Introduction to Column Generation and hybrid methods for Homecare Routing

Louis-Martin Rousseau

Canada Research Chair in Healthcare Analytics and Logistics

Acknowledgment

- The nicest slides in this presentation where contributed by several colleagues and students
 - Éric Prescott-Gagnon (JDA labs)
 - Florian Grenouilleau (Hanalog.polymtl)

An example

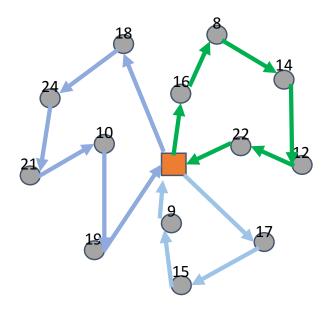
Vehicle routing problem

Customers

• Demand constraints

Vehicles

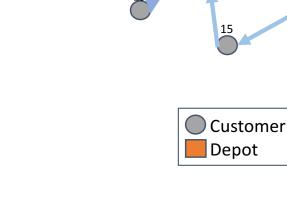
- Capacity constraints
- Flow conservation constraints
- Objective:
 - Find routes that minimize total distance



Standard mip formulation:

- Scaling issues
- Symmetry
- More complex constraints add even more complexity
- Some constraints can lead to bad linear relaxations.

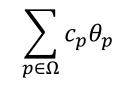
- Much simpler formulation
- Vehicle constraints are implicitly considered in route enumeration
- Better Linear Relaxation



Enumerate all possible routes

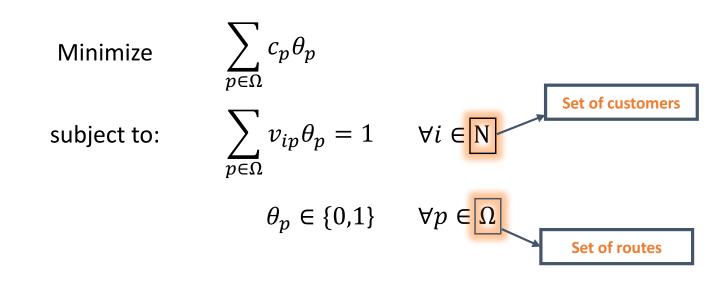
Minimize

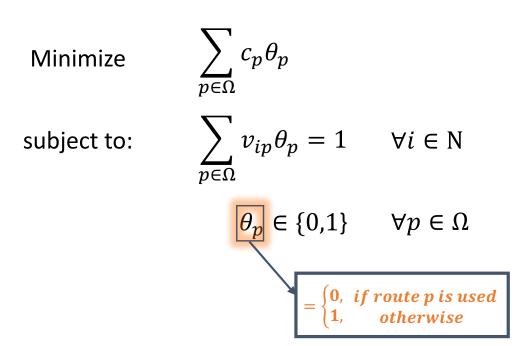
subject to:

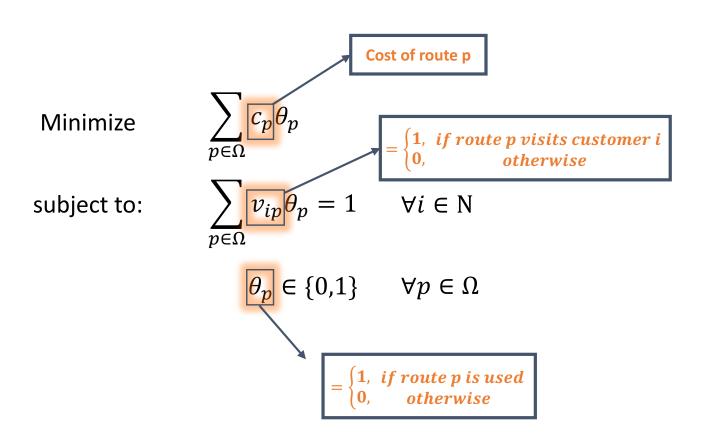


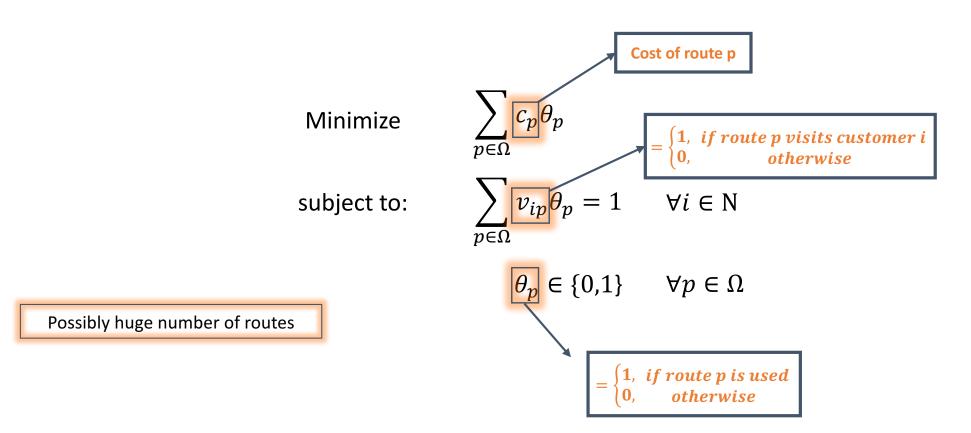
$$\sum_{p\in\Omega} v_{ip}\theta_p = 1 \qquad \forall i\in\mathbb{N}$$

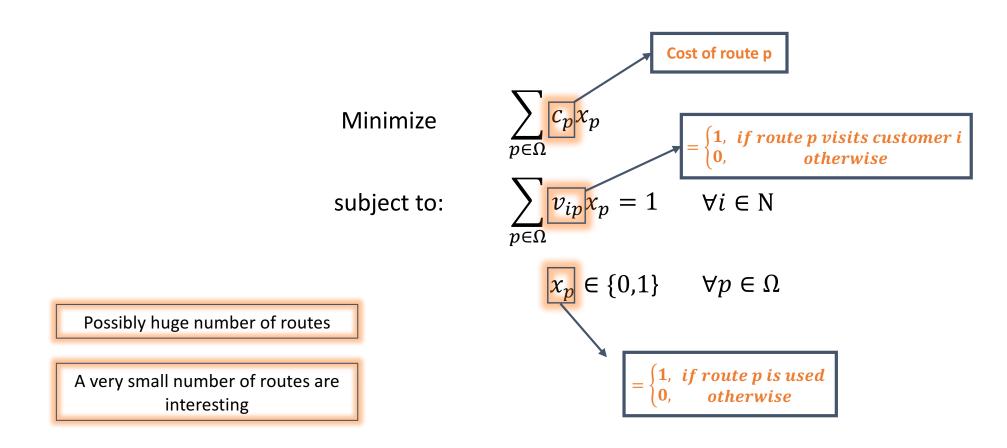
$$\theta_p \in \{0,1\} \qquad \forall p \in \Omega$$

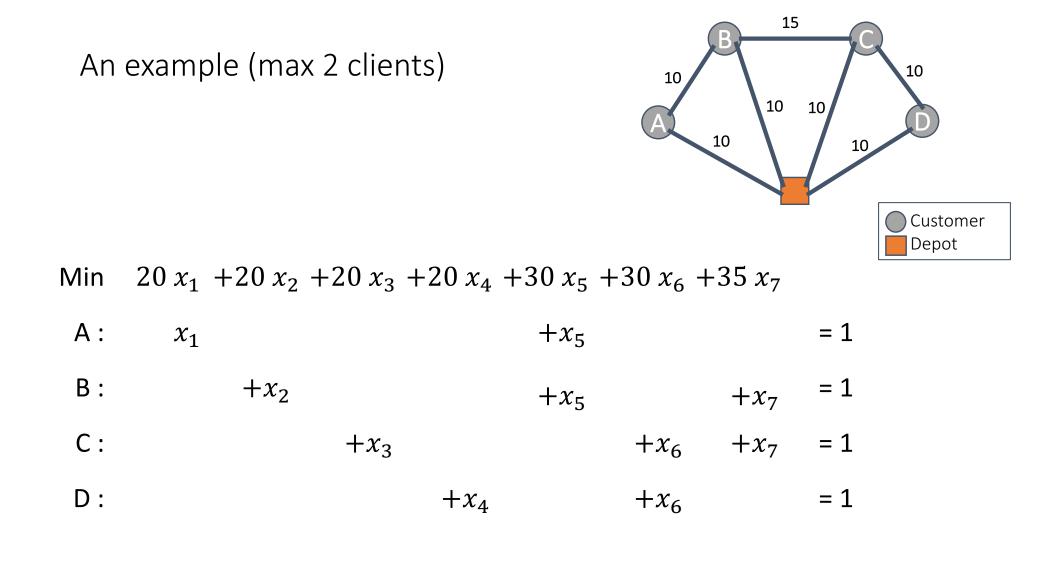


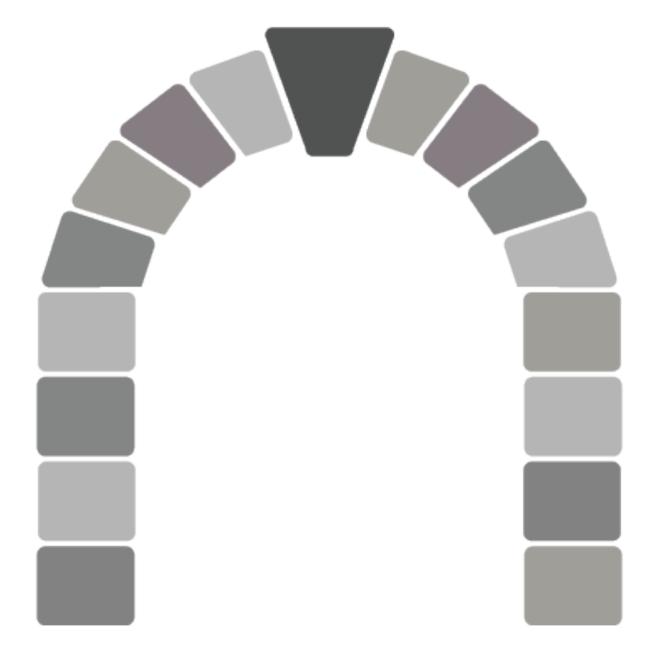












An intuitive view of

Column Generation

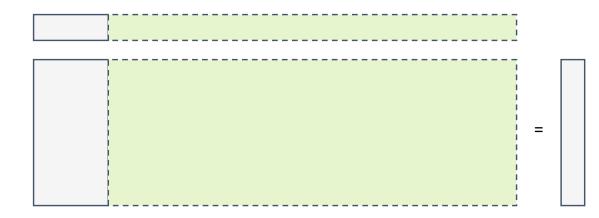
Solve linear programs with a lot of variables

	Γ
	_

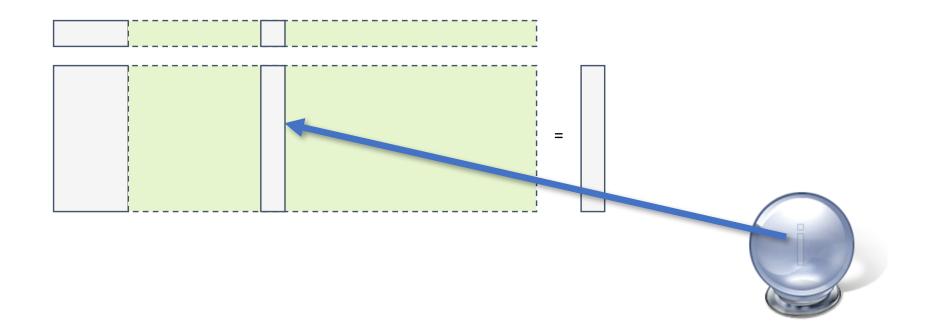
Solve linear programs with a lot of variables



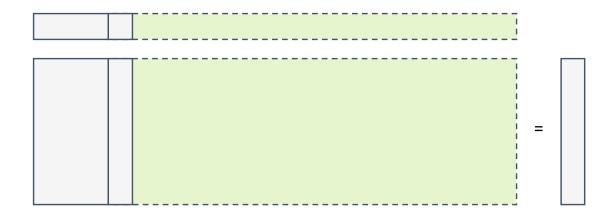
Solve linear programs with a lot of variables



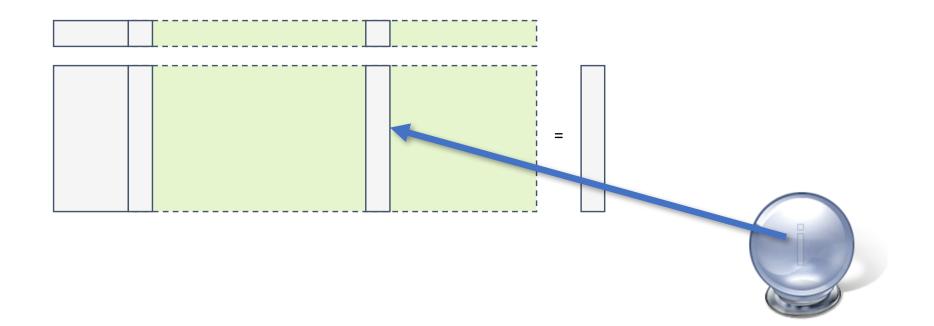
Solve linear programs with a lot of variables



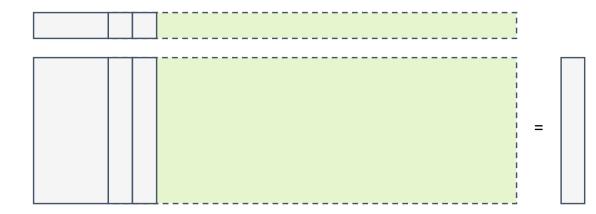
Solve linear programs with a lot of variables



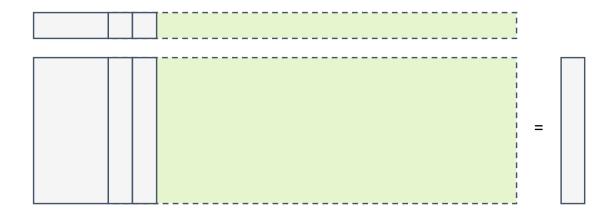
Solve linear programs with a lot of variables



Solve linear programs with a lot of variables

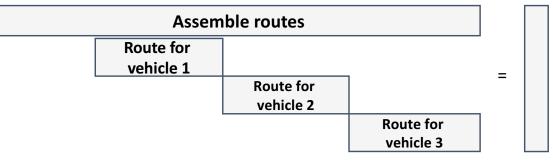


Solve linear programs with a lot of variables



When to use column generation?

