
Introduction	to	Column Generation and	
hybrid methods for	Homecare Routing

Louis-Martin	Rousseau
Canada	Research	Chair	in	

Healthcare	Analytics	and	Logistics

Acknowledgment

• The	nicest	slides	in	this	presentation	where	contributed	by	
several	colleagues	and	students
• Éric Prescott-Gagnon	(JDA	labs)
• Florian	Grenouilleau (Hanalog.polymtl)

An	example

Vehicle routing problem

Customers
• Demand	constraints

Vehicles
• Capacity	constraints
• Flow	conservation	constraints

Objective:
• Find	routes	that	minimize	total	
distance

Vehicle	routing	problem

Customer
Depot

24

15

18 8

14

9

21

19

10

16

22
12

17

Standard	mip formulation:
• Scaling	issues
• Symmetry
• More	complex	constraints	add	even	
more	complexity
• Some	constraints	can	lead	to	bad	
linear	relaxations.

Enumerate	all	possible	routes
• Much	simpler	formulation
• Vehicle constraints	are	implicitly	
considered	in	route	enumeration
• Better	Linear	Relaxation

Vehicle	routing	problem

Customer
Depot

24

15

18
8

14

9

21

19

10

16

22
12

17

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝜃#
�

#∈'

! 𝑣)#𝜃# = 1
�

#∈'

𝜃# ∈ {0,1}	

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝜃#
�

#∈'

! 𝑣)#𝜃# = 1
�

#∈'

𝜃# ∈ {0,1}	

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:
Set	of	customers

Set	of	routes

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝜃#
�

#∈'

! 𝑣)#𝜃# = 1
�

#∈'

𝜃# ∈ {0,1}	

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:

= 4𝟎,𝟏,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒊𝒔	𝒖𝒔𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝜃#
�

#∈'

! 𝑣)#𝜃# = 1
�

#∈'

𝜃# ∈ {0,1}

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒗𝒊𝒔𝒊𝒕𝒔	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Cost of	route	p

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒊𝒔	𝒖𝒔𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝜃#
�

#∈'

! 𝑣)#𝜃# = 1
�

#∈'

𝜃# ∈ {0,1}	

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒗𝒊𝒔𝒊𝒕𝒔	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Cost of	route	p

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒊𝒔	𝒖𝒔𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Possibly huge number of	routes

Enumerate	all	possible	routes

Vehicle	routing	problem

!𝑐#𝑥#
�

#∈'

! 𝑣)#𝑥# = 1
�

#∈'

𝑥# ∈ {0,1}	

∀𝑖 ∈ Ν

∀𝑝 ∈ Ω

Minimize

subject	to:

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒗𝒊𝒔𝒊𝒕𝒔	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Cost of	route	p

= 4𝟏,𝟎,
		𝒊𝒇	𝒓𝒐𝒖𝒕𝒆	𝒑	𝒊𝒔	𝒖𝒔𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Possibly huge number of	routes

A	very small number of	routes	are	
interesting

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

Min 20	𝑥J +20	𝑥L +20	𝑥M +20	𝑥N +30	𝑥P +30	𝑥Q +35	𝑥S

A	: 𝑥J +𝑥P =	1

B	: +𝑥L +𝑥P +𝑥S =	1

C	: +𝑥M +𝑥Q +𝑥S =	1

D	: +𝑥N +𝑥Q =	1

A

B C

D
10 10

1010

10

15

10

An	intuitive	view	of	

Column Generation

Solve	linear	programs	with	a	lot	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

Solve	linear	programs	with	a	lot	of	variables
• Solve	with	a	subset	of	variables

Column	Generation

=

When	to	use	column	generation?

Column	Generation

=

When	to	use	column	generation?

Column	Generation

Assemble	routes

=
Route	for	
vehicle	1

Route	for	
vehicle	2

Route	for	
vehicle	3

When	to	use	column	generation?
Works	well	generally	on:
• Vehicle	routing
• Airline	Scheduling
• Shift	Scheduling
• Jobshop Scheduling
• …

Worked	the	best	when	part	of	the	problem	has	an	underlying	
structure:	Network,	Hypergraph,	knapsack,	etc…

Column	Generation

=

Column	Generation

Solve Restricted master	problem

Solve subproblem

Negative reduced
cost columns?

Yes
Optimality!

