Sometimes it works well

 Nqueens problem

 Often the results are not good and this does not 

scale up.



Work stealing
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 work stealing is a scheduling strategy 

for multithreaded computer programs. 

 solves the problem of executing a dynamically 

multithreaded computation, one that can "spawn" new 

threads of execution, on a statically 

multithreaded computer, with a fixed number of 

workers.



Work stealing

 We have k workers, 

 We split the problem into k subproblems, 

 We give a subproblem for each worker

 When a worker finishes its work, it asks another worker

which works. This latter gives it a part of its remaining

work.

 How to select a victim for stealing?

 How much to steal?
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Work stealing
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Work stealing

 Pros

 Better repartition of the work (dynamic)

 Cons

 Very intrusive in the solver

(avoided by the work of B. Le Cun, Bob++)

 Easy tasks should be avoided

 At the end, almost all the workers ask for some work all 

the time. 

We need to manage that.
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Work stealing
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 Ajouter des slides

 Et des dessins (chercher sur le web)



Work stealing implementation
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 How do we interrupt a worker to ask for some

work?

 Use a timer

 Not a good solution, but time is not a constant notion in 

parallelism: not reproductable (we can be interrupted

or stoped)

 Use a counter of instructions

 Better solution because we can expect a constant notion 

(not related to time) that is reproductable



Embarrassingly Parallel Search

 Static decomposition is simple, but it is difficult to split 
into equal parts

 Solution : 

 We split into more subproblems than workers

 We hope that the sum of resolution times will be well
balanced.

 The greatest importance is not to split into equal
parts, but it is to equilibrate the sum of the resolution
times of subproblems for each worker
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EPS
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 Main idea:

 This is not the subproblems that have to be well

balanced but the overall solving time of each worker

 Assumption: solving independently 2 disjoint 

subparts of a problem must not be longer than

solving the whole problem

 Not true with MIP Solver

 Possible to deal with this point



Embarrassingly Parallel Search
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 2 steps

 Decomposition

 Resolution

 Decomposition

 We divide the problem into q subproblems to get a 
partition of the initial problem (static decomposition)

 We put these subproblems into a queue
 This process is static

 Resolution

 When a worker needs some work, it takes a supbroblem
from the queue. (dynamic choice)
 This process is dynamic



Massive Decomposition
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 Decomposition

 One task requires 140s

 We divide it into 4 tasks requiring 20,80,20,20s : not 

well balanced : 80s (max), 20s (min)

 We split again into 4 parts: 

(5+5+5+5)+(20+10+10+40)+(2+5+10+3)+(2+2+

8+8)

 w1: 5+20+2+8=35; w2: 5+10+2+10=27

w3: 5+10+5+3+2+8=33; w3=5+40=45 gives : 45s 

(max) et 27 (min)



Massive Decomposition

Jean-Charles Régin, ACP Summer School, Cork, June 16

 We have more chance 

 to equilibrate the sum of workload for each worker

 to break large subproblems

and to reduce their relative importance

 The relative importance of maximum (40 vs 80) is

reduced. 

The inactivity time (max-min) also (80-20=60) vs (45-

27=18)



Embarrassingly Parallel Search
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 How do we decompose ?

 We want to split into q subproblems

 Solution 1

 We take p variables for which the cartesian product of 
their domains is close to q. 
(we adjust the last domain if needed)

 Results

 Work very well with some problems

 Work badly with others, because a lot of generated 
problems are trivially inconsistent



Decomposition
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 Solution 1: 

 We take p variables with which the cartesian product

of their domains is close to q.

 If x,y and z are implied in alldiff constraint then

 the cartesian product is a bad idea. (a,b,a) must not be

considered, the same thing for (a,a,b) 

 they are not considered with a sequential resolution



Decomposition

Jean-Charles Régin, ACP Summer School, Cork, June 16

 Solution 1: 

 We take p variables with which the cartesian product
of their domains is close to q.

 We should avoid considering in a parallel
resolution , problems that would have not been 
considered in a sequential resolution

 This solution generates too many problems non 
consistent with the propagation (alldiff case)



Decomposition
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Decomposition

 How do we decompose ?

 We want to split into q subproblems

 Solution 2

 We take p variables in order to have a cartesian
product close to q.

