Constraints and Automata
(time-series constraints)

Nicolas Beldiceanu

nicolas.beldiceanu@mines-nantes.fr

ACP summer school, Cork, June 2016

Table of content

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

The story to remember

Generate a few hundred time-series constraints

In a compositional way,

but need

to simplify them,

to generate necessary conditions and bounds

to get some reasonable behaviour both in CP and LP

Since too many constraints this cannot be done
for each constraint individually in a reasonable time-frame

Has also to handle the combinatorial aspect
of these constraints in a compositional way

Finite state transducer
(introduced by M.P. Schiitzenberger)

« A FST is defined by:
— A finite set of states Q
— An input alphabet X (finite set of input symbols)
— An output alphabet I (finite set of output symbols)
— A transition relation 3: Qx (2 U {e})x (Z U {e}) x Q

— An initial state g, € Q
— A set of accepting states F & Q

Some time can have more than one output symbol
in the transition relation

Finite state transducer

Used mostly
— Natural language (text of speech)

But also

— Computational biology

— Fraud detection

Popular (like automata) in industry
— microsoft research

— google (M. Mohri)

Like automata you can learn them

examples of transducers later on

Background

PGMO Project with EDF

Analysis of power output curves for electricity generators

Use ModelSeeker to describe/categorize/synthesize output
from UCP model

Published in CP 2013

Example: From this ...

L I N N TN RRPURR SN NN NN NN NN NN RAPT NN N N N NN NN REPR B N N N N RN

I

.......

.........

E 3 N 3

... to this (generated profile)

Example: the peak constraint

first

peak

second
peak

A

/3

\

i

/

y

- v w A o o ~ o Values
\

\lf

\
\

Eui

Vi Vo Vs V4 Vs Vs V7 Vg variables

peak (2,(1,1,4,8,6,2,7,1))

Automaton with counters: peak
constraint in Global Constraint Catalog

STATE SEMANTICS

s : stationary/decreasing mode ({> | =}7)
w : increasing mode (< {< | =}
VAR; = VAR; 1 VAR; = VAR; 11

VAR; < VAR;11

VAR; > VAR; 41,
VAR; > VAR; 1 {C +— C+ 1} VAR; < VAR; 41

Figure 5.689: Automaton of the PEAK constraint

But always some missing constraints
(when meeting people from industry)

and dont want to introduce the missing
constraints one by one in the
global constraint catalog

which leads to a synthesized
time-series catalog

Table of content

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

Decomposing the definition of a constraint

e Constraints are pure functional dependencies
or predicates (see predicates later on)

* |Implemented as automata with counters

* Four steps (layers) in definition
 Building signature
* Recognize pattern occurrences in sequence
e Extract feature per pattern
e Aggregate features

Example: min_width peak

MIN (IV) output: feature
A aggregation
WIDTH 6 (III) feature sequence

r— 4 — B — 6 — 7 — 8 —-m 11 - 12 13 - 14 15 - 16 —

PEAK < < — < > > < = — — — F— > (II) e-occurrences
S=ocCccurrences

=|l>| =< |<|F|<|>|>|=T|<|=|=|=|=|=|> (I)signatut'esequence

412123556 |31 |12 2|2|2|2]2]|1]| time series: input sequence

MIN WIDTH PEAK(5,(4,4,2,2,3,5,5,6,3,1,1,2,2,2,2,2 2. 1))

Example: min_width_peak (continued)

- N

E
= peak @® peak @

-

6
6
5|5
5
4 | 4
4
3 3

3

5 2| 2 2 (2|2 |2(2|2

N width=3 1|1 width=6 1

Vi Va Va Vy Vi Vg Vi Vg Vg Vip Vii Viz Via Vig Vis Vie Vir Vis variables

MIN WIDTH PEAK(5,(4,4,2,2,3,5,5,6,3,1,1,2,2,2,2,2,2. 1))