No

Add	
columns	
to	RMP

𝜋)

Initial	set	of	columns

=

Master	Probelm for	the
Vehicle routing problem

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

A

B C

D
10 10

1010

10

15

10

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

Min 20	𝑥J +20	𝑥L +20	𝑥M +20	𝑥N
A	: 𝑥J =	1
B	: 𝑥L =	1
C	: 𝑥M =	1
D	: 𝑥N =	1

A

B C

D
10 10

1010

10

15

10

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

𝑥J 𝑥L 𝑥M 𝑥N
Min 20 20 20 20
A	: 1 =	1
B	: 1 =	1
C	: 1 =	1
D	: 1 =	1

A

B C

D
10 10

1010

10

15

10

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

A

B C

D
10 10

1010

10

15

10
𝑥J 𝑥L 𝑥M 𝑥N

ĉ 0 0 0 0 𝜋)
A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

Customer
Depot

Vehicle	routing	problem

An	example	(max	2	clients)

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

𝜋)	:Marginal	price	of	visiting	customer	I

𝑥J 𝑥L 𝑥M 𝑥N
ĉ 0 0 0 0 𝜋)

A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

Customer
Depot

Vehicle	routing	problem

An	example	(max	2	clients)

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

𝑥J 𝑥L 𝑥M 𝑥N
ĉ 0 0 0 0 𝜋)

A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80
Can	I	find	a	route	such	that:

𝑐 <!𝜋)

�

�

𝜋)	:Marginal	price	of	visiting	customer	I

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

Can	I	find	a	route	such	that:

𝑐 −!𝜋)

�

�

< 0

𝑥J 𝑥L 𝑥M 𝑥N
ĉ 0 0 0 0 𝜋)

A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

𝜋)	:Marginal	price	of	visiting	customer	I

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

Can	I	find	a	route	such	that:

𝑐 −!𝜋)

�

�

< 0𝜋)	:Marginal	price	of	visiting	customer	I Reduced	cost!

𝑥J 𝑥L 𝑥M 𝑥N
ĉ 0 0 0 0 𝜋)

A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

Can	I	find	a	route	such	that:

𝑐 −!𝜋)

�

�

< 0
𝜋)	:Marginal	price	of	visiting	customer	I

𝑥J 𝑥L 𝑥M 𝑥N
ĉ 0 0 0 0 𝜋)

A	: 1 =	1 20
B	: 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P
ĉ 0 0 0 0 -10 𝜋)

A	: 1 1 =	1 20
B	: 1 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

1 1 1 1 80

A

B C

D
10 10

1010

10

15

10

𝜋U=20

𝜋V=20 𝜋W=20

𝜋X=20

Can	I	find	a	route	such	that:

𝑐 −!𝜋)

�

�

< 0𝜋)	:Marginal	price	of	visiting	customer	I

Customer
Depot

An	example	(max	2	clients)

Vehicle	routing	problem

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P
ĉ 10 0 0 0 0 𝜋)

A	: 1 1 =	1 10
B	: 1 1 =	1 20
C	: 1 =	1 20
D	: 1 =	1 20

0 1 1 1 70

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=20

Can	I	find	a	route	such	that:

𝑐 −!𝜋)

�

�

< 0𝜋)	:Marginal	price	of	visiting	customer	I

Sub Probelm for	the
Vehicle routing problem

Implicit	representation	of	all	variables
• Every	possible	solution	to	the	subproblem is	a	variable

Optimization	objective:	

à find	variable	with	(the	most)	negative	reduced	cost

General	Subproblem

Min	ĉ = 𝑐 − ∑ 𝑎)𝜋)�
) 𝒂𝒊 = 4𝟏,𝟎,

		𝒊𝒇	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊	𝒊𝒔	𝒗𝒊𝒔𝒊𝒕𝒆𝒅
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

c		= ∑ 𝑐`𝑥�
`

Implicit	representation	of	all	variables
• Every	possible	solution	to	the	subproblem is	a	variable

Optimization	objective:	

à find	variable	with	(the	most)	negative	reduced	cost

General	Subproblem

𝒂𝒊 = 4𝟏,𝟎,
		𝒊𝒇	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊	𝒊𝒔	𝒗𝒊𝒔𝒊𝒕𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆Min	ĉ = ∑ 𝑐`𝑥�
` − ∑ 𝜋)𝑎)�

)

Implicit	representation	of	all	variables
• Every	possible	solution	to	the	subproblem is	a	variable

Optimization	objective:	

à find	variable	with	(the	most)	negative	reduced	cost

Subproblem

Min	ĉ = ∑ 𝑐`𝑥�
` − ∑ 𝜋)𝑎)�

) 𝒂𝒊 = 4𝟏,𝟎,
		𝒊𝒇	𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓	𝒊	𝒊𝒔	𝒗𝒊𝒔𝒊𝒕𝒆𝒅

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Subject	to: Capacity	constraints

Flow	conservation	constraints

Shortest-path	problem	with	resource	constraints:
Dynamic	programming

Resource	r	=	1,…,R

Resource	consumption	trij >	0	on	each	arc.	

Resources	window[ari,bri]	at	each	node
• Resources	level	cannot	go	above	bri when	node	vi is	reached
• If	trij is	below	ari when	node	path	reaches	vi then	is	it	set	to	ari

Resources	Constraint	SPP

42

Dynamic	Programming	Algorithm

• Li :	list	of	labels	associated	with	node	vi

• label		l	=	(c,T1,…,	TR)	where	
• a	label	represents	a	partial	path	from	v0 to vi
• c is	the	cost	of	the	label	or
• Tr is	the	consumption	level	of	resource	r
• v(l) is	the	node	which	to	which	l is	associated

Resources	Constraint	SPP	- DP

43

Extending	a	label	l	=	(c,T1i,…,	TRi)	from vi to vj

• Create	a	label	(c	+	cij,	T1+t1ij,…,	TR +tRij)	
• Making	sure	we	respect	[a1j,b1j],…,	[aRj,bRj]	

• Insert	the	label	in	the	list	of	labels	associated	with	vj

• Apply	Dominance	Rules
• Without	such	rules,	the	algorithm	would	enumerates	all	possible	paths

• Resources	constraints	make	sure	the	algorithm	terminates

Resources	Constraint	SPP	- DP

44

Dominance	Rules:	l1 dominates	l2 iff :

• c(l1)	<=	c(l2)

• Every	feasible	future extensions of	l2 will	be	feasible	for	l1
• Most	often	we	check	that		Tr(l1)	<=	Tr(l2)	for	all	r

Resources	Constraint	SPP	- DP

45

Dominance:	an	example

label	: (c,	time,	capacity)

(5,2,3)

(3,1,3)

(4,6,3)

(1,2,1)

[3,8]
[0,8] [10,14]

[0,8]

[0,4]
[0,8]

(0,0,0)

(5,3,3)

(1,2,1)(0,0,0)

(8,10,6)(5,3,3)

(5,10,4)

(1,2,1)

”Arc	Flow”	model

Objectives:
• Minimize:	∑i (ReducedCost(i,	Si))

Variables:
• Si∈ N Successor	of	node	i
• Vi∈ {False,True} Node	i visited	by	current	path
• li∈ [0..Capacity] Truck	load	after	visit	of	node	i

Constraints:
• Si =	ià Vi =False S-V	Coherence	constraints
• AllDiff(S) Conservation	of	flow
• Circuit(S) SubTour elimination	constraint
• Si=	j	à li +	Dj =	lj Capacity	constraints	

+	Redundant	Constraints	from	work	on	TSP(TW)

Subproblem – Constraint	Programming

”Position” model

Objectives:
• Minimize:	∑k (ReducedCost(Pk,	Pk+1))

Variables:
• Pk∈ N Node	visited	a	position	k
• Lk∈ [0..Capacity] Truck	load	after	visiting	position	k

Constraints:
• AllDiff(P) Elementarity of the path
• Lk+1 = Lk +	DPk Capacity	constraints	
• Pk =	depot	à Pk+1 =	depot Padding	at	the	end	of	path

Subproblem – Constraint	Programming

Can	you	compare	these	models?

