
Predict-then-Optimize:

a tour of the state-of-the-art using

Elias B. Khalil

Department of Mechanical & Industrial Engineering

SCALE AI Research Chair in Data-Driven Algorithms for Modern Supply Chains

Bo Tang

For complete references to related work, please check our arXiv manuscript linked in the GitHub.

Optimization with a linear objective

2

min
w

{c⊺w : w ∈ 𝒮}

Decision variables
Linear cost

function

{ { {

Feasible
set

Solution: use appropriate algorithm
depending on type of feasible set (MILP,

MIQCP, CP, custom algorithms…)

3

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}

min
w

{c⊺
nw : w ∈ 𝒮}

The cost vectors could be
completely unrelated

n

…

4

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}

min
w

{c⊺
nw : w ∈ 𝒮}

… x1 ∈ ℝp

x2…
xn

Instance feature vector

(Observed)

5

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}… x1 ∈ ℝp

x2…
xn

ci = g(xi; θ) ∈ ℝd

min
w

{c⊺
nw : w ∈ 𝒮}

Instance feature vector

(Observed)

Function is parametrized by a vector .g θ

6

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}… x1 ∈ ℝp

x2…
xn

ci = g(xi; θ) ∈ ℝd

min
w

{c⊺
nw : w ∈ 𝒮}

Instance feature vector

(Observed)

If you know then you can evaluate to obtain and
optimize with your favorite method
θ g(xi; θ) ci

7

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}… x1 ∈ ℝp

x2…
xn

̂ci = g(xi; θ) ∈ ℝd

̂c

̂c

min
w

{c⊺
nw : w ∈ 𝒮}̂c

Instance feature vector

(Observed)

If you know then you can evaluate to obtain and
optimize with your favorite method
θ g(xi; θ) ci What if you don’t know and

you only observe ?
θ

xi

8

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}… x1 ∈ ℝp

x2…

xn

̂ci = g(xi; θ) ∈ ℝd

̂c

̂c

min
w

{c⊺
nw : w ∈ 𝒮}̂c

Instance feature
vector

(Observed)

Assume these instances are from
the past, i.e., “training” instances

n

True cost vector

(Observed for training

instances only)

c1 ∈ ℝd

c2

cn

…

9

min
w

{c⊺
1w : w ∈ 𝒮}

Same Decision variables

{ {
Same

Feasible set

min
w

{c⊺
2w : w ∈ 𝒮}… x1 ∈ ℝp

x2…

xn

̂ci = g(xi; θ) ∈ ℝd

̂c

̂c

min
w

{c⊺
nw : w ∈ 𝒮}̂c

Instance feature
vector

(Observed)

Assume these instances are from
the past, i.e., “training” instances

n Goal: given training set , learn that

approximates groundtruth vectors “well”

𝒟 = {(xi, ci)}n
i=1 θ

ci
True cost vector

(Observed for training
instances only)

c1 ∈ ℝd

c2

cn

…

Predict-then-Optimize
Training

10

Predict-then-Optimize
Training and Test-time inference

11

Predict-then-Optimize
s-t shortest path: training data

Google Maps, Montréal, Quebéc, Canada

8 am 10 am 12 pm 4 pm

c1,k c2,k c3,k c4,k

x1 x2 x3 x4

12

Predict-then-Optimize
s-t shortest path: full pipeline

13

8 am 10 am 12 pm 4 pm

c1,k c2,k c3,k c4,k

x1 x2 x3 x4 Travel time
prediction model

(regression) for
each road
segment

Predicted travel
times <=> s-t

shortest path cost
vector

Predict-then-Optimize
s-t shortest path: full pipeline

14

8 am 10 am 12 pm 4 pm

c1,k c2,k c3,k c4,k

x1 x2 x3 x4 Travel time
prediction model

(regression) for
each road
segment

Predicted travel
times <=> s-t

shortest path cost
vector

??

Predict-then-Optimize
s-t shortest path: full pipeline

15

8 am 10 am 12 pm 4 pm

c1,k c2,k c3,k c4,k

x1 x2 x3 x4 Travel time
prediction model

(regression) for
each road
segment

Predicted travel
times <=> s-t

shortest path cost
vector

??
Squared

error
between

and
ci

̂ci

Why regression on cost coefficients may fail
Vertical axis: edge cost. Horizontal axis: feature x

16

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Figures from Elmachtoub, Adam N., and Paul Grigas. "Smart
“predict, then optimize”." Management Science 68.1 (2022): 9-26.

s

t

Edge 1

Edge 2

Edge 1
optimal

Edge 2
optimal

Why regression on cost coefficients may fail
Vertical axis: edge cost. Horizontal axis: feature x

17

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Figures from Elmachtoub, Adam N., and Paul Grigas. "Smart
“predict, then optimize”." Management Science 68.1 (2022): 9-26.

s

t

Edge 1

Edge 2

Edge 1
optimal

Edge 2
optimal

Least-squares regression on
dataset of (x, c) pairs

Edge 2
optimal

Edge 1
optimal

Why regression on cost coefficients may fail
Vertical axis: edge cost. Horizontal axis: feature x

18

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Figures from Elmachtoub, Adam N., and Paul Grigas. "Smart
“predict, then optimize”." Management Science 68.1 (2022): 9-26.

s

t

Edge 1

Edge 2

Edge 1
optimal

Edge 2
optimal

Least-squares regression on
dataset of (x, c) pairs

Edge 2
optimal

Edge 1
optimal

!!

Why regression on cost coefficients may fail
Vertical axis: edge cost. Horizontal axis: feature x

19

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Figures from Elmachtoub, Adam N., and Paul Grigas. "Smart
“predict, then optimize”." Management Science 68.1 (2022): 9-26.

s

t

Edge 1

Edge 2

Edge 1
optimal

Edge 2
optimal

Least-squares regression on
dataset of (x, c) pairs “Smart Predict then Optimize”

Edge 2
optimal

Edge 1
optimal

Edge 2
optimal

Edge 1
optimal

End-to-End Predict-then-Optimize
Training

20

Decision error

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

{

Optimal solution if
you optimize with ̂c

Optimal value with
true costs c

{

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

??