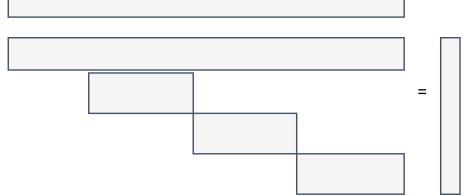
When to use column generation?



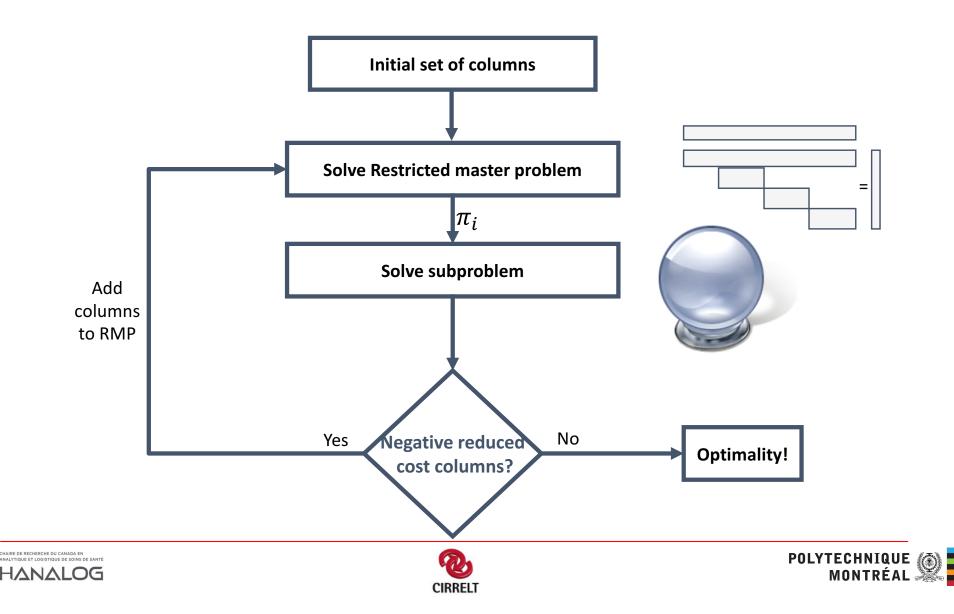
When to use column generation?

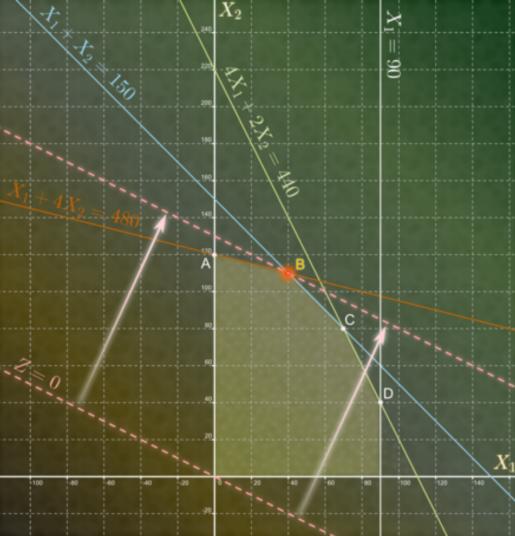
Works well generally on:

- Vehicle routing
- Airline Scheduling
- Shift Scheduling
- Jobshop Scheduling

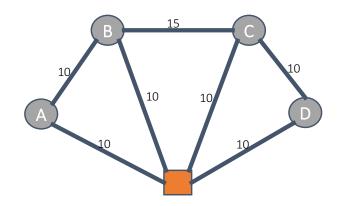


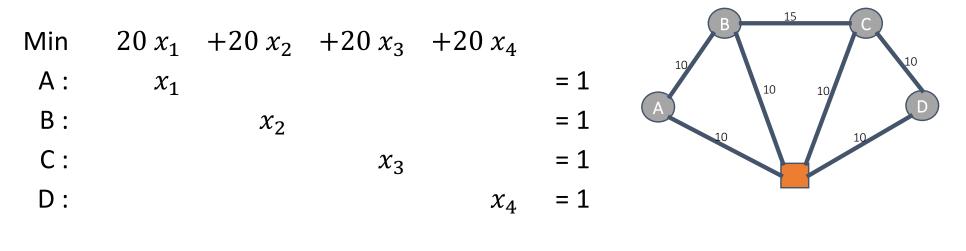
Worked the best when part of the problem has an underlying structure: Network, Hypergraph, knapsack, etc...



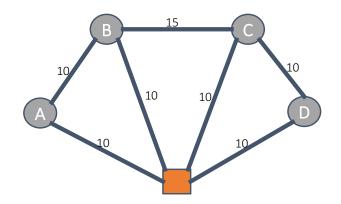


Master Probelm for the **Vehicle routing problem**

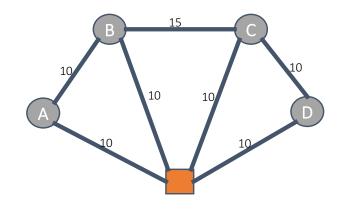




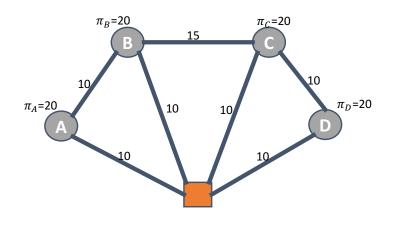
	x_1	<i>x</i> ₂	x_3	x_4	
Min	20	20	20	20	
A :	1				= 1
B :		1			= 1
C :			1		= 1
D :				1	= 1

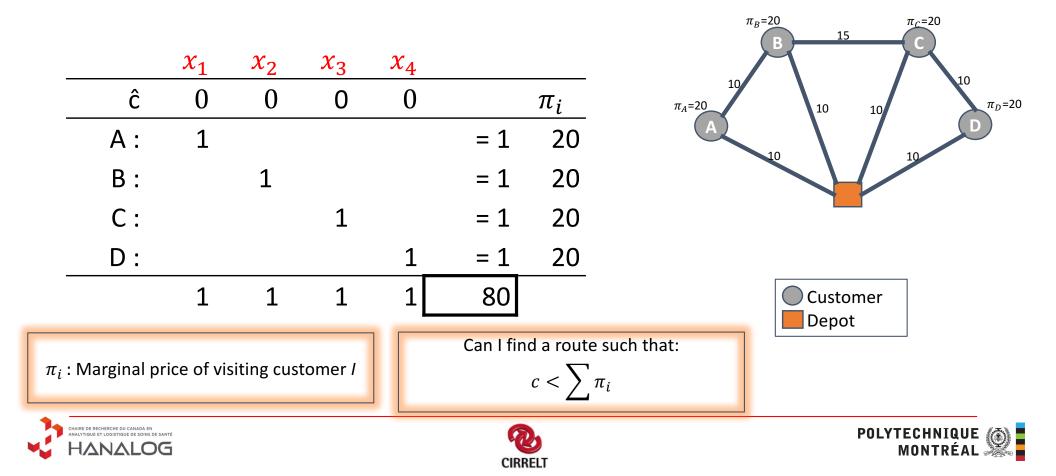


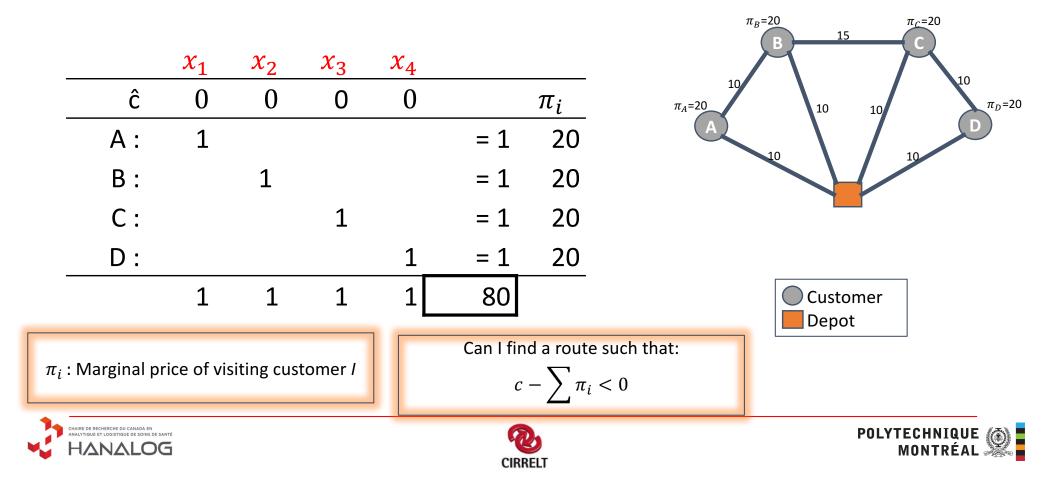
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4		
ĉ	0	0	0	0		π_i
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D :				1_	= 1	20
	1	1	1	1	80	

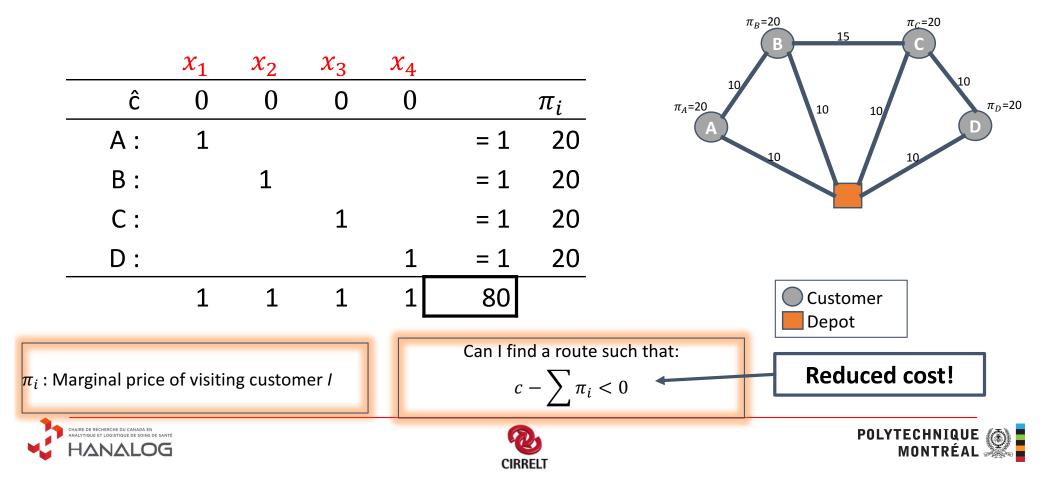


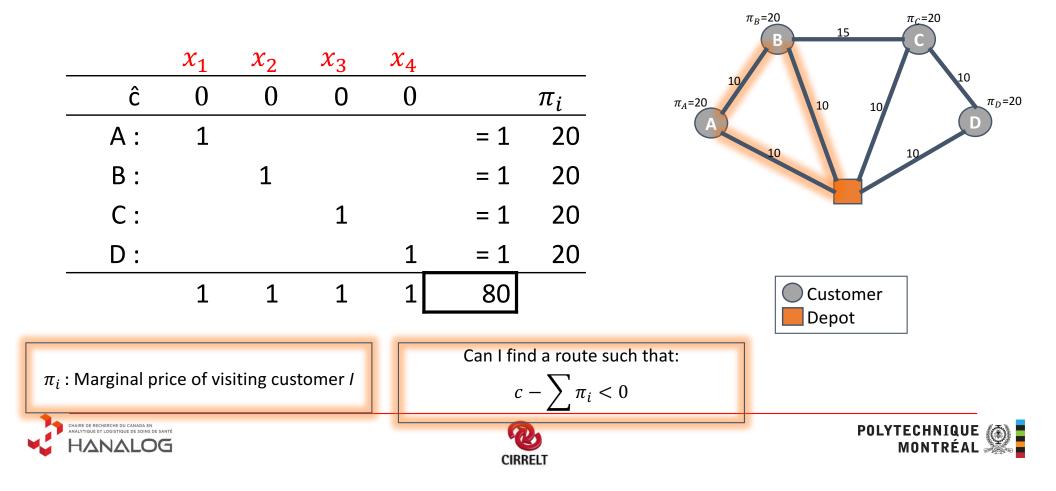
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4		
ĉ	0	0	0	0		π_i
A :	1				= 1	20
B :		1			= 1	20
C :			1		= 1	20
D :				1	= 1	20
	1	1	1	1	80	
π_i : Margin	π_i : Marginal price of visiting customer <i>I</i>					
			0			