”Position”	model

Objectives:
• Minimize:	∑k (ReducedCost(Pk,	Pk+1))

Variables:
• Pk∈ N
• Lk∈ [0..Capacity]

Constraints:
• AllDiff(P)
• Lk+1 = Lk +	DPk
• Pk =	depot	à Pk+1 =	depot

”Arc	Flow”	model

Objectives:
• Minimize:	∑i (ReducedCost(i,	Si))

Variables:
• Si∈ N
• Vi∈ {False,True}
• li∈ [0..Capacity]

Constraints:
• Si =	ià Vi =False
• AllDiff(S)
• Circuit(S)
• Si=	j	à li +	Dj =	lj

Column	generation

In Practice

DIY	in	Excell +	CP	Solver

• Solve	the	following	VRP	problem	using	ColGen,	knowing	that
• A	route	can	visit	at	most	4	customers

1

3

2

5

5
10

15

10
5

6

5

5 10

15

45

5
10

5

Branch-and-price

Obtaining integer solutions

Column	generation	+	MIP	:	Branch-and-price
• How	to	obtain	integer	solutions?
• Branch-and-bound	->	solve	LP	relaxation	at	each	node
• Branch-and-price	->	column	generation	to	solve	LP	
relaxation	at	each	node

Branch-and-price

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

0.5

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

0.5

0

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

0.5

0

𝑥N
2

A	: 1

B	:

C	:

𝑥J 𝑥L 𝑥M 𝑥N
Min 3 3 3 2
A	: 1 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 1 1 5

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

A

B

C

0.5

0

𝑥N
2

A	: 1

B	:

C	:

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

A

B

C A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

0.5

𝑥J 𝑥L 𝑥M 𝑥N
Min 3 3 3 2
A	: 1 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 1 1 5

0 1

𝑥J 𝑥L 𝑥M 𝑥P
Min 3 3 3 2
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 1 =	1

OptSol: 1 1 5

Vehicle	routing	problem
• Max	2	customers
• Cost	of	all	arc	:	1

Branch-and-price

A

B

C

𝑥J 𝑥L 𝑥M
Min 3 3 3
A	: 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 0.5 0.5 0.5 4.5

A

B

C A

B

C

0.5

𝑥J 𝑥L 𝑥M 𝑥N
Min 3 3 3 2
A	: 1 1 1 =	1

B	: 1 1 =	1

C	: 1 1 =	1

OptSol: 1 1 5

0 1

Why	branch	on	
arc-flow	variables?

Branching	possibilities
• Branch	on	master	variables

Branch-and-price

Great!	

Branching	possibilities
• Branch	on	master	variables

Branch-and-price

Great!	 Subproblem	regenerates	𝒙𝟏

Branching	possibilities
• Branch	on	master	variables…	NO!
• Branch	on	subproblem variables

Branch-and-price

B C

B C B C

Branching	possibilities
• Branch	on	master	variables…	NO!
• Branch	on	subproblem variables
• Branch	on	the	master	problem	constraints
• BUT	adding	a		constraints	c	requires its	dual	value	𝜋𝑐 must	
be	handled	in	the	subproblems
• Example:	Branch	on	the	total	number	of	vehicle	used

Branch-and-price

!𝑥
�

�

≥ 2 !𝑥
�

�

≤ 1

!𝑥
�

�

= 1.5

Best	branching for
shift	scheduling problem

Applied	column	generation

Main Challenges

Evolution	of	costs
• Long	convergence	time

Applied	column	generation

Evolution	of	costs
• Long	convergence	time

Speed-up	techniques
• Spend	more	time	to	
generate	new	columns
• Delete	variables	in	RMP

Applied	column	generation

Evolution	of	costs
• Long	convergence	time

Speed-up	techniques
• Spend	more	time	to	
generate	new	columns
• Delete	variables	in	RMP

Applied	column	generation

Balance	between
subproblems and	
master	problem

Stabilization
• Duals	are	extreme	points
• Master	problem	is	degenerated
• Tail-off	effect	is	due	to	difficulty	finding	
the	right	dual	vector

Applied	column	generation

A	quick	look	at	

Stabilization issues

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P
ĉ 10 0 0 0 0 𝜋)

A	: 1 1 =	1 10

B	: 1 1 =	1 20

C	: 1 =	1 20

D	: 1 =	1 20

0 1 1 1 70
Customer
Depot

Stabilization

Column	Generation

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=20

Customer
Depot

Stabilization

Column	Generation

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=20

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P
ĉ 10 0 0 0 0 𝜋)

