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An	example

Vehicle routing problem



Customers
• Demand	constraints

Vehicles
• Capacity	constraints
• Flow	conservation	constraints

Objective:
• Find	routes	that	minimize	total	
distance

Vehicle	routing	problem
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Standard	mip formulation:
• Scaling	issues
• Symmetry
• More	complex	constraints	add	even	
more	complexity
• Some	constraints	can	lead	to	bad	
linear	relaxations.

Enumerate	all	possible	routes
• Much	simpler	formulation
• Vehicle constraints	are	implicitly	
considered	in	route	enumeration
• Better	Linear	Relaxation
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Enumerate	all	possible	routes

Vehicle	routing	problem
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Enumerate	all	possible	routes

Vehicle	routing	problem
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Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

Min 20	𝑥J +20	𝑥L +20	𝑥M +20	𝑥N +30	𝑥P +30	𝑥Q +35	𝑥S

A	: 𝑥J +𝑥P =	1

B	: +𝑥L +𝑥P +𝑥S =	1

C	: +𝑥M +𝑥Q +𝑥S =	1

D	: +𝑥N +𝑥Q =	1
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An	intuitive	view	of	

Column Generation
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When	to	use	column	generation?

Column	Generation

Assemble	routes

=
Route	for	
vehicle	1

Route	for	
vehicle	2

Route	for	
vehicle	3



When	to	use	column	generation?
Works	well	generally	on:
• Vehicle	routing
• Airline	Scheduling
• Shift	Scheduling
• Jobshop Scheduling
• …

Worked	the	best	when	part	of	the	problem	has	an	underlying	
structure:	Network,	Hypergraph,	knapsack,	etc…

Column	Generation

=



Column	Generation

Solve Restricted master	problem

Solve subproblem

Negative reduced
cost columns?

Yes
Optimality!

No

Add	
columns	
to	RMP

𝜋)

Initial	set	of	columns

=



Master	Probelm for	the
Vehicle routing problem
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An	example	(max	2	clients)

Vehicle	routing	problem

Min 20	𝑥J +20	𝑥L +20	𝑥M +20	𝑥N
A	: 𝑥J =	1
B	: 𝑥L =	1
C	: 𝑥M =	1
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Depot

An	example	(max	2	clients)

Vehicle	routing	problem

𝑥J 𝑥L 𝑥M 𝑥N
Min 20 20 20 20
A	: 1 =	1
B	: 1 =	1
C	: 1 =	1
D	: 1 =	1
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Vehicle	routing	problem
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Vehicle	routing	problem
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An	example	(max	2	clients)

Vehicle	routing	problem
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Sub Probelm for	the
Vehicle routing problem



Implicit	representation	of	all	variables
• Every	possible	solution	to	the	subproblem is	a	variable

Optimization	objective:	

à find	variable	with	(the	most)	negative	reduced	cost

General	Subproblem
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Implicit	representation	of	all	variables
• Every	possible	solution	to	the	subproblem is	a	variable

Optimization	objective:	

à find	variable	with	(the	most)	negative	reduced	cost

Subproblem

Min	ĉ = ∑ 𝑐`𝑥�
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Subject	to: Capacity	constraints

Flow	conservation	constraints

Shortest-path	problem	with	resource	constraints:
Dynamic	programming



Resource	r	=	1,…,R

Resource	consumption	trij >	0	on	each	arc.	

Resources	window[ari,bri]	at	each	node
• Resources	level	cannot	go	above	bri when	node	vi is	reached
• If	trij is	below	ari when	node	path	reaches	vi then	is	it	set	to	ari

Resources	Constraint	SPP

42



Dynamic	Programming	Algorithm

• Li :	list	of	labels	associated	with	node	vi

• label		l	=	(c,T1,…,	TR)	where	
• a	label	represents	a	partial	path	from	v0 to vi
• c is	the	cost	of	the	label	or
• Tr is	the	consumption	level	of	resource	r
• v(l) is	the	node	which	to	which	l is	associated

Resources	Constraint	SPP	- DP

43



Extending	a	label	l	=	(c,T1i,…,	TRi)	from vi to vj

• Create	a	label	(c	+	cij,	T1+t1ij,…,	TR +tRij)	
• Making	sure	we	respect	[a1j,b1j],…,	[aRj,bRj]	

• Insert	the	label	in	the	list	of	labels	associated	with	vj

• Apply	Dominance	Rules
• Without	such	rules,	the	algorithm	would	enumerates	all	possible	paths

• Resources	constraints	make	sure	the	algorithm	terminates

Resources	Constraint	SPP	- DP

44



Dominance	Rules:	l1 dominates	l2 iff :