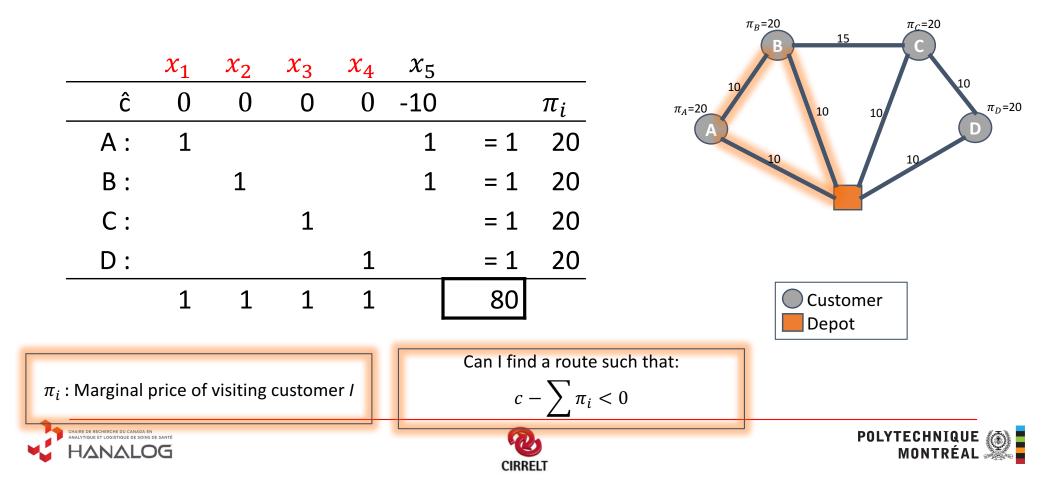






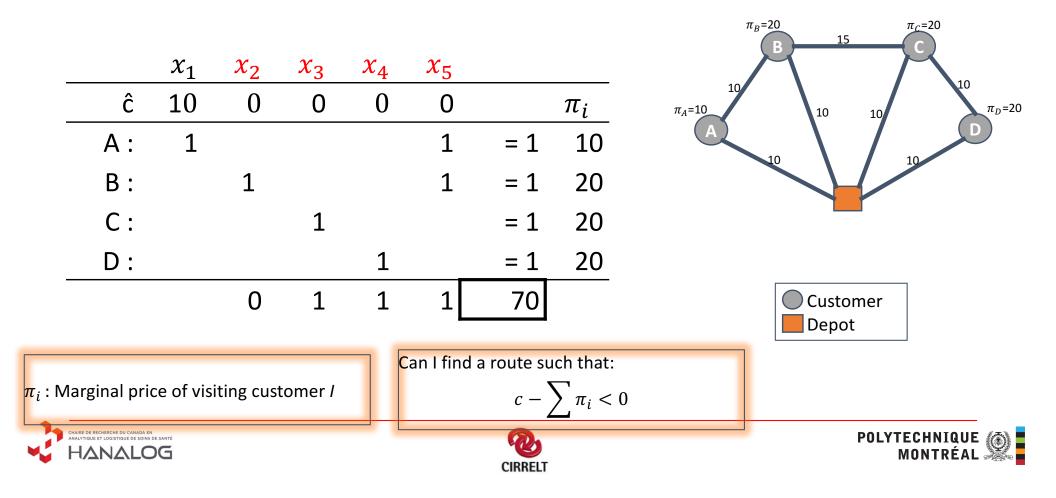


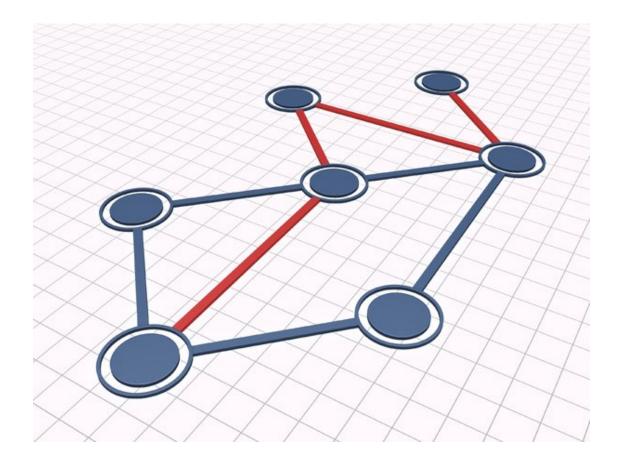




Vehicle routing problem

An example (max 2 clients)





Sub Probelm for the **Vehicle routing problem**

General Subproblem

Implicit representation of all variables

• Every possible solution to the subproblem is a variable

Optimization objective:

ightarrow find variable with (the most) negative reduced cost

Min
$$\hat{c} = c - \sum_{i} a_{i} \pi_{i}$$
 $a_{i} = \begin{cases} 1, & \text{if customer i is visited} \\ 0, & \text{otherwise} \end{cases}$
 $c = \sum_{x} c_{x} x$

General Subproblem

Implicit representation of all variables

• Every possible solution to the subproblem is a variable

Optimization objective:

 \rightarrow find variable with (the most) negative reduced cost

Min
$$\hat{c} = \sum_{x} c_{x} x - \sum_{i} \pi_{i} a_{i}$$
 $a_{i} = \begin{cases} 1, & \text{if customer } i \text{ is visited} \\ 0, & \text{otherwise} \end{cases}$

Subproblem

Implicit representation of all variables

• Every possible solution to the subproblem is a variable

Optimization objective:

 \rightarrow find variable with (the most) negative reduced cost

Min
$$\hat{c} = \sum_{x} c_{x} x - \sum_{i} \pi_{i} a_{i}$$

 $a_i = \begin{cases} 1, & if \ customer \ i \ is \ visited \\ 0, & otherwise \end{cases}$

Subject to: Capacity constraints

Flow conservation constraints

Shortest-path problem with resource constraints: Dynamic programming

Resources Constraint SPP

Resource **r** = 1,...,**R**

Resource consumption $t_{ii}^r > 0$ on each arc.

Resources window[**a**^r_i,**b**^r_i] at each node

- Resources level cannot go above \mathbf{b}^{r}_{i} when node \mathbf{v}_{i} is reached
- If **t**^r_{ij} is below **a**^r_i when node path reaches **v**_i then is it set to **a**^r_i

Resources Constraint SPP - DP

Dynamic Programming Algorithm

- L_i : list of labels associated with node v_i
- label **I = (c,T¹,..., T^R)** where
 - a label represents a partial path from v_0 to v_i
 - **c** is the cost of the label or
 - **T** is the consumption level of resource **r**
 - v(I) is the node which to which I is associated

Resources Constraint SPP - DP

Extending a label $I = (c, T_i^1, ..., T_i^R)$ from v_i to v_j

- Create a label ($c + c_{ij}$, $T^1+t^1_{ij}$,..., $T^R+t^R_{ij}$)
 - Making sure we respect [a¹_j, b¹_j],..., [a^R_j, b^R_j]
- Insert the label in the list of labels associated with \mathbf{v}_{i}
- Apply Dominance Rules
 - Without such rules, the algorithm would enumerates all possible paths
- Resources constraints make sure the algorithm terminates

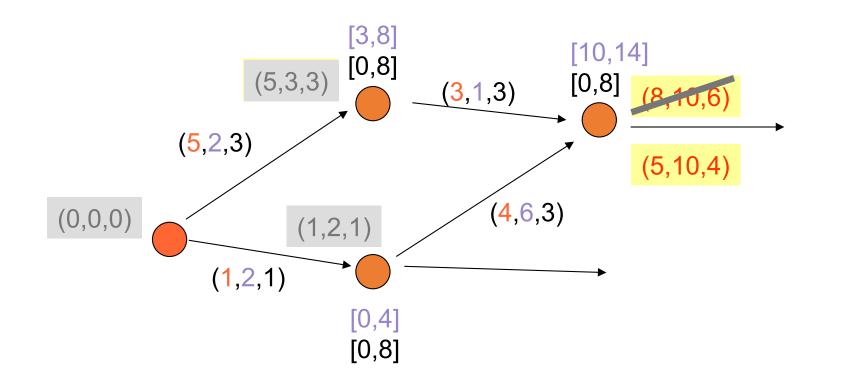
Resources Constraint SPP - DP

Dominance Rules: I_1 dominates I_2 iff :

- c(l₁) <= c(l₂)
- Every feasible **future extensions** of I_2 will be feasible for I_1
 - Most often we check that $T(I_1) \leq T(I_2)$ for all r

Dominance: an example

label : (c, time, capacity)



Subproblem – Constraint Programming

"Arc Flow" model

Objectives:

Minimize: ∑_i (ReducedCost(i, S_i))

Variables:

- $\bullet \ S_i \in N$
- $V_i \in \{False, True\}$
- $I_i \in [0..Capacity]$

Successor of node i Node i visited by current path Truck load after visit of node i

Constraints:

- $S_i = i \rightarrow V_i = False$
- AllDiff(S)
- Circuit(S)
- $S_i = j \rightarrow I_i + D_j = I_j$

S-V Coherence constraints Conservation of flow SubTour elimination constraint Capacity constraints

+ Redundant Constraints from work on TSP(TW)

Subproblem – Constraint Programming

"Position" model

Objectives:

• Minimize: \sum_{k} (ReducedCost(P_k, P_{k+1}))

Variables:

- $P_k \in N$ Node visited a position k
- $L_k \in [0..Capacity]$

Node visited a position k Truck load after visiting position k

Constraints:

- AllDiff(P)
- $L_{k+1} = L_k + D_{Pk}$

Elementarity of the path

- Capacity constraints
- $P_k = depot \rightarrow P_{k+1} = depot$ Padding at the end of path

Can you compare these models?

"Arc Flow" model

Objectives:

• Minimize: \sum_{i} (ReducedCost(i, S_i))

Variables:

- $S_i \in N$
- $V_i \in \{False, True\}$
- $I_i \in [0..Capacity]$

Constraints:

- $S_i = i \rightarrow V_i = False$
- AllDiff(S)
- Circuit(S)

•
$$S_i = j \rightarrow I_i + D_j = I_j$$

"Position" model

Objectives:

• Minimize: \sum_{k} (ReducedCost(P_k, P_{k+1}))

Variables:

•
$$P_k \in N$$

• $L_k \in [0..Capacity]$

Constraints:

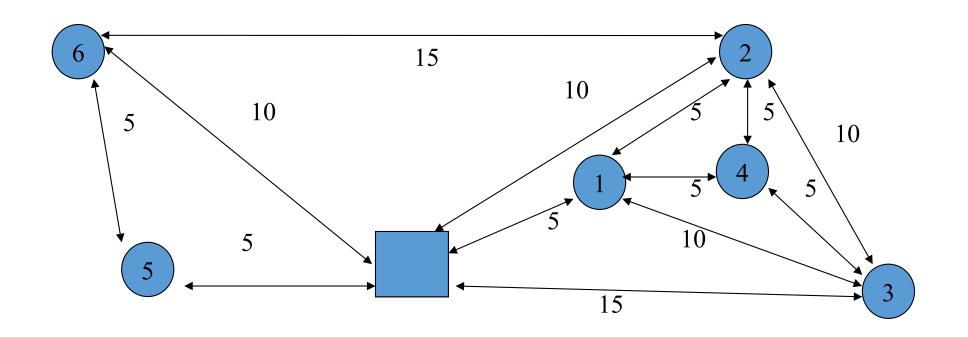
- AllDiff(P)
- $L_{k+1} = L_k + D_{Pk}$
- $P_k = depot \rightarrow P_{k+1} = depot$

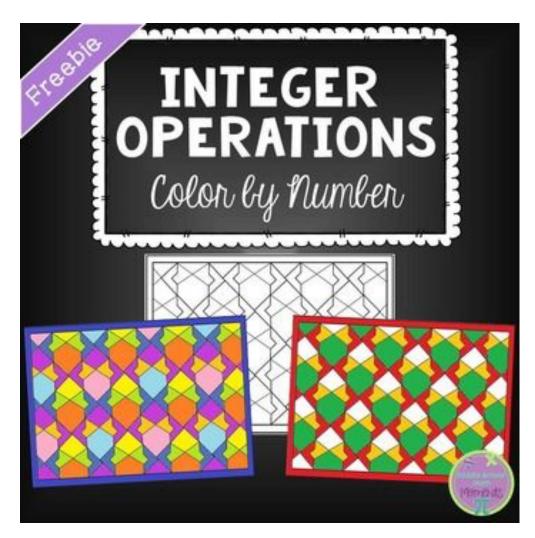
Column generation In Practice

"I expect you all to be independent, innovative, critical thinkers who will do exactly as I say!"

DIY in Excell + CP Solver

- Solve the following VRP problem using ColGen, knowing that
 - A route can visit at most 4 customers





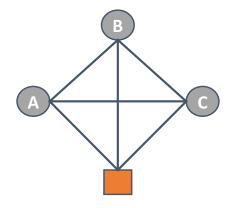
Branch-and-price **Obtaining integer solutions**

Column generation + MIP : Branch-and-price

- How to obtain integer solutions?
 - Branch-and-bound -> solve LP relaxation at each node
 - Branch-and-price -> column generation to solve LP relaxation at each node

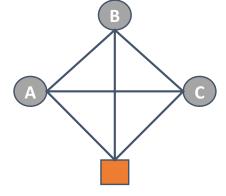
Vehicle routing problem

- Max 2 customers
- Cost of all arc : 1



Vehicle routing problem

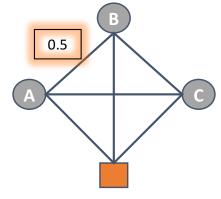
- Max 2 customers
- Cost of all arc : 1



	x_1	<i>x</i> ₂	x_3	
Min	3	3	3	
A :	1	1		= 1
В:	1		1	= 1
C :		1	1	= 1
OptSol:	0.5	0.5	0.5	4.5