Signature

Convert (integer) value to finite alphabet
Signature links two consecutive entries in time-series
We use <,=,> with their natural semantics

Other signatures possible

Patterns

* ldentify a pattern we are looking for r
 Extract subpart for which computes feature a, b
pattern regular expression r before b after a
increasing < 0 0
increasing sequence < (< |=)"< | < 0 0
increasing terrace <=t 1 1
summit (KI<E=INDEGIGE=I>)>) 1 1
plateau <="> 1 1
proper plateau <="> 1 1
strictly increasing sequence <t 0 0
peak <(=1<)°C1=)" > 1 1
inflexion <(<|=)">|>(>]=)< 1 1
steady = 0 0
steady sequence =+ 0 0
zigzag (<>)T (< | <>) |)T]| ><) 1 1

Find maximal words matching reqular expression r

Patterns (continued)

< = =+ <+, /
—o —e ——o——9 A /—‘ \ /
F -1 F - F-—-+ k=== -—=
increasing steady steady sequence plateau proper_plateau str 1ct1y_ inc—

reasing sequence

< (<|=)" < <(=I<) Gl=)> < (=)< (=1>)">

/- f . _\ /- /\\

Pt F———————————— - F-—————— I
increasing sequence peak summit
<=« <(<|=)> >C|=2)< (<>)T(< | <>) >)T(> | ><)

increasing terrace inflexion inflexion zigzag zigzag

Definition of {s|i|e}-occurrences of
an occurrence of pattern

Given
an input sequence X0s X1y« sXp 1
its signature sequence Sy,Sy,...,S,.0,
a pattern (r,a,b),

a non-empty signature subsequence s;,S;,,-.-,S;
forming a maximum word matching r

the s-occurrence (I..)) IS the index sequence j,...J,
the /-occurrence [(i+b)..]] IS the index sequence i+b,...),
the e-occurrence [[(i+b)..(j+1-a)]] is the index sequence

i+b,... j+1-a.

Definition of {s|i|e}-occurrences of
an occurrence of pattern

Given
an input sequence X0s X1y« sXp 1
its signature sequence Sy,Sy,...,S,.0,
a pattern (r,a,b),

a non-empty signature subsequence s;,S;,,-.-,S;
forming a maximum word matching r

the s-occurrence (I..)) IS the index sequence j,...J,
the /-occurrence [(i+b)..]] IS the index sequence i+b,...),
the e-occurrence [[(i+b)..(j+1-a)]] is the index sequence

i+b,... j+1-a.

S-occurrences : maximal signature sequence matching r
l-occurrences : do not overlap (footprint of the pattern)
e-occurrences : used to compute the feature value

Example of {s|ile}-occurrences for
the increasing_terrace pattern

pattern regular expression r before b after a
increasing terrace <=1« 1 1
increasing

terrace 1
< |l <« = = < | =

4 Indices of

s-occurrences : 1.4 (<==<)
l-occurrences :[2..4] (333)
e-occurrences : [[2..4]] (333)

- N W e

-

______Xv_..__

, -

A4

®

I> A“

K
b e [] —] - - — —
D e

S
—_—
[\
W

6

a=1=b excludes first and last input values 2 and 4

Example of {s|ile}-occurrences for
the increasing pattern

pattern regular expression r before b after a

increasing < 0 0

increasing 2
increasing 1 increasing 3

4 4
3 3 % Indices of

r s-occurrences : 0..0 1..1 4.4
I-occurrences :[0..0] [1.1] [4..4]

e-occurrences : [[0..1]] [[1..2]] [[4..5]]

since b=0 s-occurences and j-occurrences match
since a=0=b the 1 and 2 input values are part of e-occurrences

Example of {s|ile}-occurrences for
the steady sequence pattern

pattern regular expression r before b after a

steady sequence =" _ 0 0

steady steady

sequence] sequence 9

JRIl

|
|
|
|
1
|
|
I
I
|
I
I
1

Indices of

S-occurrences : 2..3 5..5
I-occurrences : [2..3] [5..5]

e-occurrences : [[2..4]] [[5..6]]