 We generate all combinations step by step with
eliminating problems non consistent with the 
propagation

 If we do not generate the desired number of 
subproblems then we restart the process with more 
variables
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Decomposition

 To generate all combinations, we simulate a BFS 

with Bounded DFS 

(fixed number of choiced variables)

 We introduce a table constraint containing

combinations for each level to avoid repeating the 

bad branches between two DFS.
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Resolution for Satisfaction Problems
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 We dynamically take a subproblem in the queue

 The ordering seems not really be important

 We can use the one of the decomposition



Resolution for Optimization Problems

 The subproblems queue keeps the best current value 

of the objective

 A current resolution is never interrupted

 Neither to communicate a better solution

 Or to receive a new value of the objective

 However, when a worker finishes to solve a 

subproblem, the value of the objective can be used

as a better bound
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How many subproblems ?
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 Tricky question

 As we want to equilibrate the workload of workers, 
we propose to define a number of sub-pb per worker (#sppw)

 According to our experimentations :

 It appears to be decorrelated the problems !

 If the value is too small, it is difficult to equilibrate. 

 It the value is too high then the decomposition takes a lot of time

 A value between 30 and 100 subproblems per worker is good. 
The best result is obtained with 30 sub-pb per worker

 The results always include the decomposition time 
(except for precision)

 Means are geometric



Inactivity time
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Inactivity time
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Results on 40 cores
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Scaling

 Instead of 40 cores we want to deal with 1,000

 Let’s go!
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Results (1)
Comparison of different decompositions (512 workers)
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Scaling

 Results

 Degradation of the results from hundred cores

 Why?

 We still observe a nice speedup for subproblems

solving

 The decomposition becomes slow and it slows down the 

overall solving time
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Decomposition

 For 40 cores we need to find 40*30=1,200 

subproblems

 For 500 cores we need to find 500*30=15,000

 When the number of workers increases, 

 the decomposition has more work to do!

 The ratio // vs sequential augments

 A sequential decomposition can no longer be used!
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Parallel decomposition

 The decomposition is made by the workers

 Question: what are the problems that you give to workers
(this is our goal!)

 A first naive parallelization:

 We have k workers and we want to split into q subproblems

 First, we split into k subproblems

 Each worker split into q / w in order to reach q subproblems

 Results: Bad load balancing 
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Parallel decomposition

 Idea: proceed step by step

 Introduce stops (synchronization) for redistributing the work.

 Decomposition into 30 subproblems

 Use of intermediate steps

 Search for generating 5 sspb/worker, then 10, then 20 then 30.

 The more we synchronize, the more we have well balanced workload

 The more we synchronize, the more we slow down the process

 Consequence: 

 We synchronize but not too much

 We prefer synchronization close to the top
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Inactivity time
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Intermediate phases

 After tests, we found that it is better to achieve the following
phases:

 Split the problem into k subproblems in sequential

 Look for 1 sspb / worker (First Stop) in //

 Look for 5 sspb / worker (Second Stop) in //

 Look for 30 sspb / worker (Third Stop) in //

 Note:

 No need of synchronisation for the last phase

 It is rather robust and does not depend of the type of the 
problem

 The parallel decomposition generates the same subproblems as 
the sequential decomposition does
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Experimental Protocol

 20 selected instances (take a long time for solving)

 min 1500 seconds in sequential

 Data center (1152 cores)

 Reservation of 512 cores (difficult to have)

 Implementation with Gecode
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Results (1)
Comparison of different decompositions (512 workers)
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Results (2)

2nd stop in the parallel decomposition (512 workers)

Jean-Charles Régin, ACP Summer School, Cork, June 16



Results (3)

Work stealing vs EPS (512 workers)

Jean-Charles Régin, ACP Summer School, Cork, June 16



Azure cloud
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Windows Azure Gecode 4.0.0