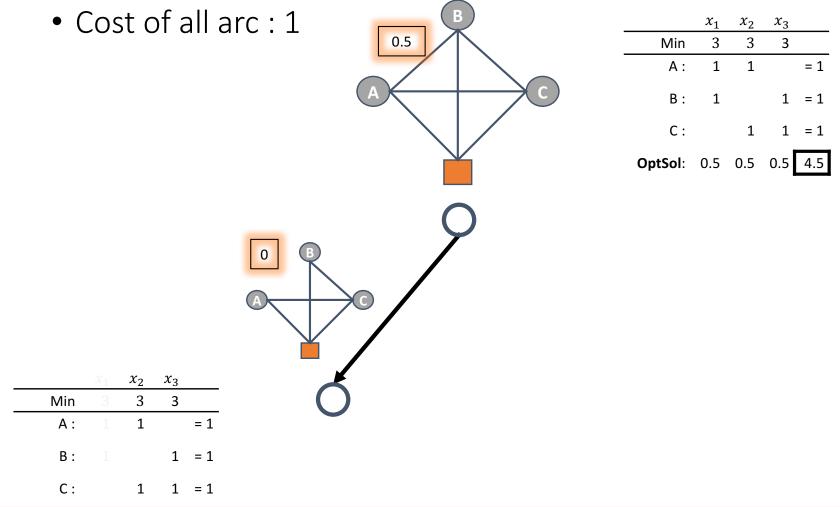
Vehicle routing problem

- Max 2 customers
- Cost of all arc : 1

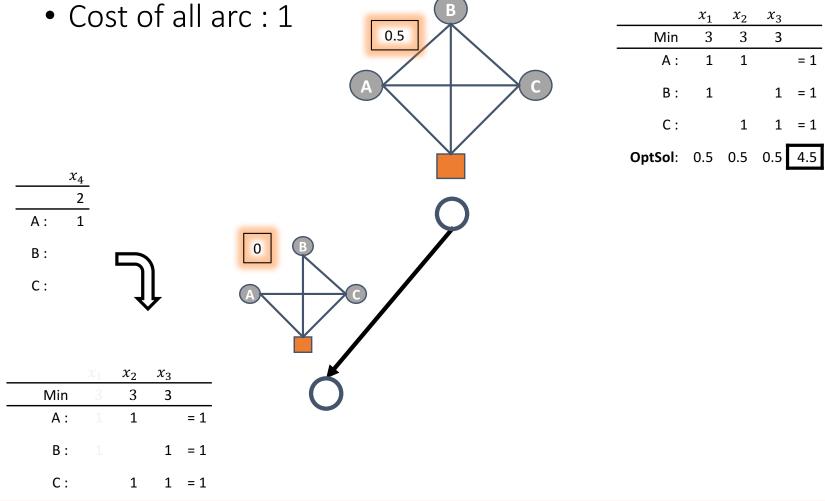


	x_1	<i>x</i> ₂	x_3	
Min	3	3	3	
A :	1	1		= 1
В:	1		1	= 1
C :		1	1	= 1
OptSol:	0.5	0.5	0.5	4.5

Vehicle routing problem



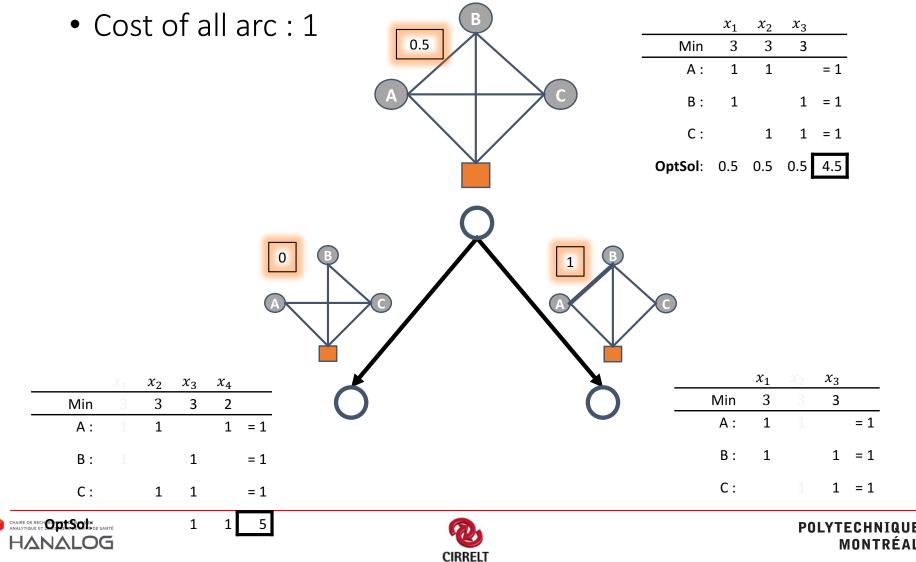
Vehicle routing problem

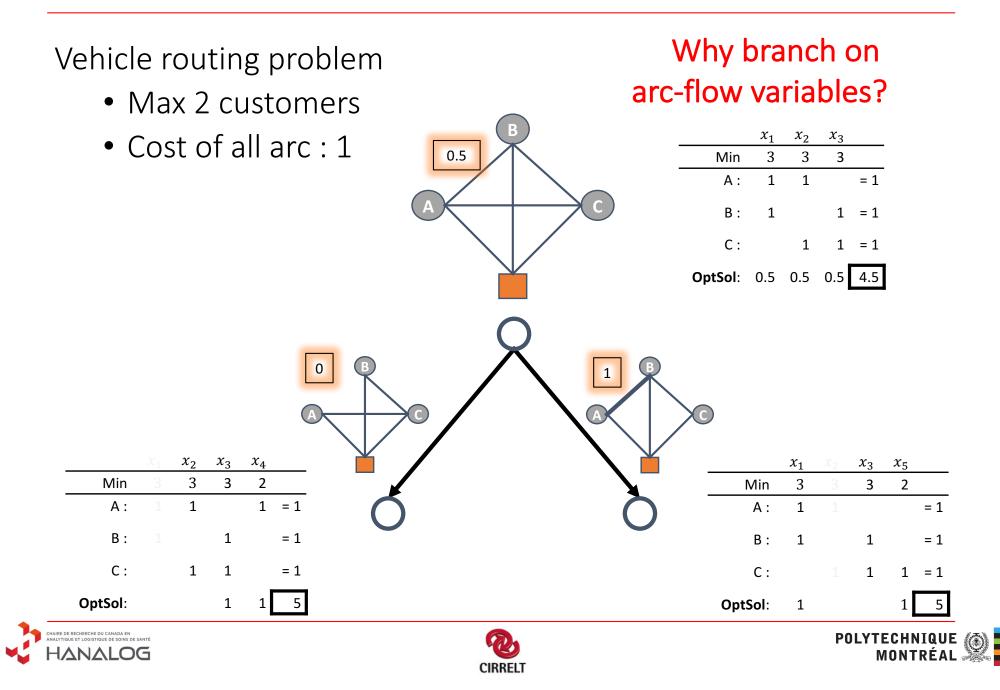


Vehicle routing problem

• Cos	st of	fa	ll arc :	1 0.5 B	Min	<i>x</i> ₁ 3	x ₂ 3	<i>x</i> ₃ 3	
					A :	1	1		= 1
					В:	1		1	= 1
					C :		1	1	= 1
x_4					OptSol:	0.5	0.5	0.5	4.5
A: 1				0					
В:			0	₽ /					
C :	J	•		C					
	•								
	<i>x</i> ₂ :	<i>x</i> ₃	x_4						
Min 3	3	3	2	0					
A: 1	1		1 = 1						
B : 1		1	= 1						
C :	1	1	= 1						
CHAIRE DE RECH OPTSOF MALVITOUE ET OPTSOF HANALOG		1	1 5	CIRRELT				PC	DLYTECHNIQUE MONTRÉAL

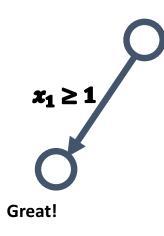
Vehicle routing problem





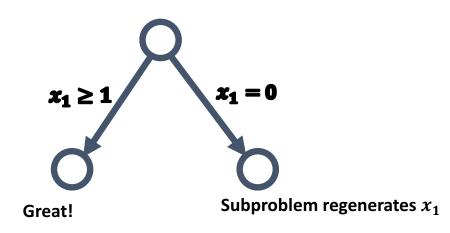
Branching possibilities

• Branch on master variables



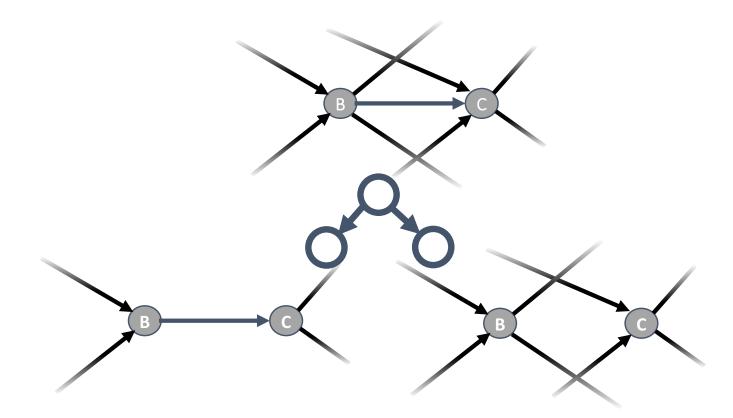
Branching possibilities

• Branch on master variables



Branching possibilities

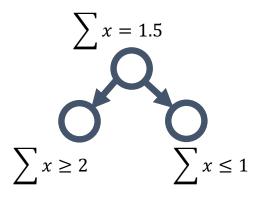
- Branch on master variables... NO!
- Branch on subproblem variables



Branching possibilities

- Branch on master variables... NO!
- Branch on subproblem variables
- Branch on the master problem constraints
 - BUT adding a constraints c requires its dual value $\pi_c \;$ must be handled in the subproblems
 - Example: Branch on the total number of vehicle used

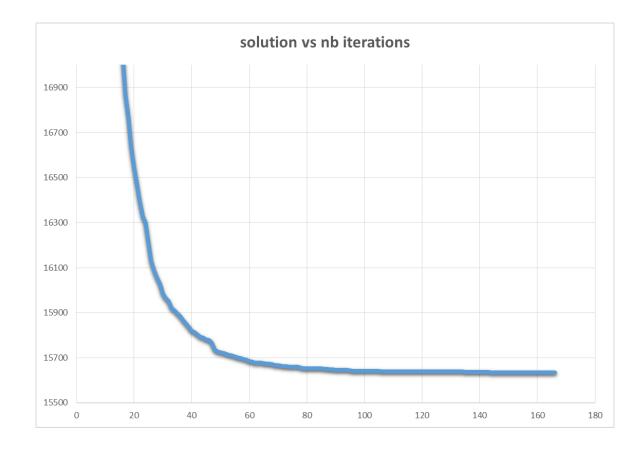
Best branching for shift scheduling problem



Applied column generation Main Challenges

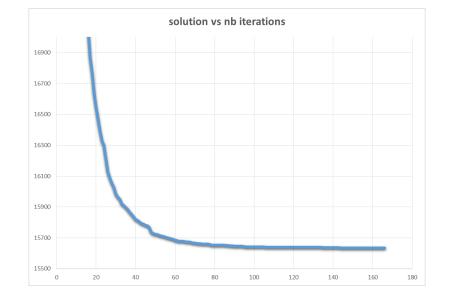
Evolution of costs

• Long convergence time



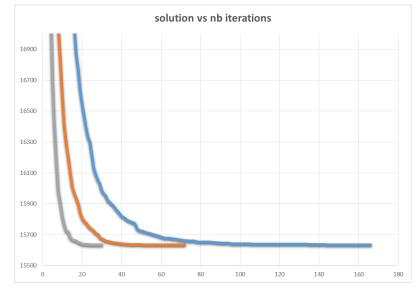
Evolution of costs

• Long convergence time



Speed-up techniques

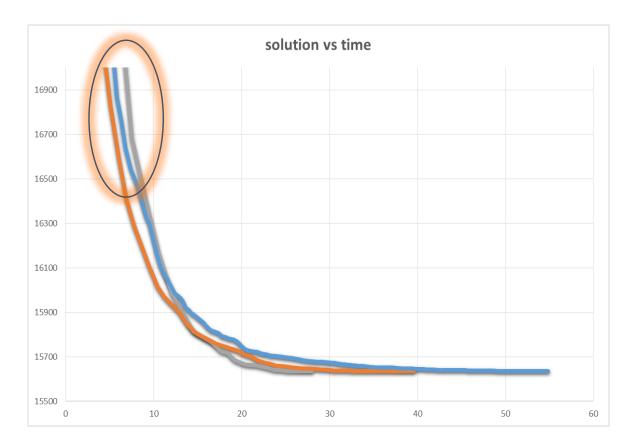
- Spend more time to generate new columns
- Delete variables in RMP



Evolution of costs

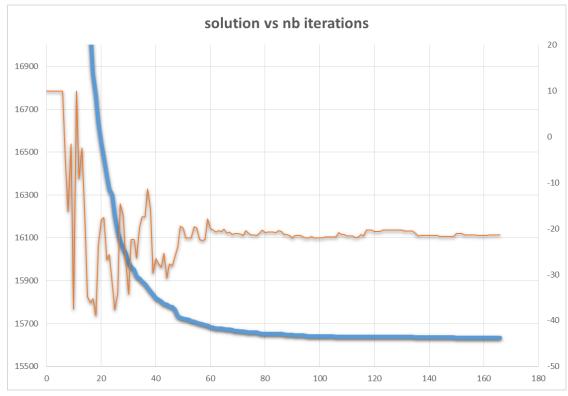
- Long convergence time
- Speed-up techniques
 - Spend more time to generate new columns
 - Delete variables in RMP

Balance between subproblems and master problem



Stabilization

- Duals are extreme points
- Master problem is degenerated
- Tail-off effect is due to difficulty finding the right dual vector

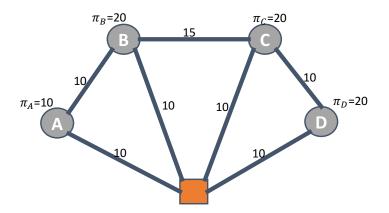


A quick look at **Stabilization issues**

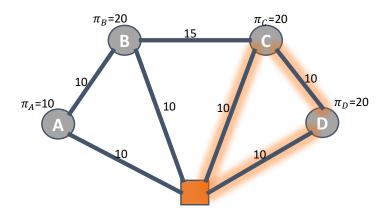
Column Generation

Stabilization

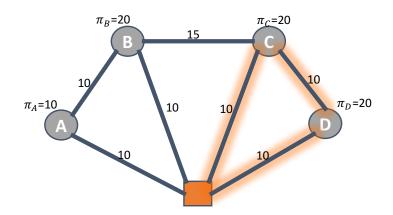
		x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		
	ĉ	10	0	0	0	0		π_i
•	A :	1				1	= 1	10
	B :		1			1	= 1	20
	C :			1			= 1	20
	D :				1		= 1	20
-			0	1	1	1	70	