A	: 1 1 =	1 10

B	: 1 1 =	1 20

C	: 1 =	1 20

D	: 1 =	1 20

0 1 1 1 70

Customer
Depot

Stabilization

Column	Generation

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P 𝑥Q
ĉ 10 0 0 0 0 -10 𝜋)

A	: 1 1 =	1 10

B	: 1 1 =	1 20

C	: 1 1 =	1 20

D	: 1 1 =	1 20

0 1 1 1 70

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=20

Customer
Depot

Stabilization

Column	Generation

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P 𝑥Q
ĉ 10 0 0 10 0 0 𝜋)

A	: 1 1 =	1 10

B	: 1 1 =	1 20

C	: 1 1 =	1 20

D	: 1 1 =	1 10

0 0 1 1 60

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=10

Customer
Depot

Stabilization

Column	Generation

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=10

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P 𝑥Q
ĉ 10 0 0 10 0 0 𝜋)

A	: 1 1 =	1 10

B	: 1 1 =	1 20

C	: 1 1 =	1 20

D	: 1 1 =	1 10

0 0 1 1 60

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P 𝑥Q 𝑥S
ĉ 10 0 0 10 0 0 -5 𝜋)

A	: 1 1 =	1 10

B	: 1 1 1 =	1 20

C	: 1 1 1 =	1 20

D	: 1 1 =	1 10

0 0 1 1 60
Customer
Depot

Stabilization

Column	Generation

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=20

𝜋X=10

Customer
Depot

Stabilization

Column	Generation

𝑥J 𝑥L 𝑥M 𝑥N 𝑥P 𝑥Q 𝑥S
ĉ 10 0 10 0 0 0 5 𝜋)

A	: 1 1 =	1 10

B	: 1 1 1 =	1 20

C	: 1 1 1 =	1 10

D	: 1 1 =	1 20

0 0 1 1 60

A

B C

D
10 10

1010

10

15

10

𝜋U=10

𝜋V=20 𝜋W=10

𝜋X=20

BUT	THIS	
COLUMN	
IS	USELESS

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

Column	Generation

𝜋)e

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

Column	Generation

𝜋)e 𝜋)efJ

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

Column	Generation

𝜋)e 𝜋)efJ

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

Column	Generation

𝜋)e

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization

Column	Generation

Optimal	dual	space

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Adding	a	variable	to	the	primal	is	equivalent	to	adding	a	
cut	to	the	dual

Column	Generation

Optimal	dual	space

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Find	multiple	dual	optimal	extreme	points

Column	Generation

Optimal	dual	space

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Find	multiple	dual	optimal	extreme	points
• Do	a	linear	combination

Column	Generation

Optimal	dual	space

Average	time Average	nb
Iterations

Unstabilized 384.4	s 72.6

Box	penalization 389.1	s 61.0

IPS 277.9	s 37.1

Stabilization!
• What	to	do?
• Popular	technique
• Box	penalization

• Interior	point	stabilization
• Find	multiple	dual	optimal	extreme	points
• Do	a	linear	combination

• Simple	idea:	barrier	algorithm	without	crossover

Column	Generation

Optimal	dual	space

Back	to	the	Primal
Finding good solution fast:
An Homecare Application

Problem	Definition

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion

• People	want	to	stay	at	home as	long	as	possible

• In	2012,	approximately	2.2	million people	relied	on	
home	care	services	

• For	the	same	cares,	a	patient	at	home	costs	90%	less
than	a	patient	at	the	hospital	

• Homecare	services	is	one	of	the	fastest	growing	
market	in	the	US	and	Canada

The	home	care	in	Canada

The	Scheduling	Challenge

2,500,000	+	
Visits	/	Yearv
in	avg agency

Client	
Needs	&	

Preferences

Staff	
Availability

Travel	
Routes

Continuity	
of	Care

Union	Rules

An	example

An	example

• This	Homcare routing	problem	(HHCRSP)	can	be	described	as	
mix	between	an	assignment	problem

Problem	Definition

Hard	constraints Soft	constraints

• Mandatory	requirements	:	
nurse	skills,	type	of	care,	…

• Forbidden	nurses

• Continuity	of	care
• Optional	requirements

• The	HHCRSP	can	be	described	as	mix	between	an	assignment	
problem	and	a	multi-attributes	VRP