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

??

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

??

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Easy: gradient of predicted
costs to model parameters!{

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

??

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Easy: gradient of predicted
costs to model parameters!{Trickier: how does the decision loss

vary with the predicted costs?{

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

??

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Trickier: how does the decision loss
vary with the predicted costs?{

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Trickier: how does the decision loss
vary with the predicted costs?{

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Crux: how does the optimum
change with the predicted costs?

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

SPO+: a principled and effective method
Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.

28

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

is not differentiable w.r.t. ̂c
Elmachtoub and Grigas: Smart “Predict, then Optimize” 11

Figure 1 Geometric Illustration of SPO Loss

(a) Polyhedral feasible region (b) Elliptic feasible region

Note. In these two figures, we consider a two-dimensional polyhedron and ellipse for the feasible region S. We plot

the (negative) of the true cost vector c, as well as two candidate predictions ĉA and ĉB that are equidistant from

c and thus have equivalent LS loss. One can see that the optimal decision for ĉA coincides with that of c, since

w
∗(ĉA) =w

∗(c). In the polyhedron example, any predicted cost vector whose negative is not in the gray region will

result in a wrong decision, where as in the ellipse example any predicted cost vector that is not exactly parallel with

c results in a wrong decision.

direction and parallel to c. Definition 1 formalizes this true SPO loss associated with making

the prediction ĉ when the actual cost vector is c, given a particular oracle w∗(·) for P (·).

Definition 1 (SPO Loss). Given a cost vector prediction ĉ and a realized cost

vector c, the true SPO loss !w
∗

SPO(ĉ, c) w.r.t. optimization oracle w∗(·) is defined as

!w
∗

SPO(ĉ, c) := cTw∗(ĉ)− z∗(c) .

Note that there is an unfortunate deficiency in Definition 1, which is the dependence on

the particular oracle w∗(·) used to solve (2). Practically speaking, this deficiency is not a

major issue since we should usually expect w∗(ĉ) to be a unique optimal solution, i.e., we

should expect W ∗(ĉ) to be a singleton. Note that if any solution from W ∗(ĉ) may be used by

the loss function, then the loss function essentially becomes minw∈W ∗(ĉ) cTw− z∗(c). Thus, a

prediction model would then be incentivized to always make the degenerate prediction ĉ= 0

since W ∗(0) = S. This would then imply that the SPO loss is 0.

In any case, if one wishes to address the dependence on the particular oracle w∗(·) in

Definition 1, then it is most natural to “break ties” by presuming that the implemented

decision has worst-case behavior with respect to c. Definition 2 is an alternative SPO loss

function that does not depend on the particular choice of the optimization oracle w∗(·).

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

SPO+: a principled and effective method
Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.

29

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

is not differentiable w.r.t. ̂c

Title Suppressed Due to Excessive Length 11

Fig. 3: As shown for the learning curves of the training of and on
the shortest path, regret and unambiguous regret in the various tasks overlap
almost exactly.

Besides regret, decision error can also be defined as the di↵erence between
the true solution and its prediction, such as Hamming distance of solutions
[35] and squared error of the solutions [6]. In addition, Dalle et al. [10] also
considered treating the objective value c|w⇤

ĉ itself as a loss.

3.4 Methodologies

3.4.1 Smart Predict-then-Optimize [16]

To make the decision error di↵erentiable, Elmachtoub and Grigas [16] proposed
, a convex upper bound on the regret:

lSPO+(ĉ, c) = �min
w2S

{(2ĉ � c)|w} + 2ĉ|w⇤(c) � z⇤(c). (5)

One proposed subgradient for this loss writes as follows:

2(w⇤(c) � w⇤(2ĉ � c)) 2 @lSPO+(ĉ, c)

@ĉ
(6)

Thus, we can use Algorithm 1 to directly minimize lSPO+(ĉ, c) with gradi-
ent descent. This algorithm with requires solving minw2S(2ĉ� c)|w for
each training iteration.

To accelerate the training, Mandi et al. [27] employed relaxations
() and warm starting () to speed-up the optimization. The
idea of is to use the continuous relaxation of the integer program
during training. This simplification greatly reduces the training time at the
expense of model performance. Compared to , the improvement of

in training e�ciency is not negligible. For example, linear programming
can be solved in polynomial time while integer programming is worst-case
exponential. In Section 6, we will further discuss this performance-e�ciency
tradeo↵. For , Mandi et al. [27] suggested using previous solutions as a

is a convex upper
bound on regret and

has subgradients

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

SPO+: a principled and effective method
Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.

30

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

is not differentiable w.r.t. ̂c

Title Suppressed Due to Excessive Length 11

Fig. 3: As shown for the learning curves of the training of and on
the shortest path, regret and unambiguous regret in the various tasks overlap
almost exactly.

Besides regret, decision error can also be defined as the di↵erence between
the true solution and its prediction, such as Hamming distance of solutions
[35] and squared error of the solutions [6]. In addition, Dalle et al. [10] also
considered treating the objective value c|w⇤

ĉ itself as a loss.

3.4 Methodologies

3.4.1 Smart Predict-then-Optimize [16]

To make the decision error di↵erentiable, Elmachtoub and Grigas [16] proposed
, a convex upper bound on the regret:

lSPO+(ĉ, c) = �min
w2S

{(2ĉ � c)|w} + 2ĉ|w⇤(c) � z⇤(c). (5)

One proposed subgradient for this loss writes as follows:

2(w⇤(c) � w⇤(2ĉ � c)) 2 @lSPO+(ĉ, c)

@ĉ
(6)

Thus, we can use Algorithm 1 to directly minimize lSPO+(ĉ, c) with gradi-
ent descent. This algorithm with requires solving minw2S(2ĉ� c)|w for
each training iteration.