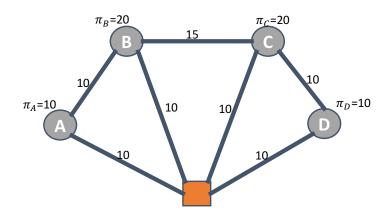
		x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅		
	ĉ	10	0	0	0	0		π_i
	A :	1				1	= 1	10
	B :		1			1	= 1	20
	C :			1			= 1	20
	D :				1		= 1	20
-			0	1	1	1	70	
						-		



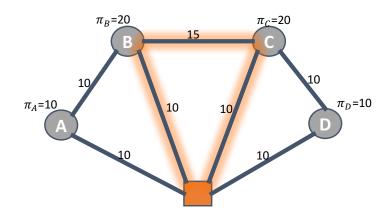
	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6		
Ĉ	10	0	0	0	0	-10		π_i
A :	1				1		= 1	10
B :		1			1		= 1	20
C :			1			1	= 1	20
D :				1		1	= 1	20
		0	1	1	1	[70	



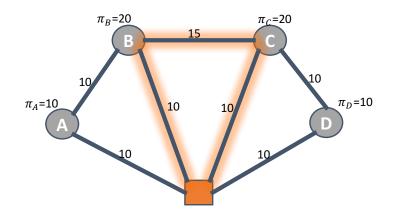
	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆		
Ĉ	10	0	0	10	0	0		π_i
A :	1				1		= 1	10
В:		1			1		= 1	20
C :			1			1	= 1	20
D :				1		1	= 1	10
		0	0		1	1	60	

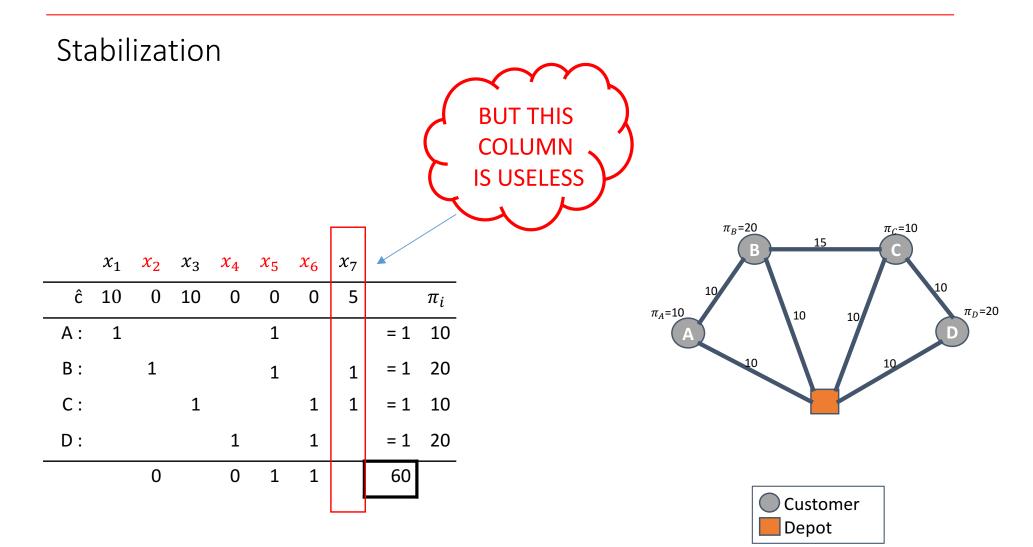


	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆		
Ĉ	10	0	0	10	0	0		π_i
A :	1				1		= 1	10
B :		1			1		= 1	20
C :			1			1	= 1	20
D :				1		1	= 1	10
		0	0		1	1	60	

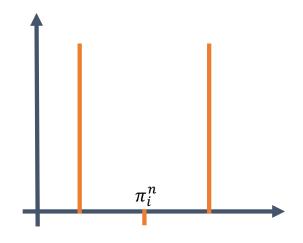


	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇		
Ĉ	10	0	0	10	0	0	-5		π_i
A :	1				1			= 1	10
В:		1			1		1	= 1	20
C :			1			1	1	= 1	20
D :				1		1		= 1	10
		0	0		1	1		60	

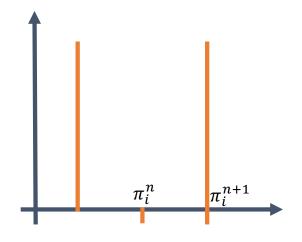




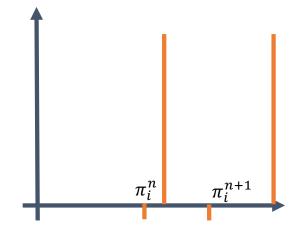
- What to do?
- Popular technique
 - Box penalization



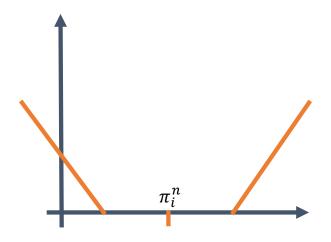
- What to do?
- Popular technique
 - Box penalization

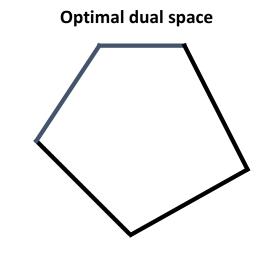


- What to do?
- Popular technique
 - Box penalization

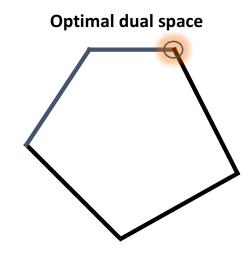


- What to do?
- Popular technique
 - Box penalization

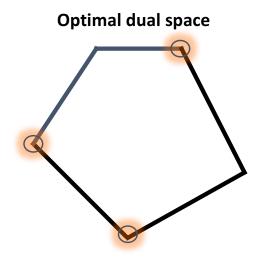




- What to do?
- Popular technique
 - Box penalization
- Interior point stabilization



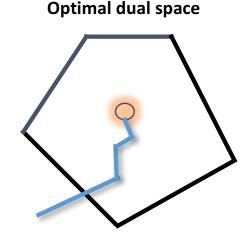
- What to do?
- Popular technique
 - Box penalization
- Interior point stabilization
 - Adding a variable to the primal is equivalent to adding a cut to the dual



- What to do?
- Popular technique
 - Box penalization
- Interior point stabilization
 - Find multiple dual optimal extreme points

	Average time	Average nb Iterations	
Unstabilized	384.4 s	72.6	_
Box penalization	389.1 s	61.0	Optimal dual space
IPS	277.9 s	37.1	

- What to do?
- Popular technique
 - Box penalization
- Interior point stabilization
 - Find multiple dual optimal extreme points
 - Do a linear combination



- What to do?
- Popular technique
 - Box penalization
- Interior point stabilization
 - Find multiple dual optimal extreme points
 - Do a linear combination
 - Simple idea: barrier algorithm without crossover

Back to the Primal

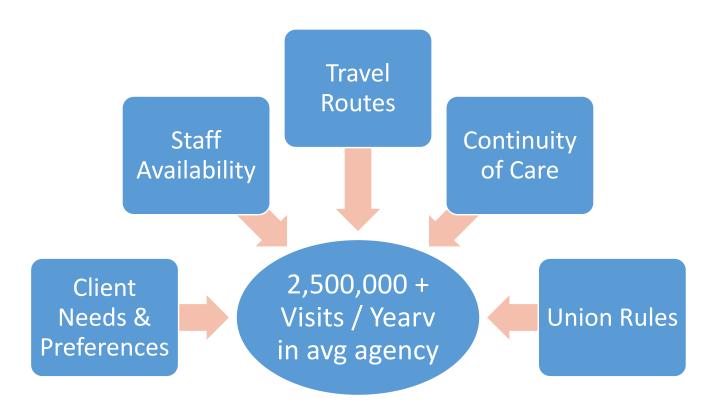
Finding good solution fast: An Homecare Application

- Problem Definition
- Mathematical Formulation
- Resolution Method
- Computation Results
- Conclusion

The home care in Canada

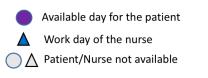
- People want to stay at home as long as possible
- In 2012, approximately 2.2 million people relied on home care services
- For the same cares, a patient at home costs 90% less than a patient at the hospital
- Homecare services is one of the fastest growing market in the US and Canada

The Scheduling Challenge



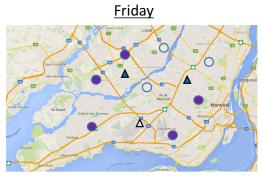
An example

<u>Monday</u>



Each patient needs 3 visits

<u>Saturday</u>

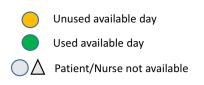


<u>Sunday</u>

An example

<u>Monday</u>

<u>Thursday</u>



<u>Tuesday</u>

<u>Friday</u>

<u>Sunday</u>

<u>Saturday</u>

• This Homcare routing problem (HHCRSP) can be described as mix between an assignment problem

Hard constraints	Soft constraints		
 Mandatory requirements : nurse skills, type of care, Forbidden nurses 	Continuity of careOptional requirements		

• The HHCRSP can be described as mix between an assignment problem and a multi-attributes VRP

	Hard constraints	Soft constraints		
	Mandatory requirements :	•	Continuity of care	
	nurse skills, type of care,	•	Optional requirements	
•	Forbidden nurses	•	Travel time	
•	Time windows	•	Min/Max worktime week	
•	Available days	•	Min/Max worktime workday	
•	Workdays	•	Number of visits over the week	
	Time-dependent travel time			

• The HHCRSP can be described as mix between an assignment problem and a multi-attributes VRP

	Hard constraints		Soft constraints		
• • • •	Mandatory requirements : nurse skills, type of care, Forbidden nurses Time windows Available days Workdays Time-dependent travel time	•	Continuity of care Optional requirements Travel time Min/Max worktime week Min/Max worktime workday Number of visits over the wee		
		Objective func	tion = weighted sum		

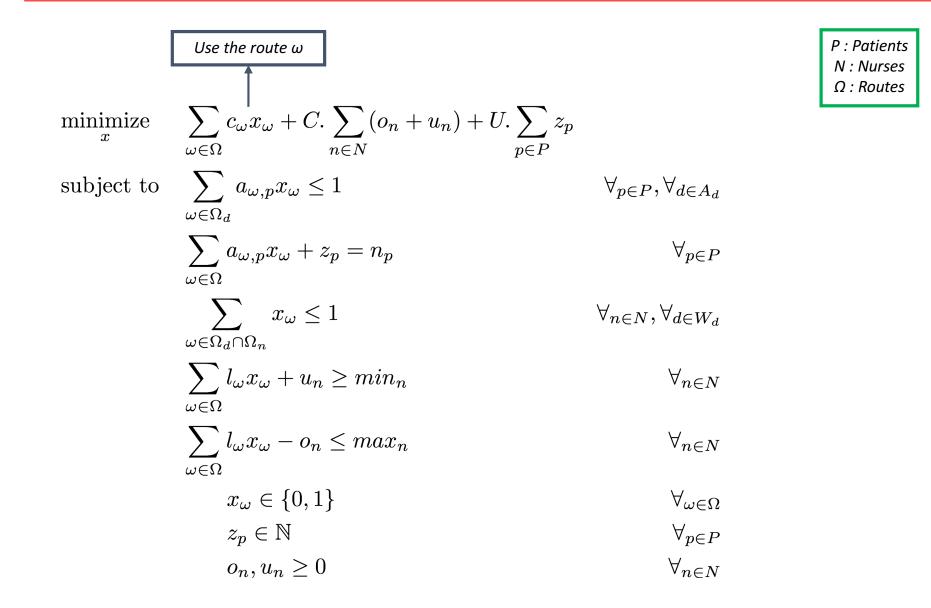
Mathematical Formulation

- Problem Definition
- Mathematical Formulation
- Resolution Method
- Computation Results
- Conclusion

Formulation

• The HHCRSP can be formulated as a set partitioning problem

• The decision variables correspond to the feasible routes for each nurse for each one of his/her workdays



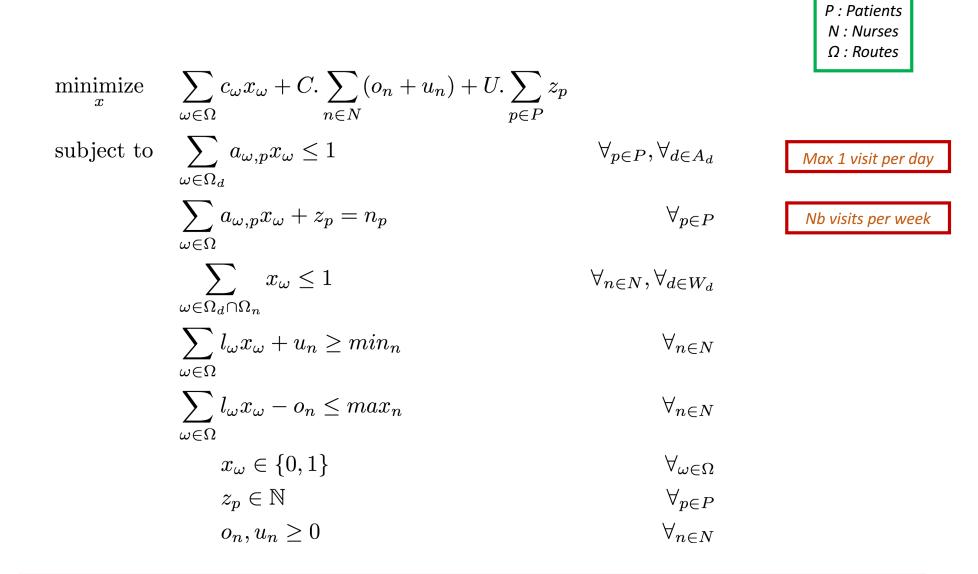
$$\begin{array}{c|c} \hline Overtime of the nurse} & P: Patients \\ N: Nurses \\ n: N: Nurses \\ n: Routes \\ \hline n: Routes \\ \hline \\ n:$$