3
u
¢

e - — - — _._.__..__.q/‘\
»

e - ——

since b=0 s-occurences and j-occurrences match
since a=0=b the 1 and 2 input values are part of e-occurrences

Features (computed from e-occurrences)

one

width

surf

max

min

range

: value 1

. number of positions of the e-occurrence
. sum of the values of the e-occurrence

: maximum value of the e-occurrence

: minimum value of the e-occurrence

. range of the e-occurrence: max-min

Aggregators (computed from sequence of features)

° max . largest value of a sequence of features
* min : smallest value of a sequence of features

* sum : sum of the features of a sequence of feature

Device for recognizing /-occurrences
of a pattern: a seed transducer

Define a pattern by a transducer
(reading/writing regular language)

Input: signature sequence

Output: word of a semantic alphabet with letters:
e out we are outside the pattern
we are possibly in the pattern
(must be confirmed later on)
e found first place we know we are in the pattern
° 1In we are still in the pattern

everything will be synthesized from the seed transducer

Example: transducer for the peak pattern

pattern regular expression r before b after a
peak < (=|<)*(>]|=)* > 1 1
> :out
< :out
> : found
<: > :in

Example: transducer for the peak pattern

> : out

< : out

>:in

S . Ill:l}’] e

= : maybe

O|0| 0| 0 |MpMmy My f |jn|Mal0a Mp| My My My My f | output: semantic string

= > =< | < =< | > > = < | = = = =|= > input: signature string
states:s s s s r r r r t t t r r r r r r 't
4 141223 |5|5|6(3|1[1]|2|2|2]|2]|2]|2]1|input:integer sequence

Well-formed seed transducer
(language of the output)

state semantics

o : outside or after the end of a pattern

b : potentially inside (before a found/found.)
a : potentially inside (after a found)

) maybe,

maybe._

Well-formed seed transducer
(language of the output)

state semantics

o : outside or after the end of a pattern

b : potentially inside (before a found/found.)
a : potentially inside (after a found)

_;:::) maybe,

Recognizing pattern
e maybe,* found,
e maybe,* found {maybe_*int}*

maybe._

Transducer for increasing_terrace

pattern regular expression r before b after a

increasing terrace <=T< 1 1

Transducer for increasing

pattern regular expression r before b after a

increasing < 0 0

'

< : foundg 2> :out

Transducer
for zigzag

< :out,

punoj: <

> outg

values

Footprint constraint:
identifying /~occurrences of a pattern

e I 7 = ¥ S =

peak @ peak @
6
5| 5
4 | 4
3 3
2 | 2 2122|222
width=3 11 width=6 1

Vi Va Va Vy Vi Vg Vi Vg Vg Vip Vii Viz Via Vig Vis Vie Vir Vis variables

footprint(peak, [4,4,2,2,3,5,5,6,3,1,1,2,2,2,2,2,2,1],
[0,0,0,0,1,1,1,1,1,0,0,2,2,2,2,2,2,0])

Decoration table for the footprint constraint
(generating counters updates)

initialisation C+0

return pn =20

semantic letters annotations
guard update of C

out pi =0

out, pi =0

out, p; =0

maybe, Pi = Pi+1

maybe_ Pi = Pit1

found, p; =C+1C+—C+1

found pi=C+1C+—C+1

in pi =C

Example: synthesizing the footprint

constraint for the peak pattern

< rout i
A | A)
\ / < :outa .
Ap: =0
< : maybe, =: maybe_ <. {p }
<, {Pi — Di+1}
out p; =0
out, p; =0
out, p; =0
maybe, Pi = Pit1
maybe, Pi = Pi1
found. pi=C+1C«C+1
found pi=C+1C+C+1
in pi =C