To accelerate the training, Mandi et al. [27] employed relaxations
() and warm starting () to speed-up the optimization. The
idea of is to use the continuous relaxation of the integer program
during training. This simplification greatly reduces the training time at the
expense of model performance. Compared to , the improvement of

in training e�ciency is not negligible. For example, linear programming
can be solved in polynomial time while integer programming is worst-case
exponential. In Section 6, we will further discuss this performance-e�ciency
tradeo↵. For , Mandi et al. [27] suggested using previous solutions as a

is a convex upper
bound on regret and

has subgradients

Computational
overhead: To compute
SPO+ loss, we need to
solve an optimization

problem in the forward
pass; this is shared

with other methods.

Why regression on cost coefficients may fail
Vertical axis: edge cost. Horizontal axis: feature x

31

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Elmachtoub and Grigas: Smart “Predict, then Optimize” 15

Figure 3 Illustrative Example.

Note. The circles correspond to edge 1 costs and the squares correspond to edge 2 costs. Red lines and points

correspond to the least squares fit and predictions, while green lines and points correspond to the SPO fit and

predictions. The vertical dotted lines correspond to the decision boundaries under the true and prediction models.

The SPO+ decision boundary in this stylized example coincides with the SPO decision boundary.

finding the prediction model that minimizes the empirical risk using the SPO+ loss, this

prediction model will also approximately minimize (4), the empirical risk using the SPO loss.

To begin the derivation of the SPO+ loss, we first observe that for any α ∈ R, the SPO

loss can be written as

"SPO(ĉ, c) = max
w∈W ∗(ĉ)

{

cTw−αĉTw
}

+αz∗(ĉ)− z∗(c) (5)

Figures from Elmachtoub, Adam N., and Paul Grigas. "Smart
“predict, then optimize”." Management Science 68.1 (2022): 9-26.

s

t

Edge 1

Edge 2

Edge 1
optimal

Edge 2
optimal

Least-squares regression on
dataset of (x, c) pairs SPO+

Edge 2
optimal

Edge 1
optimal

Edge 2
optimal

Edge 1
optimal

Predict-then-Optimize
s-t shortest path: training data

Google Maps, Montréal, Quebéc, Canada

8 am 10 am 12 pm 4 pm

c1,k c2,k c3,k c4,k

x1 x2 x3 x4

32

Predict-then-Optimize
s-t shortest path: training data

Google Maps, Montréal, Quebéc, Canada

8 am 10 am 12 pm 4 pm

w*1 w*2

x1 x2 x3 x4

33

What if the historical cost vectors were
unavailable, but the optimal solutions were?

𝒟 = {(xi, w*i)}n
i=1

w*3 w*4

PFYL: Perturbed Fenchel-Young Loss
Berthet, Quentin, et al. "Learning with differentiable perturbed optimizers." NeurIPS 2020.

34

Recall the required gradient:

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Title Suppressed Due to Excessive Length 13

constant function w⇤(ĉ), E⇠[w⇤(ĉ+�⇠)] varies the proportions in response to
the change of ĉ, providing a nonzero gradient of ĉ:

@ E⇠[w⇤(ĉ + �⇠)]

@ĉ
⇡ 1

K

KX



w⇤(ĉ + �⇠)⇠.

The forward pass and backward pass are as follows:

Algorithm 4 DPO Forward Pass

Require: ĉ, K, �
1: for sample  2 {1, ...,K} do
2: Generate Gaussian noise ⇠
3: Solve: w⇠

 := w⇤(ĉ+ �⇠)

4: Save w⇠
 and ⇠ for backward pass

5: end for
6: return 1

K

PK
 w⇠



Algorithm 5 DPO Backward Pass

Require: @l(·)
@ E⇠[w⇤] , K

1: Load w⇠
 and ⇠ from forward pass

2: Compute
@ E⇠[w

⇤]
@ĉ := 1

K

PK
 w⇠

⇠

3: Compute l(·)
@ĉ := @l(·)

@ E⇠[w⇤]
@ E⇠[w

⇤]
@ĉ

4: return l(·)
@ĉ

3.5 Perturbed Fenchel-Young Loss [6]

Instead of an arbitrary loss for , Berthet et al. [6] further construct the
Fenchel-Young loss [7] to directly compute the decision error lFY(ĉ,w⇤(c)) and

gradient @lFY(ĉ,w⇤
(c))

@ĉ . Compared to , avoids the ine�cient calcula-
tion of the Jacobian matrix rTw⇤(ĉ) and includes a theoretically sound loss
function.

The loss of is based on Fenchel duality: The expectation of the per-
turbed minimizer is defined as F (c) = E⇠[min

w2S

{(c + �⇠)|w}], and the dual of

F (c), denoted by ⌦(w⇤(c)), is utilized to define the Fenchel-Young loss:

lFY(ĉ,w⇤(c)) = ĉ|w⇤(c) � F (ĉ) � ⌦(w⇤(c)),

then the gradient of the loss is

@lFY(ĉ,w⇤(c))

@ĉ
= w⇤(c) � @F (ĉ)

@ĉ
= w⇤(c) � E

⇠
[argmin

w2S

{(ĉ + �⇠)|w}].

Similar to , we can estimate the well-defined gradient as

@lFY(ĉ,w⇤(c))

@ĉ
⇡ w⇤(c) � 1

K

KX



argmin
w2S

{(ĉ + �⇠)|w}

4 Implementation and Modeling

The core module of PyEPO is an “autograd” function which is inherited from
PyTorch [32]. Such functions implement a forward pass that yields optimal
solutions or decision losses directly and a backward pass to obtain non-zero

Average optimal solution over
 randomly perturbed costsK

{

A random perturbation of
predicted costs

(σξk)
̂c{

PFYL: Perturbed Fenchel-Young Loss
Berthet, Quentin, et al. "Learning with differentiable perturbed optimizers." NeurIPS 2020.