Problem	Definition

Hard	constraints Soft	constraints

• Mandatory	requirements	:	
nurse	skills,	type	of	care,	…

• Forbidden	nurses
• Time	windows	
• Available	days	
• Workdays
• Time-dependent	travel	time	

• Continuity	of	care
• Optional	requirements
• Travel	time	
• Min/Max	worktime	week
• Min/Max	worktime	workday
• Number	of	visits	over	the	week

• The	HHCRSP	can	be	described	as	mix	between	an	assignment	
problem	and	a	multi-attributes	VRP

Problem	Definition

Hard	constraints Soft	constraints

• Mandatory	requirements	:	
nurse	skills,	type	of	care,	…

• Forbidden	nurses
• Time	windows	
• Available	days	
• Workdays
• Time-dependent	travel	time	

• Continuity	of	care
• Optional	requirements
• Travel	time	
• Min/Max	worktime	week
• Min/Max	worktime	workday
• Number	of	visits	over	the	week

Objective	function =	weighted sum

Mathematical	Formulation

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion

• The	HHCRSP	can	be	formulated	as	a	set	partitioning	problem	

• The	decision	variables	correspond	to	the	feasible	routes	for	
each	nurse for	each	one	of	his/her	workdays

Formulation

Set	partitioning	model

Use	the	route	ω P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Overtime of	the	nurse P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Under-used time	of	the	nurse P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Non-scheduled visits P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Max	1	visit per	day

P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Max	1	visit per	day

Nb	visits per	week

P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Max	1	visit per	day

Nb	visits per	week

Route	per	day

P	:	Patients
N	:	Nurses
Ω :	Routes

Set	partitioning	model

Max	1	visit per	day

Nb	visits per	week

Route	per	day

Minimum	worktime

Maximum	worktime

P	:	Patients
N	:	Nurses
Ω :	Routes

Ways to	solve the	problem

• Find	the	routes	in	a	reasonable	computation	time	is	
complex,	the	possibilities	are	:	

• Solve	a	heuritistic Branch-And-Price	using	a	column	
generation	à Does	not	allow	a	current	primal	
solution

• Adapt	a	metaheuristic	framework	and	add	it	some	
enhancements	to	make	it	the	most	efficient

Outline

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion

Methodology

• Our	algorithm	is	based	on	2	main	components	:
• An	ALNS-based framework
• A	heuristic concentration method

Adaptive	Large	Neighborhood Search

• ALNS:	introduced	by	Ropke and	
Pisinger in	2006

• Considers	:	
• A	large	number	of	visits
• A	large	set	of	constraints

• Allows	to	test	different
operators associated	with	
different	strategies

Unused available day

Used available day

Choosen nurse

Monday

Sunday

Wednesday

Thursday Friday Saturday

Tuesday

Unused available day

Used available day

Choosen nurse

Monda
y

Sunday

Wednesda
y

Thursday Friday Saturday

Tuesda
y

Unused available day

Used available day

Choosen nurse

Monda
y

Sunday

Wednesda
y

Thursday Friday Saturday

Tuesda
y

Heuristic concentration

• The	heuristic	concentration	
principle	has	been	proposed	by	
Rosing et	al.	in	1996	

• The	goal	is	to	keep	the	
generated	feasible	routes	
during	the	heuristic	or	
metaheuristic	then	use	these	
routes	in	the	resolution	of	a	set	
partitioning

Heuristic concentration

• Our	version	of	the	HC	is	close	to	
the	one	developed	by	
Subramanian	et	al.	in	2013.	
They	implemented	an													
ILS-RVND	+	set	part	method

• They	iteratively	call the	set	
partitioning	to	quickly guide	the	
search	to	a	good	solution	

Iterate

Heuristic concentration

• Our	version	of	the	HC	is	close	to	
the	one	developed	by	
Subramanian	et	al.	in	2013.	
They	implemented	an													
ILS-RVND	+	set	part	method

• They	iteratively	call the	set	
partitioning	to	quickly guide	the	
search	to	a	good	solution	

Iterate

PROBLEM :	Set	partitioning in	MIP	=	Slow	!	