=, {p:i = Pit1}

Example: executing the synthesized
footprint automaton of the peak pattern

S,{Pi =Pi+1} =, {Pi =Pi+1}

S O O O R &~ ~N Q~°° R
voono ////-\%//L,//l// Vi //l// Wy # # # //l////
IR > >

i TR 2 PR PR o A

£ ¥ /R A T AR T I I I I I
;s QOlo0(ojojojofof1 |1 |1|1]|2|2 2|1 |1]2
T 0o o| o | o mymymy| f | in Ma|Oa |Mp| My My m, mg| f

g; | d|ld|ld|d|r|r|r |7 |t|t |t || ||| T ¢

S =lsl=ll<| <=zl l=l<=l==I==|>

r; |44 (2|23 |5 |56 3|1 |1|2|2|2|2|2|2]|1
o 1 2 3 4 5 6 7 8 © 10 11 12 13 14 15 16 17

Feature constraints (example)

E peak | peak 2 peak 3
> = > < < > = < < < > < = = o>
| | | | | |
K | | | | | |
i]]]] 1]
| | | | | |
| | | | | |
6 T4 T+ A :
5 \f UL 0 N] |
4 /N | \ i |
4 ! ! . ! !
\ \ | K / ;\ 3 3 3
| | |
) Vi i 2 2 i i 2 i :\\
| |
|

1o . 1 B

Vi Va Va Vo Vi Ve Ve Vs Vo Vip Vi Viz Via Viga Vis Vie variables

e e S— Lﬁ/—J feature
2 3 3, values
2 (min)

MIN_WIDTH_PEAK (2,[7,5,5,1,4,5,2,2,3,5,6,2,3,3,3,1])

Decoration table for the feature constraint

Feature f neutral; miny; max; ¢, 4y

one 1 1 1 max 0 Aggregator g defaulty
width 0 0 n + 1
surface 0 —00 400 + x4 Max mingy
max —00 —00 400 max Ty Min maxy
min +o0o —00 #4000 min xy Sum 0
range 0 0 +o0 Ty
initialization C + default,y D ¢+ neutraly R + default,s
return a(R,C)
Semantic Letter Decoration
After Update of C Update of D Update of R
out
out,. D < neutral;
out, C + default,; D < neutraly R <+ a(R,C)
maybe, D + ¢5(D,d5)
maybe, 0 D + ¢5(D,d%)
maybe, 1 D+ ¢p(D,d5)
found 0 C < ¢f(05(D,05),0%) D + neutraly
found 1 C + o5(D,dy) D ¢+ neutraly
in 0 C <« ¢5(C,05(D,6%)) D < neutraly
in 1 C+ ¢5(C,05(D,d5)) D < neutraly
found, 0 D +neutraly R« a(R,05(05(D,d5),0%))
found, 1 D < neutraly R <+ a(R,¢p(D,dy))

Example: synthesizing the automaton
for min_width_peak

< : out > in

e
< : out, | J

A
|
< : maybe, = : maybe_

seed transducer

Example synthesizing the automaton
; for min_width_peak

< : maybe, =: maybe_

parametrized constraint
(feature f, aggregator g)

R + defaulty ¢,
C + defaulty ,

D + neutral;

- ;
. i {D<—¢f(D or)}
' >, . M
{C<—¢,(D 6,)} Ly
D + neutral; y

Y

<, — 4
{D<—¢f(D)}

<

R+ g(R,0C), >
C + default, ;, { C « d’!(% Q(D,ffa?l)’ }
D + neutraly neutraly

Example: synthesizing the automaton
for min_width_peak

specific constraint
(min_width_peak)

t < : outsy t <
'.‘.___‘.' '._/.' < R (_ min(R, C)) R
< : maybe, = : maybe. — C+n T
= - ~ -) D D+1) D D+1
{ <—/\ + 1} D e 0 { <—m + 1}

R + defaulty ¢,
C + defaulty 7, 3 ——> >
D + neutral; 4
“ AD « ¢7(D,é7)} :
Sv = \
{D — ¢f(D56f)} .

