
Constraints and Automata
(time-series constraints)

Nicolas Beldiceanu
nicolas.beldiceanu@mines-nantes.fr

ACP summer school, Cork, June 2016

Table of content
•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

The story to remember

Generate a few hundred time-series constraints
in a compositional way,

but need
to simplify them,

to generate necessary conditions and bounds
to get some reasonable behaviour both in CP and LP

Since too many constraints this cannot be done
for each constraint individually in a reasonable time-frame

Has also to handle the combinatorial aspect
of these constraints in a compositional way

Finite state transducer
(introduced by M.P. Schützenberger)

•  A FST is defined by:
–  A finite set of states Q
–  An input alphabet Σ (finite set of input symbols)
–  An output alphabet Γ (finite set of output symbols)
–  A transition relation δ: Q x (Σ ∪{ε}) x (Σ ∪{ε}) x Q
–  An initial state qinit ∈ Q
–  A set of accepting states F ⊆ Q

Some time can have more than one output symbol
in the transition relation

Finite state transducer

•  Used mostly
–  Natural language (text of speech)

•  But also
–  Computational biology
–  Fraud detection

•  Popular (like automata) in industry
–  microsoft research
–  google (M. Mohri)

•  Like automata you can learn them

examples of transducers later on

Background

! "PGMO Project with EDF

! "Analysis of power output curves for electricity generators

! "Use ModelSeeker to describe/categorize/synthesize output
from UCP model

! "Published in CP 2013

Example: From this …

… to this (generated profile)

Example: the peak constraint

peak

Automaton with counters: peak
constraint in Global Constraint Catalog

But always some missing constraints
(when meeting people from industry)

and dont want to introduce the missing
constraints one by one in the

global constraint catalog

which leads to a synthesized
time-series catalog

Table of content

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

Decomposing the definition of a constraint

! "Constraints are pure functional dependencies
or predicates (see predicates later on)

! "Implemented as automata with counters

!  Four steps (layers) in definition
!  Building signature
!  Recognize pattern occurrences in sequence
!  Extract feature per pattern
!  Aggregate features !

Example: min_width_peak

Example: min_width_peak (continued)

Signature

! "Convert (integer) value to finite alphabet

! "Signature links two consecutive entries in time-series

! "We use <,=,> with their natural semantics

!  Other signatures possible

Patterns

!  Identify a pattern we are looking for r
!  Extract subpart for which computes feature a, b

Find maximal words matching regular expression r

Patterns (continued)

Definition of {s|i|e}-occurrences of
an occurrence of pattern

Given
 an input sequence x0,x1,…,xn-1,
 its signature sequence s0,s1,…,sn-2,
 a pattern (r,a,b),
 a non-empty signature subsequence si,si+1,…,sj
 forming a maximum word matching r

 the s-occurrence (i..j) is the index sequence i,…,j,
 the i-occurrence [(i+b)..j] is the index sequence i+b,…,j,
 the e-occurrence [[(i+b)..(j+1-a)]] is the index sequence

 i+b,…,j+1-a.

Definition of {s|i|e}-occurrences of
an occurrence of pattern

Given
 an input sequence x0,x1,…,xn-1,
 its signature sequence s0,s1,…,sn-2,
 a pattern (r,a,b),
 a non-empty signature subsequence si,si+1,…,sj
 forming a maximum word matching r

 the s-occurrence (i..j) is the index sequence i,…,j,
 the i-occurrence [(i+b)..j] is the index sequence i+b,…,j,
 the e-occurrence [[(i+b)..(j+1-a)]] is the index sequence

 i+b,…,j+1-a.

s-occurrences : maximal signature sequence matching r
i-occurrences : do not overlap (footprint of the pattern)
e-occurrences : used to compute the feature value

Example of {s|i|e}-occurrences for
the increasing_terrace pattern

s-occurrences : 1..4 (<==<)
i-occurrences : [2..4] (333)
e-occurrences : [[2..4]] (333)

Indices of

0 1 2 3 4 5 6

a=1=b excludes first and last input values 2 and 4

Example of {s|i|e}-occurrences for
the increasing pattern

s-occurrences : 0..0 1..1 4..4
i-occurrences : [0..0] [1..1] [4..4]
e-occurrences : [[0..1]] [[1..2]] [[4..5]]

Indices of

0 1 2 3 4 5 6

since b=0 s-occurences and i-occurrences match
since a=0=b the 1 and 2 input values are part of e-occurrences

Example of {s|i|e}-occurrences for
the steady_sequence pattern

s-occurrences : 2..3 5..5
i-occurrences : [2..3] [5..5]
e-occurrences : [[2..4]] [[5..6]]

Indices of

0 1 2 3 4 5 6

since b=0 s-occurences and i-occurrences match
since a=0=b the 1 and 2 input values are part of e-occurrences