35

Recall the required gradient:

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Title Suppressed Due to Excessive Length 13

constant function w⇤(ĉ), E⇠[w⇤(ĉ+�⇠)] varies the proportions in response to
the change of ĉ, providing a nonzero gradient of ĉ:

@ E⇠[w⇤(ĉ + �⇠)]

@ĉ
⇡ 1

K

KX



w⇤(ĉ + �⇠)⇠.

The forward pass and backward pass are as follows:

Algorithm 4 DPO Forward Pass

Require: ĉ, K, �
1: for sample  2 {1, ...,K} do
2: Generate Gaussian noise ⇠
3: Solve: w⇠

 := w⇤(ĉ+ �⇠)

4: Save w⇠
 and ⇠ for backward pass

5: end for
6: return 1

K

PK
 w⇠



Algorithm 5 DPO Backward Pass

Require: @l(·)
@ E⇠[w⇤] , K

1: Load w⇠
 and ⇠ from forward pass

2: Compute
@ E⇠[w

⇤]
@ĉ := 1

K

PK
 w⇠

⇠

3: Compute l(·)
@ĉ := @l(·)

@ E⇠[w⇤]
@ E⇠[w

⇤]
@ĉ

4: return l(·)
@ĉ

3.5 Perturbed Fenchel-Young Loss [6]

Instead of an arbitrary loss for , Berthet et al. [6] further construct the
Fenchel-Young loss [7] to directly compute the decision error lFY(ĉ,w⇤(c)) and

gradient @lFY(ĉ,w⇤
(c))

@ĉ . Compared to , avoids the ine�cient calcula-
tion of the Jacobian matrix rTw⇤(ĉ) and includes a theoretically sound loss
function.

The loss of is based on Fenchel duality: The expectation of the per-
turbed minimizer is defined as F (c) = E⇠[min

w2S

{(c + �⇠)|w}], and the dual of

F (c), denoted by ⌦(w⇤(c)), is utilized to define the Fenchel-Young loss:

lFY(ĉ,w⇤(c)) = ĉ|w⇤(c) � F (ĉ) � ⌦(w⇤(c)),

then the gradient of the loss is

@lFY(ĉ,w⇤(c))

@ĉ
= w⇤(c) � @F (ĉ)

@ĉ
= w⇤(c) � E

⇠
[argmin

w2S

{(ĉ + �⇠)|w}].

Similar to , we can estimate the well-defined gradient as

@lFY(ĉ,w⇤(c))

@ĉ
⇡ w⇤(c) � 1

K

KX



argmin
w2S

{(ĉ + �⇠)|w}

4 Implementation and Modeling

The core module of PyEPO is an “autograd” function which is inherited from
PyTorch [32]. Such functions implement a forward pass that yields optimal
solutions or decision losses directly and a backward pass to obtain non-zero

Average optimal solution over
 randomly perturbed costsK

{

A random perturbation of
predicted costs

(σξk)
̂c{

Notice the true costs do not appear here.c

PFYL: Perturbed Fenchel-Young Loss
Berthet, Quentin, et al. "Learning with differentiable perturbed optimizers." NeurIPS 2020.

36

Recall the required gradient:

10 Bo Tang, Elias B. Khalil

Algorithm 1 End-to-end Gradient Descent

Require: coe�cient matrix A, right-hand side b, data D
1: Initialize predictor parameters ✓ for predictor g(x; ✓)
2: for epochs do
3: for each batch of training data (x, c) do
4: Sample batch of the cost vectors c with the corresponding features x
5: Predict cost using predictor ĉ := g(x; ✓)
6: Forward pass to compute optimal solution w⇤(ĉ) := argminw2S ĉ

|w
7: Forward pass to compute decision loss l(ĉ, ·)
8: Backward pass from loss l(ĉ, ·) to update parameters ✓ with gradient
9: end for
10: end for

@l(ĉ, ·)
@✓

=
@l(ĉ, ·)
@ĉ

@ĉ

@✓
=

@l(ĉ, ·)
@w⇤(ĉ)

@w⇤(ĉ)

@ĉ

@ĉ

@✓

Note:
@ĉ

@✓
=

@g(x;✓)

@✓

(3)

The last term @ĉ
@✓ is the gradient of the predictions w.r.t. the model param-

eters, which is trivial to calculate in modern deep learning frameworks. The
challenging part is to compute the gradient of di↵erentiable optimizer @l(ĉ,·)

@ĉ or

the direct decision loss function @w⇤
(ĉ)

@ĉ . Because the optimal solution w⇤(c) for
linear and integer programming is a piecewise constant function from cost vec-
tor c to solution vector w⇤, the predictor parameters cannot be updated with
gradient descent. Thus, and , as direct decision loss functions, de-
rive surrogate @l(ĉ,·)

@ĉ , measuring decision errors with respect to specific losses,

while and , as di↵erentiable optimizers, compute approximate @w⇤
(ĉ)

@ĉ ,
allowing customized loss functions.

3.3.1 Decision Loss

To measure the error in decision-making, the notion of regret (also called SPO
Loss [16]) has been proposed and is defined as the di↵erence in objective value
between an optimal solution (using the true but unknown cost vector) and one
obtained using the predicted cost vector:

lRegret(ĉ, c) = c|w⇤(ĉ) � z⇤(c). (4)

Given a cost vector ĉ, there may be multiple optimal solutions to minw2S ĉ|w.
Therefore, Elmachtoub and Grigas [16] devised the “unambiguous” regret (also
called unambiguous SPO Loss): lURegret(ĉ, c) = maxw2W⇤(c)w

|c�z⇤(c). This
loss considers the worst case among all optimal solutions w.r.t. the predicted
cost vector. PyEPO provides an evaluation module (Section 4.5) that includes
both the regret and the unambiguous regret. However, as Figure 3 shows, the
regret and the unambiguous regret are almost the same in all training proce-
dures. Therefore, although unambiguous regret is more theoretically rigorous,
it is not necessary to consider it in practice.