<,
R R.C), >3
{ C : ﬁifa'ult)_q',,, } { C+ ¢7(C,07(D,dy)), } { C + n, }

D + neutral; D + neutraly

>, a
<[C e (D, Eg), | . LY
D + neutral; y

Y

<
R + min(R, C),
C + n,
D+ 0

R+ n,
C + n,
D+ 0

min_width peak

Running

min(5, 6)

aggregate R| 18 | 18 (18 | 18 |18 |18 |18 |18|18|18|18| 5|5 |5 | 5 | 5 | 5| 5
current C'|18 | 18 |18 | 18 |18 |18 |18 18] 4 | 5 | 5 |18|18 18 |18 |18 18| 6
potential D, O | O O OO0 1|2 3)J0JO0|1J]0})1/2 /3 4 5]0
semantic action O | 0| 0| o |MnpMmpMp} £ |in|Ma|Oa [Mp|Mp|Mp(Mp|Mp} f
signatures == == ==1==1=2===l====|=
states r T r r v T T T
input 4 4| 2 3|15|5|6|3 212 (222

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

Decoration table for the feature constraint

Problem: since too many time-series constraints can not afford
computing the glue matrix for each constraint independently

Solution: compute parametrized glue matrices at the level of
the transducer (rather than at the level of each automaton)

Values and functions used to parametrize
generated automata (and glue matrices)

| Featuref\ idf minf max s ¢f (5}
one 1 1 1 1 1 |Aggregator g \ ¢g defaulty,

width 0 n+1 +oc -+ 1 .
Max max min s
surface 0 —00 400 + x; . .
Min min max s
max -0 —00 +0C max xj;
. . Sum - 0
min +00 —00 +0C min T;
range 0 0 +oc nfa z;

Table 2.1: (Left) Features: identity, minimum, and maximum values; the operators
¢s and 5} recursively define the feature value v,, of a time series xy, ...,z by vy =
¢y(idy, 65}) and v; = ¢5(vi—1, 6}) for i > £, where 6} is the contribution of z; to v,;
n stands for the length of the time-series. (Right) Aggregators: operators and identity
values relative a feature f.

Parametrize glue matrix for peak
(/s its own reverse)

> : found

<T > >1
]) {
. g < me;ybe.. < outs = Ina\,be
1 Il \ ‘/\
8 T t
— — —
s | 4,(C,0) | ,(C,0) 64(C, C)

> : found
< :out,

/7' d’g(as(a) d’f(B’S"S_if) ¢f(<5:3’§’6})

/Nt | 6,(C,C) | ¢;(C,D,D,60) 4,(C,0)

DY Parametrised glue matrix for any g_f _PEAK constraint

(define the correction term)

Parametrize glue matrix for increasing_sequence
(its reverse is decreasing_sequence)

< :out
in

: found

>

(

< :out,

l);
o

&

> :out .

Il

S t
> : out, < : found . ¢g(8, (5) ¢g (8, (5)
t ¢g(8a 8) ¢f(8’(5a B’ﬁ36})

Parametrised glue matrix for any g_f INCREASING_SEQUENCE constraint
(define the correction term)

Kol

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

Automata simplifications

Goal

» Reduce the number of accumulators and aggregate as early
as possible

» Simplify the automata at the stage of their synthesis

Three simplification types

» Simplifications coming from the properties of patterns, ex.:
aggregate-once

» Simplifications coming from the properties of the
feature/aggregator pairs, ex.: immediate-aggregation

» Removing the never used accumulators.

“Aggregate-once”’ simplification

What is the “Aggregate-once” simplification ?

It allows to compute the feature value of a curent pattern
occurrence only once and, possibly, earlier than the end of a pattern
occurrence.

When is the simplification applicable ?

There must exist a transition on which the value of the feature
from the current pattern occurrence is known.