• c(l1)	<=	c(l2)

• Every	feasible	future extensions of	l2 will	be	feasible	for	l1
• Most	often	we	check	that		Tr(l1)	<=	Tr(l2)	for	all	r

Resources	Constraint	SPP	- DP

45



Dominance:	an	example

label	: (c,	time,	capacity)

(5,2,3)

(3,1,3)

(4,6,3)

(1,2,1)

[3,8]
[0,8] [10,14]

[0,8]

[0,4]
[0,8]

(0,0,0)

(5,3,3)

(1,2,1)(0,0,0)

(8,10,6)(5,3,3)

(5,10,4)

(1,2,1)



”Arc	Flow”	model

Objectives:
• Minimize:	∑i (ReducedCost(i,	Si))

Variables:
• Si∈ N Successor	of	node	i
• Vi∈ {False,True} Node	i visited	by	current	path
• li∈ [0..Capacity] Truck	load	after	visit	of	node	i

Constraints:
• Si =	ià Vi =False S-V	Coherence	constraints
• AllDiff(S) Conservation	of	flow
• Circuit(S) SubTour elimination	constraint
• Si=	j	à li +	Dj =	lj Capacity	constraints	

+	Redundant	Constraints	from	work	on	TSP(TW)

Subproblem – Constraint	Programming



”Position” model

Objectives:
• Minimize:	∑k (ReducedCost(Pk,	Pk+1))

Variables:
• Pk∈ N Node	visited	a	position	k
• Lk∈ [0..Capacity] Truck	load	after	visiting	position	k

Constraints:
• AllDiff(P) Elementarity of the path
• Lk+1 = Lk +	DPk Capacity	constraints	
• Pk =	depot	à Pk+1 =	depot Padding	at	the	end	of	path

Subproblem – Constraint	Programming



Can	you	compare	these	models?

”Position”	model

Objectives:
• Minimize:	∑k (ReducedCost(Pk,	Pk+1))

Variables:
• Pk∈ N
• Lk∈ [0..Capacity]

Constraints:
• AllDiff(P)
• Lk+1 = Lk +	DPk
• Pk =	depot	à Pk+1 =	depot

”Arc	Flow”	model

Objectives:
• Minimize:	∑i (ReducedCost(i,	Si))

Variables:
• Si∈ N
• Vi∈ {False,True}
• li∈ [0..Capacity]

Constraints:
• Si =	ià Vi =False
• AllDiff(S)
• Circuit(S)
• Si=	j	à li +	Dj =	lj



Column	generation

In Practice



DIY	in	Excell +	CP	Solver

• Solve	the	following	VRP	problem	using	ColGen,	knowing	that
• A	route	can	visit	at	most	4	customers

1
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2
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5
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15
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5 10

15

45

5
10
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Branch-and-price

Obtaining integer solutions



Column	generation	+	MIP	:	Branch-and-price
• How	to	obtain	integer	solutions?
• Branch-and-bound	->	solve	LP	relaxation	at	each	node
• Branch-and-price	->	column	generation	to	solve	LP	
relaxation	at	each	node

Branch-and-price



Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price
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OptSol: 0.5 0.5 0.5 4.5



Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price
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A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5
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Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price
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Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price
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𝑥J 𝑥L 𝑥M 𝑥N
Min 3 3 3 2
A	: 1 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 1 1 5

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price
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Why	branch	on	
arc-flow	variables?
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Branching	possibilities
• Branch	on	master	variables…	NO!
• Branch	on	subproblem variables
• Branch	on	the	master	problem	constraints
• BUT	adding	a		constraints	c	requires its	dual	value	𝜋𝑐 must	
be	handled	in	the	subproblems
• Example:	Branch	on	the	total	number	of	vehicle	used

Branch-and-price

!𝑥
�

�

≥ 2 !𝑥
�

�

≤ 1

!𝑥
�

�

= 1.5

Best	branching for
shift	scheduling problem



Applied	column	generation

Main Challenges
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Evolution	of	costs
• Long	convergence	time

Speed-up	techniques
• Spend	more	time	to	
generate	new	columns
• Delete	variables	in	RMP

Applied	column	generation

Balance	between
subproblems and	
master	problem



Stabilization
• Duals	are	extreme	points
• Master	problem	is	degenerated
• Tail-off	effect	is	due	to	difficulty	finding	
the	right	dual	vector

Applied	column	generation



A	quick	look	at	

Stabilization issues
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Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Adding	a	variable	to	the	primal	is	equivalent	to	adding	a	
cut	to	the	dual