3 nodes (8 cœurs) work stealing EPS

24 workers

instance seq. time (s) // time (s) speedup // time (s) speedup

bacp-27 4256,8 548,4 7,8 260,2 16,4

depot_placement_att48_5 298,5 21,3 14,0 17,6 16,9

depot_placement_rat99_5 52,5 10,1 5,2 8,5 6,2

depot_placement_st70_6 7929,0 1172,5 6,8 433,9 18,3

fastfood_ff58 63,1 11,3 5,6 3,2 20,0

fillomino_18 2227,1 184,6 12,1 160,2 13,9

golombruler_13 3167,3 210,4 15,1 154,0 20,6

market_split_s5-02 11367,4 658,6 17,3 467,1 24,3

market_split_s5-06 11039,8 650,7 17,0 452,7 24,4

market_split_u5-09 11421,6 609,2 18,7 468,1 24,4

open_stacks_01_problem_15_15 284,5 38,4 7,4 26,4 10,8

open_stacks_01_wbp_20_20_1 5338,7 374,1 14,3 302,7 17,6

open_stacks_01_wbp_30_15_1 521,0 72,3 7,2 30,0 17,4

pattern_set_mining_k1_german-credit 247,8 31,4 7,9 29,7 8,3

pattern_set_mining_k1_yeast 7938,7 482,7 16,4 172,1 46,1

quasigroup7_10 683,5 67,1 10,2 31,8 21,5

radiation_03 274,4 46,2 5,9 30,6 9,0

sb_sb_13_13_6_4 257,7 23,3 11,0 18,4 14,0

still_life_still_life_9 3187,4 196,8 16,2 189,0 16,9

sugiyama2_g5_7_7_7_7_2 602,6 47,1 12,8 32,2 18,7

talent_scheduling_alt_film117 1677,8 110,5 15,2 22,7 74,0

10,7 17,9



Cloud comparison
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Scaling factor
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EPS determinism
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 We want to be able to always compute the same solution

 If we consider the subproblems along with the decomposition
ordering then when a solution is found in spk then

 some subproblems whose index is < k have already been solved

 some subproblems are currently being solved by some workers.

 Some of them have an index i < k 

 Some of them have an index j > k

 If we wait for the resolution of all the subproblems with i < k 
currently being solved, then we will be able to define the 
FIRST subproblem having a solution. SO we will be able to 
repeat the run independantly of the ordering in which the 
subproblems are solved!



Embarrassingly Parallel Search

 In computer science, a problem that is obviously 
decomposable into many separate subtasks is called 
embarrassingly parallel

 Comes from the french expression “avoir l’embarras du 
choix”. 

 Properties

 Computation can be easily divided into several independent 
parts, each part can be executed by a processor.

 No or very few communication between processus

 Each process works regardless of others
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EPS Advantages

 Simple

 No or very few communication 

 Not intrusive in the solver (we just need to get a 

subproblem and to test the propagation)

 We can easily replay the resolution

 We just have to save the order of solved problems

and the assigned problems to the workers

 Competitive with work stealing
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EPS advantages
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 At anytime, gives an idea about the quantity of the 

problem that has been soved

 Determinism is possible 

 Replay (Easy and fast)

 change of machine (More complex: the decomposition

should respect the order)



Plan
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 Background (Parallelism, Concurrency, distributed

computing …)

 Parallelism in CP

 Distributed CSP

 Parallel propagation

 Portfolio method

 Parallel Search

 Time is money: how to manage the solving time 



Question

 We have a problem P to solve

 We have unlimited resources but they cost money

 We have a limited resolution time

 Question : how can we solve P for the minimum 

cost while respecting the resolution time?
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Question
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 How can I use computers to speed up the solving time of 

a problem?

 I want to gain a factor of 10. How can I reach that goal?

 I have a maximum amount of time for solving a given

problem, how many machines should I use?

 Resources cost money, how can I solve my problem in less

than x hours for the minimum cost?

 Unfortunately, using k computers does not mean gaining

a factor of k



Time is money
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 Thanks to cloud computing we can have the power 

that we want! 

 It just costs money…

 I have something to do which requires x units of 

computation time on my machine

 Can I solve it on the cloud within a certain amount of 

time (x/5; x/100)? How much it will cost?



Speed up the resolution
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 Any type of computer can be used

 Local parallel machines

 Local distributed machine

 Computer center – supercomputer

 Cloud infrastructure

 Any type of parallelisation technique can be used

 Work stealing

 Embarassingly parallel search



Azure cloud
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Windows Azure Gecode 4.0.0

3 nodes (8 cœurs) work stealing EPS

24 workers

instance seq. time (s) // time (s) speedup // time (s) speedup

bacp-27 4256,8 548,4 7,8 260,2 16,4

depot_placement_att48_5 298,5 21,3 14,0 17,6 16,9

depot_placement_rat99_5 52,5 10,1 5,2 8,5 6,2

depot_placement_st70_6 7929,0 1172,5 6,8 433,9 18,3

fastfood_ff58 63,1 11,3 5,6 3,2 20,0

fillomino_18 2227,1 184,6 12,1 160,2 13,9

golombruler_13 3167,3 210,4 15,1 154,0 20,6

market_split_s5-02 11367,4 658,6 17,3 467,1 24,3

market_split_s5-06 11039,8 650,7 17,0 452,7 24,4

market_split_u5-09 11421,6 609,2 18,7 468,1 24,4

open_stacks_01_problem_15_15 284,5 38,4 7,4 26,4 10,8

open_stacks_01_wbp_20_20_1 5338,7 374,1 14,3 302,7 17,6

open_stacks_01_wbp_30_15_1 521,0 72,3 7,2 30,0 17,4

pattern_set_mining_k1_german-credit 247,8 31,4 7,9 29,7 8,3

pattern_set_mining_k1_yeast 7938,7 482,7 16,4 172,1 46,1

quasigroup7_10 683,5 67,1 10,2 31,8 21,5

radiation_03 274,4 46,2 5,9 30,6 9,0

sb_sb_13_13_6_4 257,7 23,3 11,0 18,4 14,0

still_life_still_life_9 3187,4 196,8 16,2 189,0 16,9

sugiyama2_g5_7_7_7_7_2 602,6 47,1 12,8 32,2 18,7

talent_scheduling_alt_film117 1677,8 110,5 15,2 22,7 74,0

10,7 17,9



Cloud comparison

Jean-Charles Régin, ACP Summer School, Cork, June 16



Resolution Speed up
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 sf: scaling function