Example: counting number of peaks

4

0 3
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

So =l<l Sl :l<l Sz =l=l 53 =l<l S‘ =l<' Ss =l>l S° =l>l 57 =l<' Sa =l=’ S9 =l>l

1. First peak is detected upon consuming ss
2. Second peak is detected upon consuming sg

Two automata for nb peak

>

{C ¢ max(D, 1) }

D« 0 >

{ [C):: glax(C,max(D, 1)) }

) -
{D « max(D,1)} - (5'}

C+« 0 =
{ D+« 0 } {D + max(D.1)}

Percentage of simplified constraints

Simplification Percentage
aggregate once 28.9 %
immediate aggreg. 45.9 %
other properties 11.6 %

unchanged automata 13.6 %

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

Goal

Goal

A way to generate a model for an automaton with linear or
linearisable accumulator updates, for example containing min and
max.

Linear decomposition of automata without accumulators

Cété, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular
constraint with integer programming. In: CPAIOR 2007. LNCS,
vol. 4510, pp. 29-43. Springer (2007)

Signature constraint

Introduced variables: S; over ¥ with i € [0, n — 2].

What do the values of S; mean ?

Si=>"& X > Xi+1,Vi € ZO,n—2:
S; = ‘='®X;=Xi+1,Vi€ :O,n—2
Si='<' & X< Xj+1,Vi € :O,n—2

Transition function constraints

Introduced variables: Q; over Q with i € [0,n—1]; T; over Q X &

with / € [0, n — 2]

Each transition constraint has a form:

Qi=q/\5'=0®Qi+1=51(q,0')/\Ti=(q,0),
Vie[0,n—2], Vge Q, Vo € &

Initial state is fixed

Qo = qo

Accumulator updates

s,

(R0} — =5 [=
_-"-—-A-"ﬁ'r ‘?\\ -

IA
A
-
~ v
~
v

Accumulator updates

R; over [a, b] with i in [0, n—1]; T; over Q x ¥ with i in [0, n—2].
> Ro =0
» ;= (r,>) = Ri;1=R;j+1,Vi € [O,n—2]

> Ti — (qa 0') = Ri+l —_ RiaVI € [0,"— 2],\7'(q,0) €
(@ xX)\(r,>)
» M =R, 1

New variables for the linear model

New variables

» Q; is replaced by 0-1 variables Q7 for all g in Q.
RI=1Q =g

» New constraint: Y, Q7 =1,Vie[0,...,n—1]
qeQ

» The same procedure for T; and S; wrt their domains
» X; and R; remain integer variables!

» Every constraint of the logical model is made linear by
applying some standard techniques

» The linear model has O(n) variables and O(n) constraints

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

Generating necessary conditions
(as linear constraints)

e Good news:

— Can use/adapt standard LP techniques (Farkas Lemma) to
generate necessary conditions (expressed as linear constraints)

— Can use this even if accumulators updates are min/max
operations

— Can rank the linear constraints
— Useful both for CP and LP

— The invariants neither depend of the domain of the variables,
nor on the size of the sequence.

Leads to a data base of cuts for time-series constraints

IA

Examples of linear constraints
(max_max_peak)

Ri—R;_120
(increasing R since use max aggregator)

Examples of linear constraints
(max_range_decreasing)

{R + default}

¥

>
{R + max(R, max(0,VAR; — VAR; 1))} <

R; — R;_1 =2 0 (increasing R since use max aggregator)

R; +VAR;_; —VAR; o > 0

Examples of linear constraints
(max_range_increasing)

{R + default}

Y

<
{R + max(R, max(0,VAR;4+; — VAR;))} =

R; — R;_1 2 0 (increasing R since use max aggregator)

R; —VAR;_; +VAR;_» > 0

Examples of linear constraints
(max_width_strictly_decreasing_sequence)

D+« 0
R +— default

D+ 2
R +— max(R, 2)