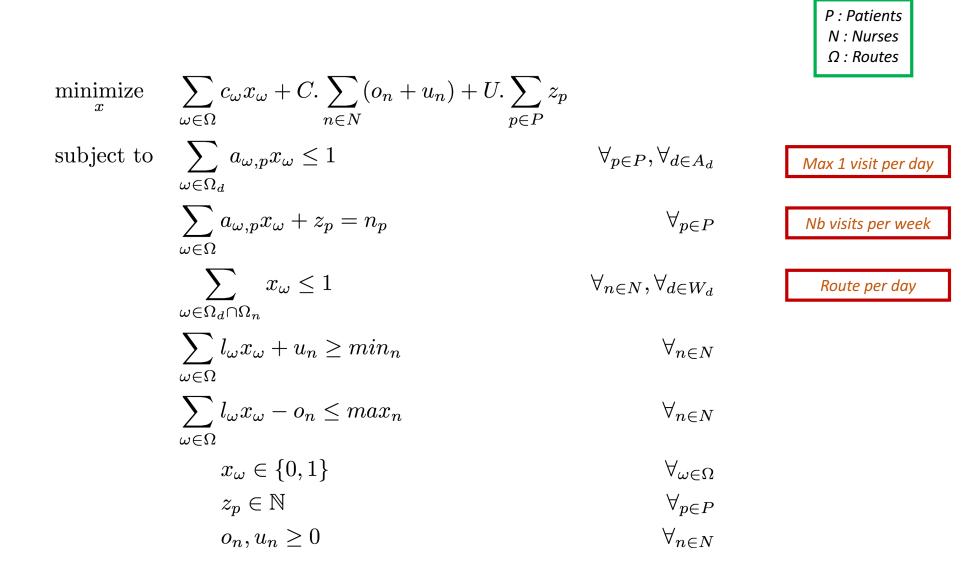
$$\begin{array}{c|c} & & & & \\ \hline & & & \\ & & & \\ \text{minimize} & & & \\ & & & \\ &$$

$\underset{x}{\operatorname{minimize}}$	$\sum_{\omega \in \Omega} c_{\omega} x_{\omega} + C. \sum_{n \in N} (o_n + u_r)$	Non-scheduled visits $1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ p \\ 2 \\ p \\ 1 \\ 2 \\ p \\ 2 \\$	P : Patients N : Nurses Ω : Routes
subject to	$\sum_{\omega \in \Omega_d} a_{\omega,p} x_\omega \le 1$	$orall_{p\in P}, orall_{d\in A_d}$	
	$\sum_{\omega \in \Omega} a_{\omega,p} x_\omega + z_p = n_p$	$\forall_{p\in P}$	
	$\sum_{\omega \in \Omega_d \cap \Omega_n} x_\omega \le 1$	$orall_{n\in N}, orall_{d\in W_d}$	
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \ge min_n$	$\forall_{n\in N}$	
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} - o_n \le max_n$	$\forall_{n\in N}$	
	$x_{\omega} \in \{0,1\}$	$orall_{\omega\in\Omega}$	
	$z_p \in \mathbb{N}$	$\forall_{p\in P}$	
	$o_n, u_n \ge 0$	$orall_{n\in N}$	

N: Nurses Ω : Routes $\sum c_{\omega} x_{\omega} + C. \sum (o_n + u_n) + U. \sum z_p$ $\underset{r}{\operatorname{minimize}}$ $\omega \in \Omega$ $n \! \in \! N$ $p \in P$ subject to $\sum a_{\omega,p} x_{\omega} \leq 1$ $\forall_{p \in P}, \forall_{d \in A_d}$ Max 1 visit per day $\omega \in \Omega_d$ $\sum a_{\omega,p} x_{\omega} + z_p = n_p$ $\forall_{p \in P}$ $\omega \in \Omega$ $\sum \quad x_{\omega} \le 1$ $\forall_{n \in N}, \forall_{d \in W_d}$ $\omega \in \Omega_d \cap \Omega_n$ $\sum l_{\omega} x_{\omega} + u_n \ge \min_n$ $\forall_{n \in N}$ $\omega \in \Omega$ $\sum l_{\omega} x_{\omega} - o_n \le max_n$ $\forall_{n \in N}$ $\omega \in \Omega$ $x_{\omega} \in \{0,1\}$ $\forall_{\omega \in \Omega}$ $\forall_{p \in P}$ $z_p \in \mathbb{N}$ $\forall_{n \in N}$ $o_n, u_n > 0$

P: Patients





$$\begin{array}{lll} \underset{x}{\operatorname{minimize}} & \sum_{\omega \in \Omega} c_{\omega} x_{\omega} + C \cdot \sum_{n \in N} (o_n + u_n) + U \cdot \sum_{p \in P} z_p \\ \\ \operatorname{subject to} & \sum_{\omega \in \Omega_d} a_{\omega, p} x_{\omega} \leq 1 & \forall_{p \in P}, \forall_{d \in A_d} & \underbrace{\operatorname{Max 1 visit per day}} \\ & \sum_{\omega \in \Omega} a_{\omega, p} x_{\omega} + z_p = n_p & \forall_{p \in P} & \operatorname{Nb visits per week} \\ & \sum_{\omega \in \Omega} a_{\omega, p} x_{\omega} + z_p = n_p & \forall_{n \in N}, \forall_{d \in W_d} & \underbrace{\operatorname{Route per day}} \\ & \sum_{\omega \in \Omega_d \cap \Omega_n} x_{\omega} \leq 1 & \forall_{n \in N}, \forall_{d \in W_d} & \underbrace{\operatorname{Route per day}} \\ & \sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \geq \min_n & \forall_{n \in N} & \underbrace{\operatorname{Minimum worktime}} \\ & \sum_{\omega \in \Omega} l_{\omega} x_{\omega} - o_n \leq \max_n & \forall_{n \in N} & \underbrace{\operatorname{Maximum worktime}} \\ & x_{\omega} \in \{0, 1\} & \forall_{\omega \in \Omega} \\ & z_p \in \mathbb{N} & \forall_{p \in P} \\ & o_n, u_n \geq 0 & \forall_{n \in N} \end{array}$$

P · Patients

Ways to solve the problem

- Find the routes in a reasonable computation time is complex, the possibilities are :
 - Solve a heuritistic Branch-And-Price using a column generation → Does not allow a current primal solution
 - Adapt a metaheuristic framework and add it some enhancements to make it the most efficient

Outline

- Problem Definition
- Mathematical Formulation
- Resolution Method
- Computation Results
- Conclusion

Methodology

- Our algorithm is based on 2 main components :
 - An ALNS-based framework
 - A heuristic concentration method

Adaptive Large Neighborhood Search

- ALNS: introduced by Ropke and Pisinger in 2006
- Considers :
 - A large number of visits
 - A large set of constraints
- Allows to test different operators associated with different strategies

Algorithm 1: LNS Heuristic.

- 1 **Function** LNS($s \in \{solutions\}, q \in \mathbb{N}$)
- 2 solution $s_{best} = s$;
- 3 repeat
- s' = s;4 5
 - remove q requests from s'
- 6 reinsert removed requests into s';
- 7 if $(f(s') < f(s_{hest}))$ then
- $s_{best} = s';$ 8 if accept(s', s) then
- 9
- 10 s = s';
- 11 until stop-criterion met
- 12 return s_{hest} ;

<u>Monday</u>

<u>Thursday</u>

- Choosen nurse
- Unused available day
- Used available day

<u>Friday</u>

<u>Sunday</u>

<u>Wednesday</u>

<u>Saturday</u>

<u>Monda</u>

<u>Thursday</u>

- ▲ Choosen nurse
- Unused available day
- Used available day

<u>Friday</u>

<u>Sunday</u>

<u>Wednesda</u>

<u>Saturday</u>

<u>Monda</u>

<u>Thursday</u>

- Choosen nurse
- Unused available day
- Used available day

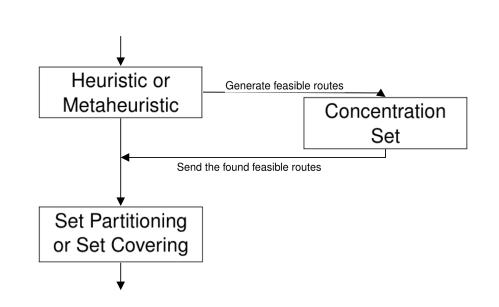
<u>Friday</u>

<u>Sunday</u>

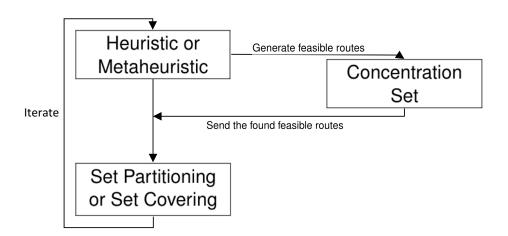
<u>Wednesda</u>

<u>Saturday</u>

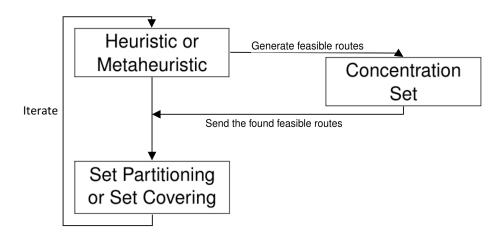
- The heuristic concentration principle has been proposed by Rosing et al. in 1996
- The goal is to keep the generated feasible routes during the heuristic or metaheuristic then use these routes in the resolution of a set partitioning



- Our version of the HC is close to the one developed by
 Subramanian et al. in 2013. They implemented an
 ILS-RVND + set part method
- They iteratively call the set partitioning to quickly guide the search to a good solution



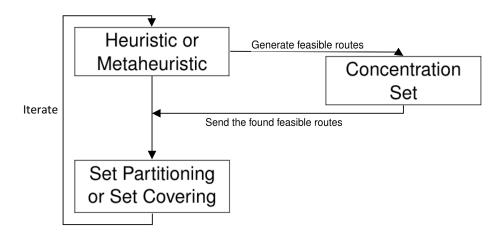
 Our version of the HC is close to the one developed by
 Subramanian et al. in 2013. They implemented an
 ILS-RVND + set part method



• They iteratively call the set partitioning to quickly guide the search to a good solution

PROBLEM : Set partitioning in MIP = **Slow** !

 Our version of the HC is close to the one developed by
 Subramanian et al. in 2013. They implemented an
 ILS-RVND + set part method



• They iteratively call the set partitioning to quickly guide the search to a good solution

PROBLEM : Set partitioning in MIP = **Slow** !

SOLUTION : Relax it !

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

\mathbf{end}

end

Return the best solution found ;

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

end

Return the best solution found ;

Find an initial solution heuristically

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search;

Reset the operators' scores ;

end

 \mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

end

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

\mathbf{end}

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

\mathbf{end}

end

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Apply a local search

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Apply a local search

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Apply a local search

Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Apply a local search

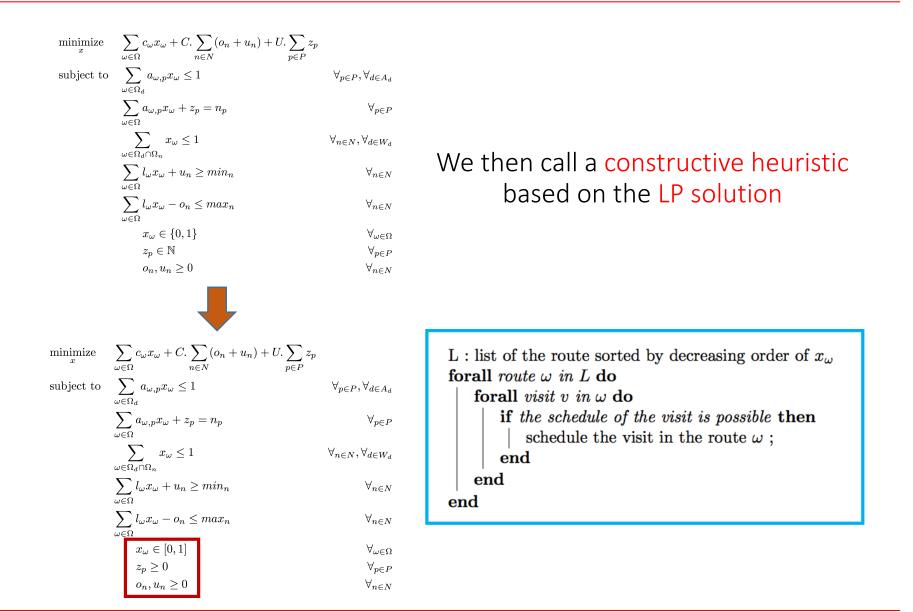
Relaxed heuristic concentration

$\mathop{\rm minimize}_x$	$\sum_{\omega \in \Omega} c_{\omega} x_{\omega} + C. \sum_{n \in N} (o_n + u_n) + U. \sum_{p \in P} z_p$	
subject to	$\sum_{\omega \in \Omega_d} a_{\omega, p} x_\omega \le 1$	$\forall_{p \in P}, \forall_{d \in A_d}$
	$\sum_{\omega \in \Omega} a_{\omega,p} x_{\omega} + z_p = n_p$	$\forall_{p\in P}$
	$\sum_{\omega \in \Omega_d \cap \Omega_n} x_\omega \le 1$	$\forall_{n\in N}, \forall_{d\in W_d}$
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \ge \min_n$	$\forall_{n\in N}$
	$\sum_{\omega\in\Omega} l_\omega x_\omega - o_n \leq max_n$	$\forall_{n\in N}$
	$x_{\omega} \in \{0,1\}$	$\forall_{\omega\in\Omega}$
	$z_p \in \mathbb{N}$	$\forall_{p\in P}$
	$o_n, u_n \ge 0$	$\forall_{n\in N}$