Column	Generation

Optimal	dual	space



Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
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Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Find	multiple	dual	optimal	extreme	points
• Do	a	linear	combination

Column	Generation

Optimal	dual	space

Average	time Average	nb
Iterations

Unstabilized 384.4	s 72.6

Box	penalization 389.1	s 61.0

IPS 277.9	s 37.1



Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Find	multiple	dual	optimal	extreme	points
• Do	a	linear	combination

• Simple	idea:	barrier	algorithm	without	crossover

Column	Generation

Optimal	dual	space



Back	to	the	Primal
Finding good solution fast:
An Homecare Application



Problem	Definition

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion



• People	want	to	stay	at	home as	long	as	possible

• In	2012,	approximately	2.2	million people	relied	on	
home	care	services	

• For	the	same	cares,	a	patient	at	home	costs	90%	less
than	a	patient	at	the	hospital	

• Homecare	services	is	one	of	the	fastest	growing	
market	in	the	US	and	Canada

The	home	care	in	Canada



The	Scheduling	Challenge

2,500,000	+	
Visits	/	Yearv
in	avg agency

Client	
Needs	&	

Preferences

Staff	
Availability

Travel	
Routes

Continuity	
of	Care

Union	Rules
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• This	Homcare routing	problem	(HHCRSP)	can	be	described	as	
mix	between	an	assignment	problem

Problem	Definition

Hard	constraints Soft	constraints

• Mandatory	requirements	:	
nurse	skills,	type	of	care,	…

• Forbidden	nurses

• Continuity	of	care
• Optional	requirements



• The	HHCRSP	can	be	described	as	mix	between	an	assignment	
problem	and	a	multi-attributes	VRP
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• The	HHCRSP	can	be	described	as	mix	between	an	assignment	
problem	and	a	multi-attributes	VRP

Problem	Definition

Hard	constraints Soft	constraints

• Mandatory	requirements	:	
nurse	skills,	type	of	care,	…

• Forbidden	nurses
• Time	windows	
• Available	days	
• Workdays
• Time-dependent	travel	time	

• Continuity	of	care
• Optional	requirements
• Travel	time	
• Min/Max	worktime	week
• Min/Max	worktime	workday
• Number	of	visits	over	the	week

Objective	function =	weighted sum



Mathematical	Formulation

• Problem	Definition	
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• Computation	Results	
• Conclusion



• The	HHCRSP	can	be	formulated	as	a	set	partitioning	problem	

• The	decision	variables	correspond	to	the	feasible	routes	for	
each	nurse for	each	one	of	his/her	workdays

Formulation
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Set	partitioning	model

Max	1	visit per	day

Nb	visits per	week

Route	per	day

Minimum	worktime

Maximum	worktime

P	:	Patients
N	:	Nurses
Ω :	Routes



Ways to	solve the	problem

• Find	the	routes	in	a	reasonable	computation	time	is	
complex,	the	possibilities	are	:	

• Solve	a	heuritistic Branch-And-Price	using	a	column	
generation	à Does	not	allow	a	current	primal	
solution

• Adapt	a	metaheuristic	framework	and	add	it	some	
enhancements	to	make	it	the	most	efficient



Outline

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion



Methodology

• Our	algorithm	is	based	on	2	main	components	:
• An	ALNS-based framework
• A	heuristic concentration method



Adaptive	Large	Neighborhood Search

• ALNS:	introduced	by	Ropke and	
Pisinger in	2006

• Considers	:	
• A	large	number	of	visits
• A	large	set	of	constraints

• Allows	to	test	different
operators associated	with	
different	strategies
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Heuristic concentration

• The	heuristic	concentration	
principle	has	been	proposed	by	
Rosing et	al.	in	1996	

• The	goal	is	to	keep	the	
generated	feasible	routes	
during	the	heuristic	or	
metaheuristic	then	use	these	
routes	in	the	resolution	of	a	set	
partitioning



Heuristic concentration

• Our	version	of	the	HC	is	close	to	
the	one	developed	by	
Subramanian	et	al.	in	2013.	
They	implemented	an													
ILS-RVND	+	set	part	method

• They	iteratively	call the	set	
partitioning	to	quickly guide	the	
search	to	a	good	solution	

Iterate
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Heuristic concentration

• Our	version	of	the	HC	is	close	to	
the	one	developed	by	
Subramanian	et	al.	in	2013.	
They	implemented	an													
ILS-RVND	+	set	part	method

• They	iteratively	call the	set	
partitioning	to	quickly guide	the	
search	to	a	good	solution	

Iterate

PROBLEM :	Set	partitioning in	MIP	=	Slow	!	