Heuristic concentration

• Our	version	of	the	HC	is	close	to	
the	one	developed	by	
Subramanian	et	al.	in	2013.	
They	implemented	an													
ILS-RVND	+	set	part	method

• They	iteratively	call the	set	
partitioning	to	quickly guide	the	
search	to	a	good	solution	

Iterate

PROBLEM :	Set	partitioning in	MIP	=	Slow	!	

SOLUTION :	Relax	it !

Overview of	the	method

Find an	initial	solution	heuristically

Overview of	the	method

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Overview of	the	method

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Overview of	the	method

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Overview of	the	method

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Overview of	the	method

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method

Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method

Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method

Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method

Relaxed heuristic concentration

Relaxed heuristic concentration

Relaxed heuristic concentration

We	then	call	a	constructive	heuristic
based	on	the	LP	solution

Route	1

Heuristic Concentration

Concentration	Set

Route	2

Route	3

Iteration :	0

Route	1

Best	Solution

Route	2

Route	3

Route	1

Heuristic Concentration

Concentration	Set

Route	2

Route	3

Iteration :	145

Route	1

Best	Solution

Route	3

Route	4

Route	5

Route	4

Route	1

Heuristic Concentration

Concentration	Set

Route	2

Route	3

Iteration :	319

Route	7

Best	Solution

Route	12

Route	4

Route	5

Route	6

Route	4

Route	7

Route	8

Route	9

Route	10

Route	11

Route	12

Heuristic Concentration

Concentration	Set

Iteration :	1000	à Solve the	relaxed set	partitioning

Heuristic Concentration

Concentration	Set

Relaxed set	partitioning solution

Heuristic Concentration

Heuristic Concentration	Selection

Iteration :	1000

New	Solution

Route	75

Route	11

Route	32

Route	45

Heuristic Concentration

Heuristic Concentration	Selection

Iteration :	1000

New	Solution

Route	75

Route	11

Route	32

Route	45

Route	11

Route	32

Heuristic Concentration

Heuristic Concentration	Selection

Iteration :	1000

New	Solution

Route	75

Route	11

Route	32

Route	45

Route	11

Route	32

Route	45 ?

Heuristic Concentration

Heuristic Concentration	Selection

Iteration :	1000

New	Solution

Route	75

Route	11

Route	32

Route	45

Route	11

Route	32

Route	45

à And	we analyse	the	new	solution

Update	the	operators’	scores

Find an	initial	solution	heuristically

Remove a	subset of	the	visits

Insert	the	non-scheduled visits

Update	the	best	/	current solutions

Apply a	heuristic concentration

Apply a	local	search

Overview of	the	method

Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most

Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most
Random Removal à Randomly select	q	visits

Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most
Random Removal à Randomly select	q	visits
Related removal à Randomly select	a	visit and	remove it and	the	q-1	

most related

Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most
Random Removal à Randomly select	q	visits
Related removal à Randomly select	a	visit and	remove it and	the	q-1	

most related

Classic Repair operators :
Greedy heuristic à Scheduled at	lowest cost

Classic ALNS	operators

Classic Destroy	operators :
Worst removal à Visits which cost the	most
Random Removal à Randomly select	q	visits
Related removal à Randomly select	a	visit and	remove it and	the	q-1	

most related

Classic Repair operators :
Greedy heuristic à Scheduled at	lowest cost
Regret-2/Regret-3 à Take into account the	regret	after insertion	

New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits

New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits
Flexible	patient à Remove the	most flexible	:	Nb_available /	Nb_visits

New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits
Flexible	patient à Remove the	most flexible	:	Nb_available /	Nb_visits

New	Repair operators :
Random Patient à Randomly select	a	patient	and	schedule all	his visits

New	operators

New	operators

New	operators

Focus	on	the	highest dual	values	!