Relaxed heuristic concentration

\min_{x}	$\sum_{\alpha} c_{\omega} x_{\omega} + C. \sum_{\alpha} (o_n + u_n) + U. \sum_{\alpha} z_p$	
	$\omega \in \Omega$ $n \in N$ $p \in P$	
subject to	$\sum_{\omega \in \Omega_d} a_{\omega, p} x_\omega \le 1$	$\forall_{p\in P}, \forall_{d\in A_d}$
	$\sum_{\omega \in \Omega} a_{\omega,p} x_\omega + z_p = n_p$	$\forall_{p\in P}$
	$\sum_{\omega \in \Omega_d \cap \Omega_n} x_\omega \le 1$	$\forall_{n\in N}, \forall_{d\in W_d}$
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \ge \min_n$	$\forall_{n\in N}$
	$\sum_{\omega \in \Omega} \sum_{l \omega x \omega} l_{\omega} x_{\omega} - o_n \le max_n$	$\forall_{n\in N}$
	$x_{\omega} \in \{0,1\}$	$\forall_{\omega \in \Omega}$
	$z_p \in \mathbb{N}$	$\forall_{p\in P}$
	$o_n, u_n \ge 0$	$\forall_{n\in N}$
$\mathop{\rm minimize}_x$	$\sum_{\omega \in \Omega} c_{\omega} x_{\omega} + C. \sum_{n \in N} (o_n + u_n) + U. \sum_{p \in P} z_p$	
subject to	$\sum_{\omega \in \Omega_d} a_{\omega,p} x_\omega \le 1$	$\forall_{p\in P}, \forall_{d\in A_d}$
	$\sum_{\omega \in \Omega} a_{\omega,p} x_\omega + z_p = n_p$	$\forall_{p\in P}$
	$\sum_{\omega \in \Omega_d \cap \Omega_n} x_\omega \le 1$	$\forall_{n\in N}, \forall_{d\in W_d}$
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \ge \min_n$	$\forall_{n\in N}$
	$\sum_{\omega \in \Omega} l_{\omega} x_{\omega} - o_n \le max_n$	$\forall_{n\in N}$
	$x_{\omega} \in [0, 1]$	$\forall_{\omega\in\Omega}$
	$egin{array}{ll} x_{\omega} \in [0,1] \ z_p \geq 0 \ o_n, u_n \geq 0 \end{array}$	$\forall_{p\in P}$
	$o_n, u_n \ge 0$	$\forall_{n\in N}$

Relaxed heuristic concentration

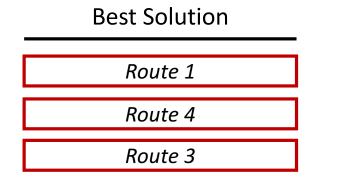


Concentration Set

Route 1

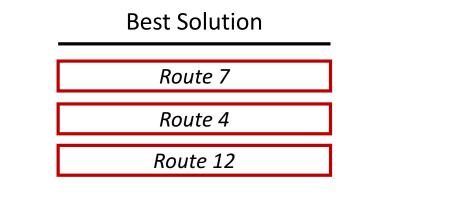
Route 2

Route 3

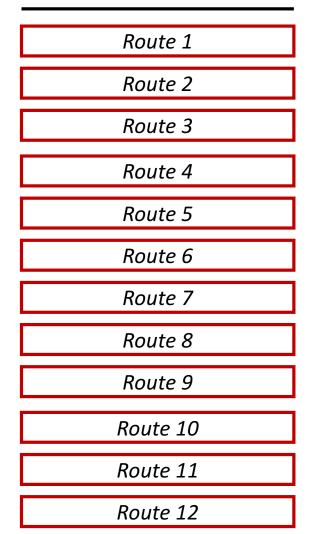


Concentration Set

Route 1
Route 2
Route 3
Route 4
Route 5



Concentration Set



Concentration Set

1 I		
1 I		
1 I		

Iteration : 1000 \rightarrow Solve the relaxed set partitioning

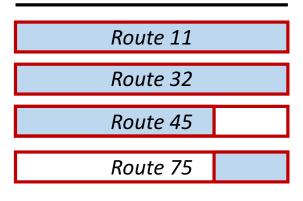
Concentration Set

1		

Relaxed set partitioning solution

New Solution

Heuristic Concentration Selection

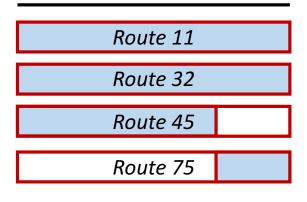


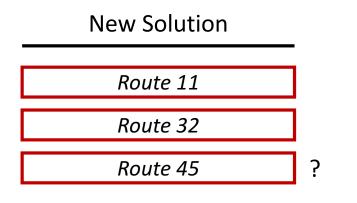
New Solution

Route 11

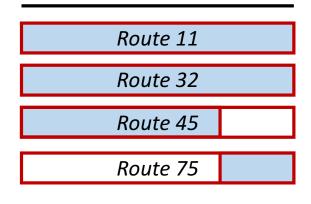
Route 32

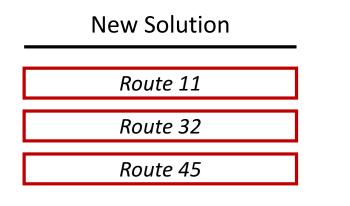
Heuristic Concentration Selection





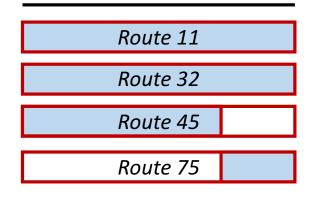
Heuristic Concentration Selection





 \rightarrow And we analyse the new solution

Heuristic Concentration Selection



Find an initial solution ;

while No termination criteria met do

 $s \leftarrow currentSolution$;

Select and apply a destroy operator on s;

Select and apply a repair operator on s;

Analyze the solution s;

if A end of segment is met then

Do the relaxed HC method ;

Apply the local search ;

Reset the operators' scores ;

end

\mathbf{end}

Return the best solution found ;

Find an initial solution heuristically

Remove a subset of the visits

Insert the non-scheduled visits

Update the best / current solutions

Apply a heuristic concentration

Apply a local search

Classic Destroy operators :

Worst removal \rightarrow Visits which cost the most

Classic Destroy operators :

Worst removal \rightarrow Visits which cost the most

Random Removal \rightarrow Randomly select q visits

Classic Destroy operators :

- Worst removal \rightarrow Visits which cost the most
- Random Removal \rightarrow Randomly select q visits
- Related removal → Randomly select a visit and remove it and the q-1 most related

Classic Destroy operators : Worst removal → Visits which cost the most Random Removal → Randomly select q visits Related removal → Randomly select a visit and remove it and the q-1 most related

Classic Repair operators :

Greedy heuristic \rightarrow Scheduled at lowest cost

Classic ALNS operators

Classic Destroy operators :								
Worst removal \rightarrow Visits which cost the most								
Random Removal $ ightarrow$ Randomly select q visits								
Related removal \rightarrow Randomly select a visit and remove it and the q-1								
most related								

Classic Repair operators : Greedy heuristic → Scheduled at lowest cost Regret-2/Regret-3 → Take into account the regret after insertion

New **Destroy** operators :

Random Patient \rightarrow Randomly select a patient and remove all his visits

New **Destroy** operators :

Random Patient \rightarrow Randomly select a patient and remove all his visits Flexible patient \rightarrow Remove the most flexible : Nb_available / Nb_visits

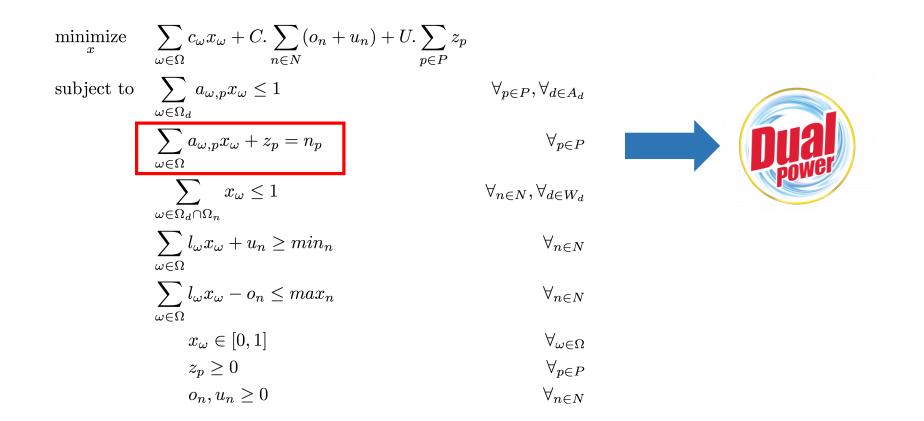
New **Destroy** operators :

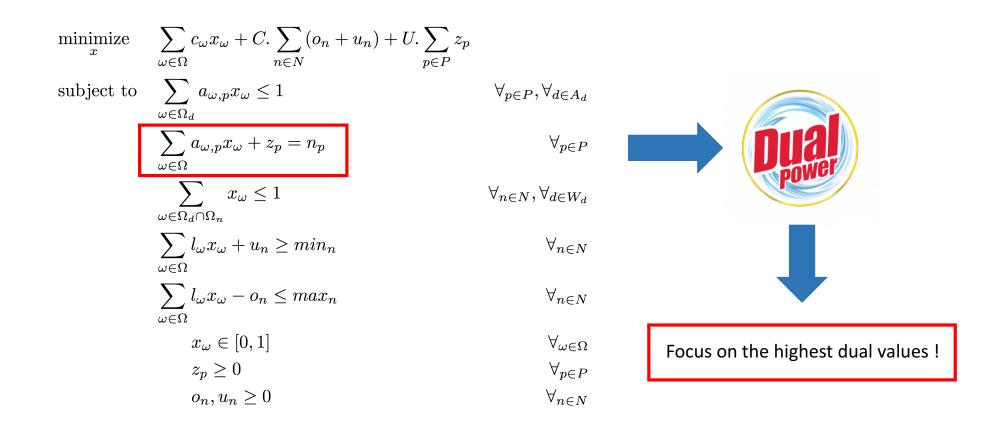
Random Patient \rightarrow Randomly select a patient and remove all his visits Flexible patient \rightarrow Remove the most flexible : Nb_available / Nb_visits

New Repair operators :

Random Patient \rightarrow Randomly select a patient and schedule all his visits

$$\begin{split} & \underset{x}{\operatorname{minimize}} \quad \sum_{\omega \in \Omega} c_{\omega} x_{\omega} + C \cdot \sum_{n \in N} (o_n + u_n) + U \cdot \sum_{p \in P} z_p \\ & \text{subject to} \quad \sum_{\omega \in \Omega_d} a_{\omega, p} x_{\omega} \leq 1 & \forall_{p \in P}, \forall_{d \in A_d} \\ & \boxed{\sum_{\omega \in \Omega} a_{\omega, p} x_{\omega} + z_p = n_p} & \forall_{p \in P} \\ & \underbrace{\sum_{\omega \in \Omega} a_{\omega, p} x_{\omega} \leq 1} & \forall_{n \in N}, \forall_{d \in W_d} \\ & \sum_{\omega \in \Omega} l_{\omega} x_{\omega} + u_n \geq \min_n & \forall_{n \in N} \\ & \sum_{\omega \in \Omega} l_{\omega} x_{\omega} - o_n \leq \max_n & \forall_{n \in N} \\ & x_{\omega} \in [0, 1] & \forall_{\omega \in \Omega} \\ & z_p \geq 0 & \forall_{p \in P} \\ & o_n, u_n \geq 0 & \forall_{n \in N} \end{split}$$





New Destroy operators :

Random Patient \rightarrow Randomly select a patient and remove all his visits Flexible patient \rightarrow Remove the most flexible : Nb_available / Nb_visits Dual Patient \rightarrow Remove the patients with **the lowest dual value**

New Repair operators :

Random Patient \rightarrow Randomly select a patient and schedule all his visits Dual Patient \rightarrow Prioritize the patient with the highest dual values

Outline

- Problem Definition
- Mathematical Formulation
- Resolution Method
- Computation Results
- Conclusion

Instances generation

• We have generated 3 sets of 20 pseudo-instances

Instance	Patient	Visits	Nurse	Workdays	
Small	40	120	5	25	
Medium	80	225	10	45	
Large	150	430	20	90	

 Table 1: Instances' characteristics

• The algorithm is implemented in C++, the set partitioning calls Cplex and each instance runs during 10 minutes / 10⁵ iterations

Experiments: Impact of the new operators

	Classic	All		
		Gap	CPU	
Small	$512169,\!0577$	-9,38%	$<4 \min$	
Medium	$613572,\!3348$	-6,48%	$10 \min$	
Large	$799746,\!4565$	-8,19%	$10 \min$	
Mean		-8,01%		

Table 1: Evolution of the costs with the new operators

Experiments: Impact of the set partitioning

	Classic	All		All + Se	et Part
		Gap CPU		Gap	CPU
Small	$512169,\!0577$	-9,38%	$<4 \min$	$-15,\!29\%$	$<6 \min$
Medium	$613572,\!3348$	-6,48%	$10 \min$	-18,32%	$10 \min$
Large	$799746,\!4565$	-8,19%	$10 \min$	-18,70%	$10 \min$
Mean		-8,01%		$-17,\!44\%$	

Table 2: Evolution of the costs with the set partitioning

Experiments: Impact of the dual operators

	Classic	All		All + Set Part		All + SP + Dual	
		Gap	CPU	Gap	CPU	Gap	CPU
Small	$512169,\!0577$	-9,38%	$<4 \min$	-15,29%	$<6 \min$	$-15,\!28\%$	$<6 \min$
Medium	$613572,\!3348$	$-6,\!48\%$	$10 \min$	-18,32%	$10 \min$	$-18,\!29\%$	$10 \min$
Large	$799746,\!4565$	$-8,\!19\%$	$10 \min$	-18,70%	$10 \min$	-20,53%	$10 \min$
Mean		-8,01%		-17,44%		-18,03%	

Table 3: Evolution of the costs with the dual operators

Can we remove some useless operators ?