SOLUTION :	Relax	it !
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Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method



Relaxed heuristic concentration



Relaxed heuristic concentration



Relaxed heuristic concentration

We	then	call	a	constructive	heuristic
based	on	the	LP	solution
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Heuristic Concentration
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Iteration :	319
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Best	Solution
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Heuristic Concentration

Concentration	Set

Iteration :	1000	à Solve the	relaxed set	partitioning



Heuristic Concentration

Concentration	Set

Relaxed set	partitioning solution
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Heuristic Concentration

Heuristic Concentration	Selection

Iteration :	1000

New	Solution

Route	75

Route	11

Route	32

Route	45

Route	11

Route	32

Route	45

à And	we analyse	the	new	solution



Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method
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Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most
Random Removal à Randomly select	q	visits
Related removal à Randomly select	a	visit and	remove it and	the	q-1	

most related

Classic Repair operators :
Greedy heuristic à Scheduled at	lowest cost
Regret-2/Regret-3 à Take into account the	regret	after insertion	
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New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits
Flexible	patient à Remove the	most flexible	:	Nb_available /	Nb_visits

New	Repair operators :
Random Patient à Randomly select	a	patient	and	schedule all	his visits
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New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits
Flexible	patient à Remove the	most flexible	:	Nb_available /	Nb_visits
Dual	Patient à Remove the	patients	with the	lowest dual	value

New	Repair operators :
Random Patient à Randomly select	a	patient	and	schedule all	his visits
Dual	Patient à Prioritize the	patient	with the	highest dual	values



Outline

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion



Instances	generation

• We	have	generated	3	sets	of	20	pseudo-instances

• The	algorithm	is	implemented	in	C++, the	set	partitioning	calls	Cplex and	
each	instance	runs	during	10	minutes	/	105 iterations



Experiments:	Impact	of	the	new	operators



Experiments:	Impact	of	the	set	partitioning



Experiments:	Impact	of	the	dual	operators
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Analysis of	the	operators

Goal	:	Keep	the	top-3 destroy	and	repair	operators

Idea	:	Keep	the	operators	which	are	the	less	often	
rejected at	the	end	of	the	iteration	



Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large



Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large



Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Greedy Regret-2 Regret-3 Random	
Service

Dual

Comparison	of	the	repair	operators

Small Medium Large



Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Greedy Regret-2 Regret-3 Random	
Service

Dual

Comparison	of	the	repair	operators

Small Medium Large



Experiments:	Selection of	the	best	operators



Real	instances

We	have	taken	4	real	instances	corresponding	to	1	week	of	work



Real	instances’	results

Reduction of	the	travel time	by	
28,31%	in	comparaison	with the	

actual solution
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Real	instances’	results

Reduction of	the	travel time	by	
28,31%	in	comparaison	with the	

actual solution

Increase of	the	fidelity by	15,70%	in	
comparaison	with the	actual solution
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Real	instances’	results

Reduction of	the	travel time	by	
28,03%	in	comparaison	with the	

actual solution

Increase of	the	fidelity by	19,44%	in	
comparaison	with the	actual

solution
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+	1	available day for	40%	of	the	patients
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The	multi-objective	nature	of	the	challenge

Soft	constraints
• Continuity	of	care
• Optional	requirements
• Travel	time	
• Min/Max	worktime	week
• Min/Max	worktime	workday
• Number	of	visits	over	the	week ©RedHat corp.



Actual
schedule

Fully	reshuffled	
optimized	schedule

Daily	scheduling decision Operational
optimized	schedule

Controlling	the	Transition



Self	Service	and	Dynamic Pricing

As	demand	for	service,	and	self-service increases…
à how	can	we	balance	resource	utilization	



User	Experience

• Fully-automated	scheduling	(i.e.	
without	human	intervention)	is	highly	
complex.

• How	do	we	leverage	the	optimization	
engine	for	decision	support?

• Decision:	Focus	on	our	primary	use	
case	- new	client	schedule	setup.



User	Experience



User	Experience



User	Experience

62% 60%

Current	System

Usability Learnability

73% 80%

Prototype

Usability Learnability

System	Usability	Scale	Results
“I	really	like	it.	This	is	

stimulating”

“Straight	forward	and	not	
repetitive”

“It	saves	a	lot	of	time”

“Pretty	simple	after	getting	
used	to	it”



ROI

33
%

~$115,000	/	annually

Reduced	Time	to	Schedule

6%
*

~$24,000	/	annually

Lower	Recruitment	Costs

*	Based	on	a	25%	reduction	in	employee	turnover.



Any	Questions	?

Thank you !



If	you are	on	the	Postdoc market

Contact US !