New	Operators

New	Destroy	operators :
Random Patient à Randomly select	a	patient	and	remove all	his visits
Flexible	patient à Remove the	most flexible	:	Nb_available /	Nb_visits
Dual	Patient à Remove the	patients	with the	lowest dual	value

New	Repair operators :
Random Patient à Randomly select	a	patient	and	schedule all	his visits
Dual	Patient à Prioritize the	patient	with the	highest dual	values

Outline

• Problem	Definition	
• Mathematical	Formulation
• Resolution	Method
• Computation	Results	
• Conclusion

Instances	generation

• We	have	generated	3	sets	of	20	pseudo-instances

• The	algorithm	is	implemented	in	C++, the	set	partitioning	calls	Cplex and	
each	instance	runs	during	10	minutes	/	105 iterations

Experiments:	Impact	of	the	new	operators

Experiments:	Impact	of	the	set	partitioning

Experiments:	Impact	of	the	dual	operators

Analysis of	the	operators

Analysis of	the	operators

Goal	:	Keep	the	top-3 destroy	and	repair	operators

Analysis of	the	operators

Goal	:	Keep	the	top-3 destroy	and	repair	operators

Idea	:	Keep	the	operators	which	are	the	less	often	
rejected at	the	end	of	the	iteration	

Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Greedy Regret-2 Regret-3 Random	
Service

Dual

Comparison	of	the	repair	operators

Small Medium Large

Analysis of	the	operators

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Random Worst Related Random	
Patient

Flexible	
Patient

Dual	

Comparison	of	the	destroy	operators

Small Medium Large

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Greedy Regret-2 Regret-3 Random	
Service

Dual

Comparison	of	the	repair	operators

Small Medium Large

Experiments:	Selection of	the	best	operators

Real	instances

We	have	taken	4	real	instances	corresponding	to	1	week	of	work

Real	instances’	results

Reduction of	the	travel time	by	
28,31%	in	comparaison	with the	

actual solution

0

1000

2000

3000

4000

5000

Instance	1 Instance	2 Instance	3 Instance	4

Comparison	of	the	travel	time

Actual	 Our	Approach	

Real	instances’	results

Reduction of	the	travel time	by	
28,31%	in	comparaison	with the	

actual solution

Increase of	the	fidelity by	15,70%	in	
comparaison	with the	actual solution

0

20

40

60

80

100

Instance	1 Instance	2 Instance	3 Instance	4

Comparison	of	the	continuity	of	care

Actual Our	Approach

0

1000

2000

3000

4000

5000

Instance	1 Instance	2 Instance	3 Instance	4

Comparison	of	the	travel	time

Actual	 Our	Approach	

Real	instances’	results

Reduction of	the	travel time	by	
28,03%	in	comparaison	with the	

actual solution

Increase of	the	fidelity by	19,44%	in	
comparaison	with the	actual

solution

0

1000

2000

3000

4000

5000

Instance	1 Instance	2 Instance	3 Instance	4

Comparison	of	the	travel	time

Actual	Solution ALNS'	Solution More	Avail.

0

20

40

60

80

100

Instance	1 Instance	2 Instance	3 Instance	4

Comparison	of	the	continuity	of	care

Actual	Solution ALNS'	Solution More	Avail.

+	1	available day for	40%	of	the	patients

Our	Method Our	Method

The	multi-objective	nature	of	the	challenge

Soft	constraints
• Continuity	of	care
• Optional	requirements
• Travel	time	
• Min/Max	worktime	week
• Min/Max	worktime	workday
• Number	of	visits	over	the	week ©RedHat corp.

Actual
schedule

Fully	reshuffled	
optimized	schedule

Daily	scheduling decision Operational
optimized	schedule

Controlling	the	Transition

Self	Service	and	Dynamic Pricing

As	demand	for	service,	and	self-service increases…
à how	can	we	balance	resource	utilization	

User	Experience

• Fully-automated	scheduling	(i.e.	
without	human	intervention)	is	highly	
complex.

• How	do	we	leverage	the	optimization	
engine	for	decision	support?

• Decision:	Focus	on	our	primary	use	
case	- new	client	schedule	setup.

User	Experience

User	Experience

User	Experience

62% 60%

Current	System

Usability Learnability

73% 80%

Prototype

Usability Learnability

System	Usability	Scale	Results
“I	really	like	it.	This	is	

stimulating”

“Straight	forward	and	not	
repetitive”

“It	saves	a	lot	of	time”

“Pretty	simple	after	getting	
used	to	it”

ROI

33
%

~$115,000	/	annually

Reduced	Time	to	Schedule

6%
*

~$24,000	/	annually

Lower	Recruitment	Costs

*	Based	on	a	25%	reduction	in	employee	turnover.

Any	Questions	?

Thank you !

If	you are	on	the	Postdoc market

Contact US !