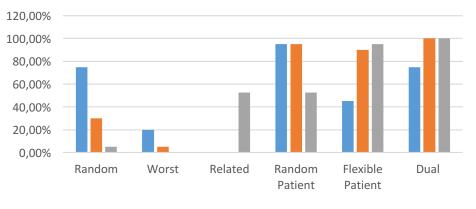
Can we remove some useless operators ?

Goal : Keep the top-3 destroy and repair operators

Can we remove some useless operators ?

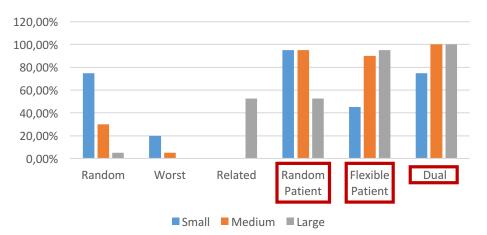
Goal : Keep the top-3 destroy and repair operators

Idea : Keep the operators which are the less often rejected at the end of the iteration



Comparison of the destroy operators

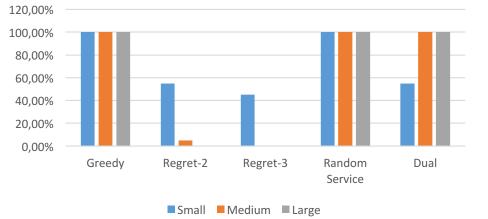
Small Medium Large



Comparison of the destroy operators



Comparison of the destroy operators



Comparison of the repair operators



Comparison of the destroy operators

Comparison of the repair operators

Experiments: Selection of the best operators

	Classic	A	All All + Set Part		All + SP + Dual		Selected		
		Gap	CPU	Gap	CPU	Gap	CPU	Gap	CPU
Small	$512169,\!0577$	-9,38%	$<4 \min$	$-15,\!29\%$	$<6 \min$	-15,28%	$<6 \min$	-14,86%	$<4 \min$
Medium	$613572,\!3348$	-6,48%	$10 \min$	-18,32%	$10 \min$	-18,29%	$10 \min$	-18,86%	10 min
Large	$799746,\!4565$	$-8,\!19\%$	$10 \min$	-18,70%	$10 \min$	-20,53%	$10 \min$	-20,92%	$10 \min$
Mean		-8,01%		$-17,\!44\%$		-18,03%		$-18,\!22\%$	

Table 4: Evolution of the costs with the selected operators

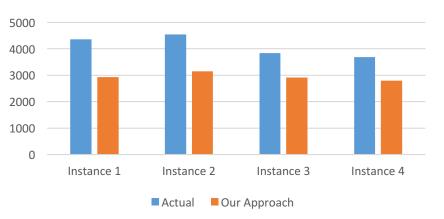
Real instances

We have taken 4 real instances corresponding to 1 week of work

Name	Patient	Visit	Nurse	Workday
Instance 1	149	325	11	40
Instance 2	137	340	11	40
Instance 3	145	311	11	35
Instance 4	146	324	11	40

Table 5: Real instances

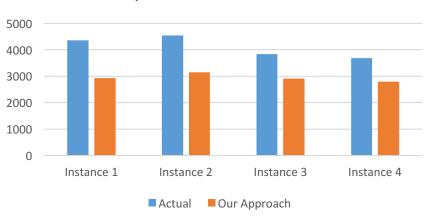
Real instances' results



Comparison of the travel time

Reduction of the travel time by **28,31%** in comparaison with the actual solution

Real instances' results



Comparison of the travel time

100 80 60 40 20 0 Instance 1 Instance 2 Instance 3 Instance 4 Actual Our Approach

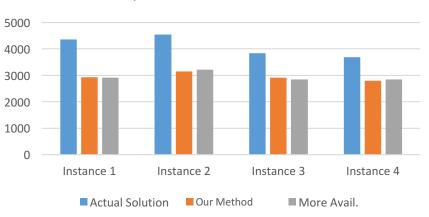
Comparison of the continuity of care

Reduction of the travel time by **28,31%** in comparaison with the actual solution

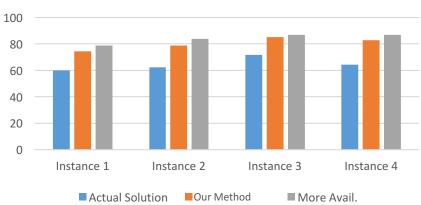
Increase of the fidelity by **15,70%** in comparaison with the actual solution

Real instances' results

+ 1 available day for 40% of the patients



Comparison of the travel time



Comparison of the continuity of care

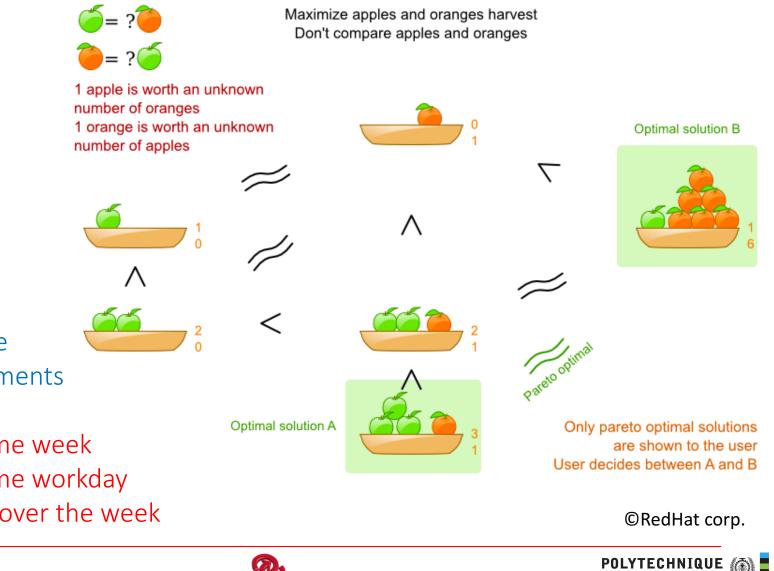
Reduction of the travel time by **28,03%** in comparaison with the actual solution

Increase of the fidelity by **19,44%** in comparaison with the actual solution

what?s next

The multi-objective nature of the challenge

Pareto optimization scoring



MONTREAL

Soft constraints

- Continuity of care
- Optional requirements
- Travel time
- Min/Max worktime week
- Min/Max worktime workday
- Number of visits over the week

Controlling the Transition

Actual schedule

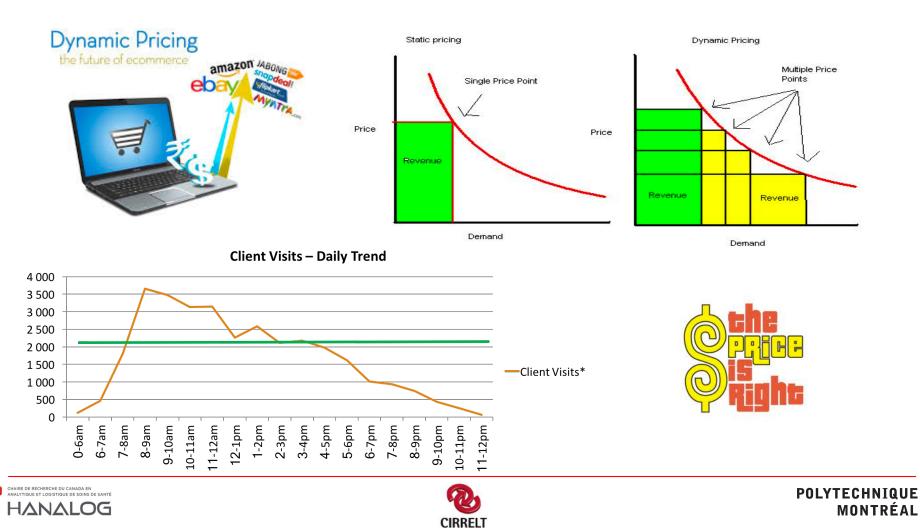
Fully reshuffled optimized schedule


```
Daily scheduling decision
```


Operational optimized schedule

Self Service and Dynamic Pricing

As demand for service, and self-service increases...
→ how can we balance resource utilization



- Fully-automated scheduling (i.e. without human intervention) is highly complex.
- How do we leverage the optimization engine for decision support?
- Decision: Focus on our primary use case *new client schedule setup*.

Constraints

Service Department - Nursing

Visits Frequency - From 2017-05-01

- To 2017-11-19 - 5 visits - weekly
- 1h per visit
- Mo-Tu-We-Th-Fr

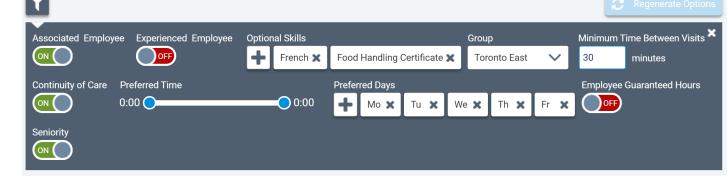
Required Skills - Home Support Worker I - First Aid

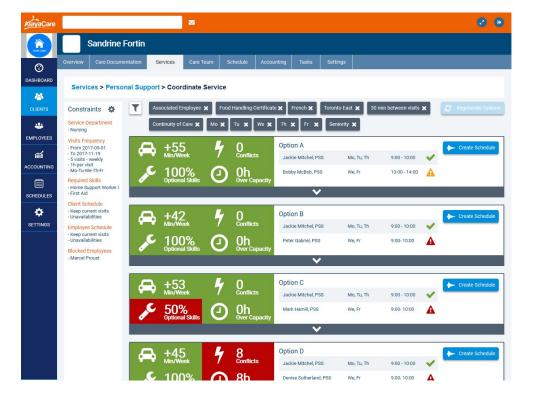
Client Schedule

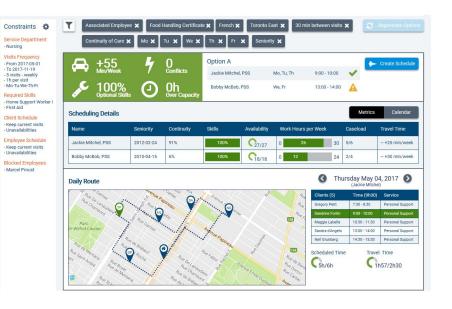
- Keep current visits - Unavailabilities

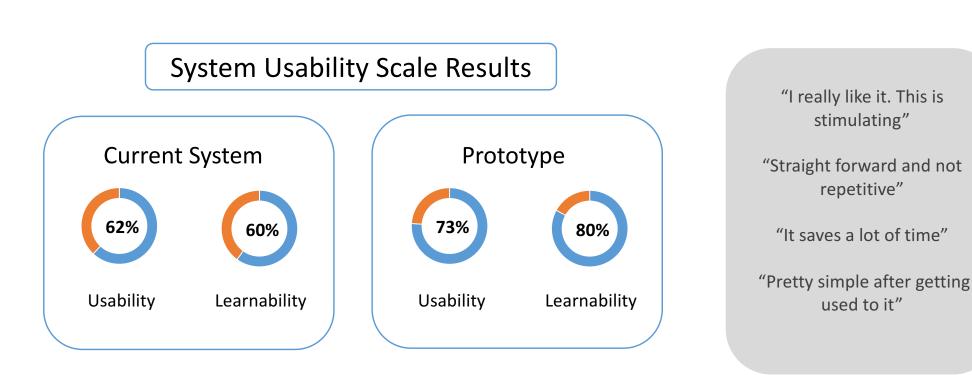
Employee Schedule - Keep current visits - Unavailabilities

Blocked Employees - Marcel Proust

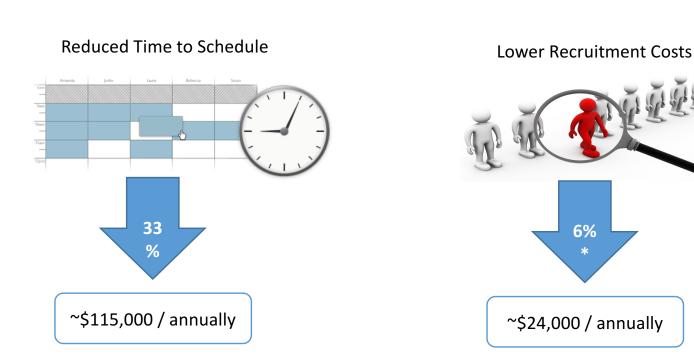






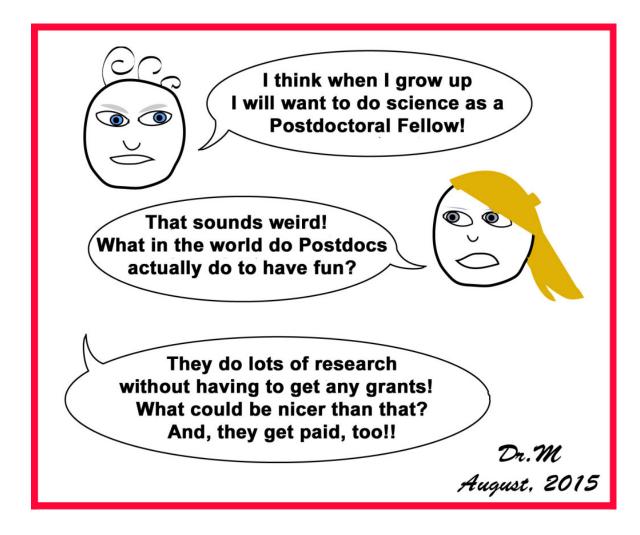


ROI



^{*} Based on a 25% reduction in employee turnover.

Any Questions ? Thank you !



If you are on the Postdoc market **Contact US !**