Title Suppressed Due to Excessive Length 13

constant function w⇤(ĉ), E⇠[w⇤(ĉ+�⇠)] varies the proportions in response to
the change of ĉ, providing a nonzero gradient of ĉ:

@ E⇠[w⇤(ĉ + �⇠)]

@ĉ
⇡ 1

K

KX



w⇤(ĉ + �⇠)⇠.

The forward pass and backward pass are as follows:

Algorithm 4 DPO Forward Pass

Require: ĉ, K, �
1: for sample  2 {1, ...,K} do
2: Generate Gaussian noise ⇠
3: Solve: w⇠

 := w⇤(ĉ+ �⇠)

4: Save w⇠
 and ⇠ for backward pass

5: end for
6: return 1

K

PK
 w⇠



Algorithm 5 DPO Backward Pass

Require: @l(·)
@ E⇠[w⇤] , K

1: Load w⇠
 and ⇠ from forward pass

2: Compute
@ E⇠[w

⇤]
@ĉ := 1

K

PK
 w⇠

⇠

3: Compute l(·)
@ĉ := @l(·)

@ E⇠[w⇤]
@ E⇠[w

⇤]
@ĉ

4: return l(·)
@ĉ

3.5 Perturbed Fenchel-Young Loss [6]

Instead of an arbitrary loss for , Berthet et al. [6] further construct the
Fenchel-Young loss [7] to directly compute the decision error lFY(ĉ,w⇤(c)) and

gradient @lFY(ĉ,w⇤
(c))

@ĉ . Compared to , avoids the ine�cient calcula-
tion of the Jacobian matrix rTw⇤(ĉ) and includes a theoretically sound loss
function.

The loss of is based on Fenchel duality: The expectation of the per-
turbed minimizer is defined as F (c) = E⇠[min

w2S

{(c + �⇠)|w}], and the dual of

F (c), denoted by ⌦(w⇤(c)), is utilized to define the Fenchel-Young loss:

lFY(ĉ,w⇤(c)) = ĉ|w⇤(c) � F (ĉ) � ⌦(w⇤(c)),

then the gradient of the loss is

@lFY(ĉ,w⇤(c))

@ĉ
= w⇤(c) � @F (ĉ)

@ĉ
= w⇤(c) � E

⇠
[argmin

w2S

{(ĉ + �⇠)|w}].

Similar to , we can estimate the well-defined gradient as

@lFY(ĉ,w⇤(c))

@ĉ
⇡ w⇤(c) � 1

K

KX



argmin
w2S

{(ĉ + �⇠)|w}

4 Implementation and Modeling

The core module of PyEPO is an “autograd” function which is inherited from
PyTorch [32]. Such functions implement a forward pass that yields optimal
solutions or decision losses directly and a backward pass to obtain non-zero

Average optimal solution over
 randomly perturbed costsK

{

A random perturbation of
predicted costs

(σξk)
̂c{

Notice the true costs do not appear here.c
Computational overhead: To compute the

PFYL gradient, we need to solve
optimization problems.

K

Avoiding solver calls by Learning to Rank
Mandi, Jayanta, et al. "Decision-focused learning: through the lens of learning to rank." ICML, 2022.

Mulamba, Maxime, et al. "Contrastive Losses and Solution Caching for Predict-and-Optimize." IJCAI, 2021.

37

Recall that both SPO+ and PFYL made one or more
calls to the solver in each forward pass!

w1 w2 w3

Objective
using

prediction
A

Objective
using

prediction
B

True
Objective

Sol 1 0 1 0 1 3 1

Sol 2 1 0 0 3 2 2

Sol 3 1 1 1 2 1 3

Avoiding solver calls by Learning to Rank
Mandi, Jayanta, et al. "Decision-focused learning: through the lens of learning to rank." ICML, 2022.

Mulamba, Maxime, et al. "Contrastive Losses and Solution Caching for Predict-and-Optimize." IJCAI, 2021.

38

w1 w2 w3

Objective
using

prediction
A

Objective
using

prediction
B

True
Objective

Sol 1 0 1 0 1 3 1

Sol 2 1 0 0 3 2 2

Sol 3 1 1 1 2 1 3

{ Terrible solution
ranking!{Somewhat

better…

Avoiding solver calls by Learning to Rank
Mandi, Jayanta, et al. "Decision-focused learning: through the lens of learning to rank." ICML, 2022.

Mulamba, Maxime, et al. "Contrastive Losses and Solution Caching for Predict-and-Optimize." IJCAI, 2021.

39

w1 w2 w3

Objective
using

prediction
A

Objective
using

prediction
B

True
Objective

Sol 1 0 1 0 1 3 1

Sol 2 1 0 0 3 2 2

Sol 3 1 1 1 2 1 3

{ Terrible solution
ranking!{Somewhat

better…

Key Idea: Learn to predict
coefficients that lead to good
rankings of a set of collected

solutions!

40

Predict-then-Optimize:

a tour of the state-of-the-art using

Bo Tang

Manuscript describing PyEPO, the literature, and extensive experiments: https://arxiv.org/abs/2206.14234

https://arxiv.org/abs/2206.14234

41

42

Benchmarks Optimization modeling ML modeling Training algorithms

Shortest
path

Knapsack

TSP

Gurobi

Any custom
solver

SPO+

SPO+ with
relaxations

PFYL/DPO

DBB
(Pogancic et al.

[2019])

Benchmark generation
Based on Elmachtoub & Grigas

43

s

t

cij = α((ℬxi)j + 3)deg ⋅ ϵi,j

xi ∈ ℝp i-th instance’s feature
vector

(Observed)

j
deg Integer in [1,6]

regulating how non-
linear the mapping is

ℬ ∈ {0,1}d×n

ℬp,q ∼ Bernoulli(0.5)
ϵi,j Uniform random

noise

Warcraft Shortest-Path Benchmark
Based on Pogančić, Marin Vlastelica, et al. "Differentiation of blackbox combinatorial solvers." ICLR 2020.