Features (computed from e-occurrences)

! "one : value 1

! "width : number of positions of the e-occurrence

! "surf : sum of the values of the e-occurrence

!  max : maximum value of the e-occurrence

!  min : minimum value of the e-occurrence

!  range : range of the e-occurrence: max-min

Aggregators (computed from sequence of features)

!  max : largest value of a sequence of features

!  min : smallest value of a sequence of features

!  sum : sum of the features of a sequence of feature

Device for recognizing i-occurrences
of a pattern: a seed transducer

!  Define a pattern by a transducer
(reading/writing regular language)

!  Input: signature sequence

!  Output: word of a semantic alphabet with letters:
!  out we are outside the pattern
!  maybe we are possibly in the pattern

 (must be confirmed later on)
!  found first place we know we are in the pattern
!  in we are still in the pattern

everything will be synthesized from the seed transducer

Example: transducer for the peak pattern

Example: transducer for the peak pattern

Well-formed seed transducer
(language of the output)

Wellformedness

Well-formed seed transducer
(language of the output)

Recognizing pattern

Wellformedness

Transducer for increasing_terrace

Transducer for increasing

Transducer
for zigzag

or

a=1=b

Footprint constraint:
identifying i-occurrences of a pattern

footprint(peak, [4,4,2,2,3,5,5,6,3,1,1,2,2,2,2,2,2,1],
 [0,0,0,0,1,1,1,1,1,0,0,2,2,2,2,2,2,0])

Decoration table for the footprint constraint
(generating counters updates)

Example: synthesizing the footprint
constraint for the peak pattern

Example: executing the synthesized
footprint automaton of the peak pattern

Feature constraints (example)

Decoration table for the feature constraint

Example: synthesizing the automaton
for min_width_peak

seed transducer

Example: synthesizing the automaton
for min_width_peak

parametrized constraint
 (feature f, aggregator g)

Example: synthesizing the automaton
for min_width_peak

specific constraint
 (min_width_peak)

Running
min_width_peak

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

Decoration table for the feature constraint

Problem: since too many time-series constraints can not afford
computing the glue matrix for each constraint independently

Solution: compute parametrized glue matrices at the level of
 the transducer (rather than at the level of each automaton)

Values and functions used to parametrize
generated automata (and glue matrices)

Parametrize glue matrix for peak
(is its own reverse)

(define the correction term)

Parametrize glue matrix for increasing_sequence
(its reverse is decreasing_sequence)

(define the correction term)

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

Generating necessary conditions
(as linear constraints)

•  Good news:
–  Can use/adapt standard LP techniques (Farkas Lemma) to

generate necessary conditions (expressed as linear constraints)
–  Can use this even if accumulators updates are min/max

operations
–  Can rank the linear constraints
–  Useful both for CP and LP
–  The invariants neither depend of the domain of the variables,

nor on the size of the sequence.

Leads to a data base of cuts for time-series constraints

Examples of linear constraints
(max_max_peak)

(increasing R since use max aggregator)

Examples of linear constraints
(max_range_decreasing)

(increasing R since use max aggregator)

Examples of linear constraints
(max_range_increasing)

(increasing R since use max aggregator)

Examples of linear constraints
(max_width_strictly_decreasing_sequence)

(increasing R since use max aggregator)

Examples of linear constraints
(max_width_strictly_increasing_sequence)

(increasing R since use max aggregator)

Examples of linear constraints
(min_max_peak)

(decreasing R since use min aggregator)

Examples of linear constraints
(min_width_plain)

(decreasing R since use min aggregator)

Examples of linear constraints
(min_width_plateau)

(decreasing R since use min aggregator)

Examples of linear constraints
(nb_bump_on_decreasing_sequence)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_dip_on_increasing_sequence)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_gorge)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_peak)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_summit)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_valley)

smallest cycle between
two consecutive incrementation ()

Examples of linear constraints
(nb_zigzag)

smallest cycle between
two consecutive incrementation ()

increasing R since use
 sum aggregator and feature one ()

•  Background
•  Synthesizing automata with accumulators from transducers
•  Parametric glue matrices
•  Simplifying automata with accumulators
•  Reformulating in LP
•  Deriving necessary conditions (as linear constraints)
•  Bounds

The need for bound

•  Want to have lower/upper bound on the result returned by a time-
series constraint parametrized by:
–  The sequence length
–  The smallest or largest values of the variables in the sequence

Having a bound is good,
but having a way to characterize
all solutions reaching this bound is even better

Point

•  In a significant number of cases we can just use the standard
regular constraint (with an automaton having a fixed number of
states) for characterizing all solutions reaching a given bound

when the bound does not depend of the domain size

Example 1: nb_peak (upper bound)

Exercise: get a transducer for the
decreasing_terrace pattern (>=+>)

Exercise: transducer for decreasing_terrace