 Ratio of the scaling obtained for a given number of 

cores

 sfA for the cloud and sfM for the machine

 The number of cores needed to increase by a factor 

of p the power of a machine using k cores is

 x = sfM-1(p*sfM(k))



Scaling factor
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Performance ratio
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 pr(A/M) is the ratio of 

 the performance of ONE core of the machine A, and

 the performance of ONE core of the machine M.

 3167/1355= 2.34 

 (3167 Azure, 1355 Cicada or // machine)



Power equivalence
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 M1 machine with k1 cores

 The number of cores of the machine M2 needed to 

have an equivalent power than the machine M1 is

 k2 = sfM2
-1(sfM1(k1)pr(M2,M1))



Power equivalence
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 For 20 cores: 

 Azure sfA(x)=0.71 

 // Machine sfF(x)=0.66 

 Data center sfC(x)=0.68

 k2 = sfM2
-1(sfM1(k1)pr(M2,M1))



Time is money
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 Fourmis (server = 40 cores) 88 Azure cores, hourly

cost €6.45

 Cicada (data center = 1150 cores). 2579 Azure 

cores, hourly cost €177.69



Time is money
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 Machine M1 solve the problem P with k1 cores in t1 
unit of time

 We can solve P in t2 unit of time with the machine 
M2 by using k2 cores defined as

 k2=sfM2
-1(t1/t2 sfM1(sfM2

-1(sfM1(k1)pr(M2,M1))))

 Eg. 

 3 hours of computation on Parallel machine (40 cores);

 compute the problem in less than 1h on the cloud



Controlling the resolution time
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 3 hours of computation on Parallel machine (40 cores); 

Compute the problem in less than 1h on the cloud

 We need to speed up the resolution by a factor of 3. 

 On the cloud we need 2.4 times more

 We need 40*2.4=96 cores on the cloud

 We need an improvement by a factor of 3: 96*3=288

 Hourly cost is €0.07 per core that is €20



Time is money
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 Fourmis (server = 40 cores) equivalent of 88 Azure 

cores, hourly cost €6.45

 Cicada (data center = 1150 cores) equivalent of 

2579 Azure cores, hourly cost €177.69

 Be careful this calculation assumes a perfect scaling

factor



Controlling the resolution time
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 3 hours of computation on Parallel machine (40 cores); 
Compute the problem in less than 1h on the cloud

 We need to speed up the resolution by a factor of 3. 

 On the cloud we need 2.4 times more cores
(performance ratio)

 We need 40*2.4=96 cores on the cloud

 We need an improvement by a factor of 3

 We have a scaling factor of 0.71 on the cloud

 Result: 96*3/0.71=405

 Hourly cost is €0.07 per core that is €28.4



Conclusion
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 EPS works well on a cloud infrastructure

 The speed-up is comparable with the speed-up 

obtained with a parallel machine

 We propose to compare machines and compute the 

number of cores for having an equivalent power

 We can deduce how much it will cost for obtaining a 

certain power (time is money)



Conclusion
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 Not sure that it is still worthwhile to buy machines 
dedicated to computation

 We need to test on more cores

 We asked Microsoft for that

 We could also buy some resources (€93/h for a comparison
with 512 cores of the Nice’s data center)

 We should compare with Amazon EC2 and Google 
compute engine



Plan
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 Background (Parallelism, Concurrency, distributed

computing …)

 Parallelism in CP

 Distributed CSP

 Parallel propagation

 Portfolio method

 Parallel Search

 Time is money: how to manage the solving time 



General Conclusion
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 Parallelism is challenging and difficult, but it may

be fun!

 Understand well the basic concepts

 Race condition, critical section, atomicity

 Load balancing, starving

 Try to minimize the communication

 Try to avoid synchronization in the code (barrier)

 Do not forget to look at the behavior of your

method according to the number of workers



General Conclusion

Jean-Charles Régin, ACP Summer School, Cork, June 16

 A simple method which works well in practice is

certainly one of the best compliments in computer 

science