44

24 Bo Tang, Elias B. Khalil

Feature
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 0.8

0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 1.2 9.2 1.2 1.2

0.8 0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

1.2 0.8 0.8 1.2 1.2 0.8 1.2 1.2 7.7 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 1.2 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 0.8 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 1.2 0.8 0.8 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 1.2 0.8 0.8 1.2 0.8 0.8 1.2 7.7 7.7

0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 1.2 7.7 7.7

Cost Solution

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

Image inputs (RGB features) True costs Optimal solution (NW -> SE)

Optimization model (in Gurobi)

45

Title Suppressed Due to Excessive Length 17

4.1.2 Optimization Model with Gurobi

On the other hand, we provide optGrbModel to create an optimization model
with GurobiPy . Unlike optModel, optGrbModel is more lightweight but less
flexible for users. Let us use the following optimization model (7) as an exam-
ple, where ci is an unknown cost coe�cient:

max
x

4X

i=0

cixi

s.t. 3x0 + 4x1 + 3x2 + 6x3 + 4x4  12

4x0 + 5x1 + 2x2 + 3x3 + 5x4  10

5x0 + 4x1 + 6x2 + 2x3 + 3x4  15

8xi 2 {0, 1}

(7)

Inheriting optGrbModel is the convenient way to use Gurobi with PyEPO.
The only implementation required is to override getModel and return a
Gurobi model and the corresponding decision variables. In addition, there
is no need to assign a value to the attribute modelSense in optGrbModel

manually. An example for Model (7) is as follows:

1 import gurobipy as gp

2 from gurobipy import GRB

3 from pyepo.model.grb import optGrbModel

4

5 class myModel(optGrbModel):

6 def _getModel(self):

7 # ceate a model

8 m = gp.Model ()

9 # varibles

10 x = m.addVars(5, name="x", vtype=GRB.BINARY)

11 # sense (must be minimize)

12 m.modelSense = GRB.MAXIMIZE

13 # constraints

14 m.addConstr (3*x[0]+4*x[1]+3*x[2]+6*x[3]+4*x[4] <=12)

15 m.addConstr (4*x[0]+5*x[1]+2*x[2]+3*x[3]+5*x[4] <=10)

16 m.addConstr (5*x[0]+4*x[1]+6*x[2]+2*x[3]+3*x[4] <=15)

17 return m, x

18

19 optmodel = myModel ()

4.1.3 Optimization Model with Pyomo

Similarly, optOmoModel allows modeling mathematical programs with Py-

omo. In contrast to optGrbModel, optOmoModel requires an explicit object
attribute modelSense. Since Pyomo supports multiple solvers, instantiating
an optOmoModel requires a parameter solver to specify the solver. The fol-
lowing is an implementation of problem 7:

1 from pyomo import environ as pe

2 from pyepo import EPO

Title Suppressed Due to Excessive Length 17

4.1.2 Optimization Model with Gurobi

On the other hand, we provide optGrbModel to create an optimization model
with GurobiPy . Unlike optModel, optGrbModel is more lightweight but less
flexible for users. Let us use the following optimization model (7) as an exam-
ple, where ci is an unknown cost coe�cient:

max
x

4X

i=0

cixi

s.t. 3x0 + 4x1 + 3x2 + 6x3 + 4x4  12

4x0 + 5x1 + 2x2 + 3x3 + 5x4  10

5x0 + 4x1 + 6x2 + 2x3 + 3x4  15

8xi 2 {0, 1}

(7)

Inheriting optGrbModel is the convenient way to use Gurobi with PyEPO.
The only implementation required is to override getModel and return a
Gurobi model and the corresponding decision variables. In addition, there
is no need to assign a value to the attribute modelSense in optGrbModel

manually. An example for Model (7) is as follows:

1 import gurobipy as gp

2 from gurobipy import GRB

3 from pyepo.model.grb import optGrbModel

4

5 class myModel(optGrbModel):

6 def _getModel(self):

7 # ceate a model

8 m = gp.Model()

9 # varibles

10 x = m.addVars(5, name="x", vtype=GRB.BINARY)

11 # sense (must be minimize)

12 m.modelSense = GRB.MAXIMIZE

13 # constraints

14 m.addConstr (3*x[0]+4*x[1]+3*x[2]+6*x[3]+4*x[4] <=12)

15 m.addConstr (4*x[0]+5*x[1]+2*x[2]+3*x[3]+5*x[4] <=10)

16 m.addConstr (5*x[0]+4*x[1]+6*x[2]+2*x[3]+3*x[4] <=15)

17 return m, x

18

19 optmodel = myModel ()

4.1.3 Optimization Model with Pyomo

Similarly, optOmoModel allows modeling mathematical programs with Py-

omo. In contrast to optGrbModel, optOmoModel requires an explicit object
attribute modelSense. Since Pyomo supports multiple solvers, instantiating
an optOmoModel requires a parameter solver to specify the solver. The fol-
lowing is an implementation of problem 7:

1 from pyomo import environ as pe

2 from pyepo import EPO

Creating a dataset based on features and true costs

46

20 Bo Tang, Elias B. Khalil

1 import pyepo

2 # init Fenchel -Young loss

3 pfyl = pyepo.func.perturbedFenchelYoung(optmodel , n_samples =3,

sigma =1.0, processes =8)

The below code block illustrates the calculation of Fenchel-Young loss:

1 # calculate Fenchel -Young loss

2 loss = pfyl(pred_cost , true_sol)

4.3 The optDataset Class for Managing Data

The utilization of decision losses, such as and , necessitates the
availability of true optimal solutions. Therefore, to facilitate convenience in
PyEPO training and testing, an auxiliary optDataset has been introduced,
which is not strictly indispensable. optDataset stores the features and their
associated costs of the objective function and solves optimization problems to
get optimal solutions and corresponding objective values.

optDataset is extended from PyTorch Dataset. In order to obtain optimal
solutions, optDataset requires the corresponding optModel (see in Section
4.1). The parameters for the optDataset are as follows:

– model: an instance of optModel;
– feats: data features;
– costs: corresponding costs of objective function;

Then, as the following example, PyTorch DataLoader receives an optDataset

and wraps the data samples and acts as a sampler that provides an iterable
over the given dataset. It is required to provide the batch size which is the
number of training samples that will be used in each update of the model
parameters.