>

D+ D+1
R+ max(R,D + 1)

R; — R;_1 2 (0 (increasing R since use max aggregator)

Examples of linear constraints
(max_width_strictly _increasing_sequence)

D« 0
R + default

D+ 2
R + max(R, 2)

<

D+ D+1
R + max(R,D + 1)

Rz’ —_ Ri—l > 0 (increasing R since use max aggregator)

IA

Examples of linear constraints
(min_max_peak)

—R,i -+ Rz’—l Z 0 (decreasing R since use min aggregator)

Examples of linear constraints
(min_width_plain)

D« 0
R + default

<
D+ 0
R+ min(R,D + 1)

(D« D+1}

—R; + R;_1 2 0 (decreasing R since use min aggregator)

Examples of linear constraints
(min_width_plateau)

\ D+ 0
X\\ .<_ { R + default }

>

D+ 0
R+ min(R,D + 1)

(pep+1} =t

—R; + R;_1 > 0 (decreasing R since use min aggregator)

Examples of linear constraints
(nb_bump_on_decreasing_sequence)

—R;+R; 3+120

smallest cycle between
two consecutive incrementation)

Examples of linear constraints
(nb_dip on increasing_sequence)

smallest cycle between
(two consecutive incrementation)

Examples of linear constraints
(nb_gorge)

—R;+R;_2o+1>20

— smallest cycle between
(two consecutive incrementation)

Examples of linear constraints
(nb_peak)

—-R;,+R;_ 2o+12>0

smallest cycle between
two consecutive incrementation

)

—2R; + R 1+ R, _2+22>0

Examples of linear constraints
(nb_summit)

—R;+Ri_o+120

smallest cycle between
(two consecutive incrementation)

Examples of linear constraints
(nb_valley)

—Ri+R;_ 2+1>0 2R, +Ri 1+ Ri_2+22>20

smallest cycle between
(two consecutive incrementation)

Examples of linear constraints
: (nb_zigzag)

Ri—R;_1 20

(increasing R since use)
sum aggregator and feature one

—R;+R;_35+1>20

smallest cycle between
two consecutive incrementation)

Background

Synthesizing automata with accumulators from transducers
Parametric glue matrices

Simplifying automata with accumulators

Reformulating in LP

Deriving necessary conditions (as linear constraints)
Bounds

The need for bound

« Want to have lower/upper bound on the result returned by a time-
series constraint parametrized by:

— The sequence length
— The smallest or largest values of the variables in the sequence

Having a bound is good,
but having a way to characterize
all solutions reaching this bound is even better

Point

 In a significant number of cases we can just use the standard
regular constraint (with an automaton having a fixed number of
states) for characterizing all solutions reaching a given bound

when the bound does not depend of the domain size

Example 1: nb_peak (upper bound |[*7*] |

IA

.

nmod?2 =0

o,1,0 0,0,1,0 0,1,0,0 0,1,0,1 0,1,1,0 1,0,1,0
<> =<> <> = <>< <=2 ><>

Exercise: get a transducer for the
decreasing_terrace pattern (>=">)

1 1 1 1 1 1 1
L 1 | 1 1 1 1 1 1 | | | | 1 | |
Vi Vo V3 Vi Vi Vg Vi Vg Vo Vig Vi Vig Via Vig Vis Vie

Exercise: transducer for decreasing_terrace

< :out

s-occurrence (©

L 1 > : founde
— . Inaypope,; 2 2
ou[put o m;, m Oy o my, fe o o o o my, fe m; m
1

states s T t
input > = = <

Ve V7
i-occurrence (o)

[(i + before)..j] = [(5 + 1)..7]
e-occurrence (o)

| [[(Z + before)..(j + 1 — after)]]
o111 0o 01 11 11 =[[(54+1)..(7+1-1)]

i Vo V3 Vi Vi Vg Vi Vg Vo Vig Vi Vi Via Vig Vis Vig

(B)