1 import pyepo

2 from torch.utils.data import DataLoader

3

4 # build dataset

5 dataset = pyepo.data.dataset.optDataset(optmodel , feats , costs)

6

7 # get data loader

8 dataloader = DataLoader(dataset , batch_size =32, shuffle=True)

By iterating over the DataLoader, we can obtain a batch of features, true
costs, optimal solutions, and corresponding objective values:

1 for x, c, w, z in dataloader:

2 # a batch of features

3 print(x)

4 # a batch of true costs

5 print(c)

6 # a batch of true optimal solutions

7 print(w)

8 # a batch of true optimal objective values

9 print(z)

20 Bo Tang, Elias B. Khalil

1 import pyepo

2 # init Fenchel -Young loss

3 pfyl = pyepo.func.perturbedFenchelYoung(optmodel , n_samples =3,

sigma =1.0, processes =8)

The below code block illustrates the calculation of Fenchel-Young loss:

1 # calculate Fenchel -Young loss

2 loss = pfyl(pred_cost , true_sol)

4.3 The optDataset Class for Managing Data

The utilization of decision losses, such as and , necessitates the
availability of true optimal solutions. Therefore, to facilitate convenience in
PyEPO training and testing, an auxiliary optDataset has been introduced,
which is not strictly indispensable. optDataset stores the features and their
associated costs of the objective function and solves optimization problems to
get optimal solutions and corresponding objective values.

optDataset is extended from PyTorch Dataset. In order to obtain optimal
solutions, optDataset requires the corresponding optModel (see in Section
4.1). The parameters for the optDataset are as follows:

– model: an instance of optModel;
– feats: data features;
– costs: corresponding costs of objective function;

Then, as the following example, PyTorch DataLoader receives an optDataset

and wraps the data samples and acts as a sampler that provides an iterable
over the given dataset. It is required to provide the batch size which is the
number of training samples that will be used in each update of the model
parameters.

1 import pyepo

2 from torch.utils.data import DataLoader

3

4 # build dataset

5 dataset = pyepo.data.dataset.optDataset(optmodel , feats , costs)

6

7 # get data loader

8 dataloader = DataLoader(dataset , batch_size =32, shuffle=True)

By iterating over the DataLoader, we can obtain a batch of features, true
costs, optimal solutions, and corresponding objective values:

1 for x, c, w, z in dataloader:

2 # a batch of features

3 print(x)

4 # a batch of true costs

5 print(c)

6 # a batch of true optimal solutions

7 print(w)

8 # a batch of true optimal objective values

9 print(z)

Creating an ML model with PyTorch

47

Title Suppressed Due to Excessive Length 21

4.4 End-to-End Training

The core capability of PyEPO is to build an optimization model, and then
embed the optimization model into a PyTorch neural network for the end-to-
end training. Here, we build a simple linear regression model in PyTorch as
an example:

1 from torch import nn

2

3 # construct linear model

4 class LinearRegression(nn.Module):

5 def __init__(self):

6 super(LinearRegression , self).__init__ ()

7 # size of input and output is the size of feature and cost

8 self.linear = nn.Linear(num_feat , len_cost)

9 def forward(self , x):

10 out = self.linear(x)

11 return out

12

13 # init model

14 predmodel = LinearRegression ()

Then, we can train the prediction model with SPO+ loss to predict un-
known cost coe�cients, make decisions, and compute decision errors. The
training of the prediction model is performed using a stochastic gradient de-
scent (SGD) optimizer. By utilizing PyTorch automatic di↵erentiation capa-
bilities, the gradients of the loss with respect to the model parameters are
computed and used to update the model parameters during training.

1 import torch

2

3 # set SGD optimizer

4 optimizer = torch.optim.SGD(predmodel.parameters (), lr=1e-3)

5

6 # training

7 for epoch in range(num_epochs):

8 # iterare features , costs , solutions , and objective values

9 for x, c, w, z in dataloader:

10 # forward pass

11 cp = predmodel(x) # predict costs

12 loss = spop(cp , c, w, z).mean() # calculate SPO+ loss

13 # backward pass

14 optimizer.zero_grad () # reset gradients to 0

15 loss.backward () # compute gradients

16 optimizer.step() # update model parameters

4.5 Metrics

PyEPO provides evaluation functions to measure model performance, in par-
ticular the two metrics mentioned in Section 3.3.1: regret and unambiguous
regret. We further define the normalized (unambiguous) regret by

P
ntest

i=1
lRegret(ĉi, ci)P

ntest

i=1
|z⇤(ci)|

.

End-to-end training!

48

Title Suppressed Due to Excessive Length 21

4.4 End-to-End Training

The core capability of PyEPO is to build an optimization model, and then
embed the optimization model into a PyTorch neural network for the end-to-
end training. Here, we build a simple linear regression model in PyTorch as
an example:

1 from torch import nn

2

3 # construct linear model

4 class LinearRegression(nn.Module):

5 def __init__(self):

6 super(LinearRegression , self).__init__ ()

7 # size of input and output is the size of feature and cost

8 self.linear = nn.Linear(num_feat , len_cost)

9 def forward(self , x):

10 out = self.linear(x)

11 return out

12

13 # init model

14 predmodel = LinearRegression ()

Then, we can train the prediction model with SPO+ loss to predict un-
known cost coe�cients, make decisions, and compute decision errors. The
training of the prediction model is performed using a stochastic gradient de-
scent (SGD) optimizer. By utilizing PyTorch automatic di↵erentiation capa-
bilities, the gradients of the loss with respect to the model parameters are
computed and used to update the model parameters during training.

1 import torch

2

3 # set SGD optimizer

4 optimizer = torch.optim.SGD(predmodel.parameters (), lr=1e-3)

5

6 # training

7 for epoch in range(num_epochs):

8 # iterare features , costs , solutions , and objective values

9 for x, c, w, z in dataloader:

10 # forward pass

11 cp = predmodel(x) # predict costs

12 loss = spop(cp , c, w, z).mean() # calculate SPO+ loss

13 # backward pass

14 optimizer.zero_grad () # reset gradients to 0

15 loss.backward () # compute gradients

16 optimizer.step() # update model parameters

4.5 Metrics

PyEPO provides evaluation functions to measure model performance, in par-
ticular the two metrics mentioned in Section 3.3.1: regret and unambiguous
regret. We further define the normalized (unambiguous) regret by

P
ntest

i=1
lRegret(ĉi, ci)P

ntest

i=1
|z⇤(ci)|

.

Experiments with TSP20
Vertical axis: average regret w.r.t. true OPT on unseen test instances

49

28 Bo Tang, Elias B. Khalil

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 1000, Noise Half�width = 0.0

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 1000, Noise Half�width = 0.5

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

Fig. 8: Normalized regret for the TSP problem on the test set: There are 20
nodes to visit. The methods in the experiment include two-stage approaches
with linear regression, random forest and Auto-Sklearn and end-to-end learn-
ing such as , , and . The normalized regret is visualized under
di↵erent sample sizes, noise half-width, and polynomial degrees. For normal-
ized regret, lower is better.

6.2 Two-stage Method with Automated Hyperparameter Tuning

This method leverages the sophisticated Auto-Sklearn [18] tool that uses bayesian
optimization methods for automated hyperparameter tuning of Scikit-Learn

regression models. The metric of “2-stage Auto” is the mean squared error of
the predicted costs, which does not reduce decision error directly. Because of
the limitation of multioutput regression in Auto-Sklearn v0.14.6, the choices
of the predictor in 2-stage Auto only include five models: k-nearest neighbor
(KNN), decision tree, random forest, extra-trees, and Gaussian process. Even
with these limitations, Auto-Sklearn can achieve a low regret. Although the
training of 2-stage Auto is time-consuming, it is still a competitive method.

2-stage methods: regress on true costs (no end-to-end training)

Harder learning task

Lower is better

Experiments with TSP20
Vertical axis: average regret w.r.t. true OPT on unseen test instances

50

28 Bo Tang, Elias B. Khalil

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 1000, Noise Half�width = 0.0

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 1000, Noise Half�width = 0.5

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

Fig. 8: Normalized regret for the TSP problem on the test set: There are 20
nodes to visit. The methods in the experiment include two-stage approaches
with linear regression, random forest and Auto-Sklearn and end-to-end learn-
ing such as , , and . The normalized regret is visualized under
di↵erent sample sizes, noise half-width, and polynomial degrees. For normal-
ized regret, lower is better.

6.2 Two-stage Method with Automated Hyperparameter Tuning

This method leverages the sophisticated Auto-Sklearn [18] tool that uses bayesian
optimization methods for automated hyperparameter tuning of Scikit-Learn

regression models. The metric of “2-stage Auto” is the mean squared error of
the predicted costs, which does not reduce decision error directly. Because of
the limitation of multioutput regression in Auto-Sklearn v0.14.6, the choices
of the predictor in 2-stage Auto only include five models: k-nearest neighbor
(KNN), decision tree, random forest, extra-trees, and Gaussian process. Even
with these limitations, Auto-Sklearn can achieve a low regret. Although the
training of 2-stage Auto is time-consuming, it is still a competitive method.

28 Bo Tang, Elias B. Khalil

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 5000, Noise Half�width = 0.0

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

1 2 4 6
Polynomial Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 5000, Noise Half�width = 0.5

2-stage LR
2-stage RF

2-stage Auto
SPO+

PFYL
DBB

Fig. 8: Normalized regret for the TSP problem on the test set: There are 20
nodes to visit. The methods in the experiment include two-stage approaches
with linear regression, random forest and Auto-Sklearn and end-to-end learn-
ing such as , , and . The normalized regret is visualized under
di↵erent sample sizes, noise half-width, and polynomial degrees. For normal-
ized regret, lower is better.

6.2 Two-stage Method with Automated Hyperparameter Tuning

This method leverages the sophisticated Auto-Sklearn [18] tool that uses bayesian
optimization methods for automated hyperparameter tuning of Scikit-Learn

regression models. The metric of “2-stage Auto” is the mean squared error of
the predicted costs, which does not reduce decision error directly. Because of
the limitation of multioutput regression in Auto-Sklearn v0.14.6, the choices
of the predictor in 2-stage Auto only include five models: k-nearest neighbor
(KNN), decision tree, random forest, extra-trees, and Gaussian process. Even
with these limitations, Auto-Sklearn can achieve a low regret. Although the
training of 2-stage Auto is time-consuming, it is still a competitive method.

SPO+ and PFYL, both using a linear model perform the best.

With more data, 2-stage Random Forest is competitive!

2-stage methods: regress on true costs (no end-to-end training)

n=1000 training instances n=5000 training instances

Regret-accuracy tradeoff

51

SPO+ and PFYL, both using a linear model perform the best.

Title Suppressed Due to Excessive Length 33

0 20 40 60 80

MSE

0.050

0.075

0.100

0.125

0.150

0.175

0.200

N
or

m
al

iz
ed

R
eg

re
t

TSP
Training Set Size = 1000,

Polynomial degree = 4, Noise Half�width = 0.5

Fig. 13: MSE v.s. Regret: The result covers di↵erent two-stage methods, ,
, and their regularization. is omitted because it is far away from

others. The size of the circles is proportional to the training time (Sec), so the
smaller is better.

Finding #5

Generally, and can achieve good decisions at the cost of pre-
diction accuracy. If one is seeking a balanced tradeo↵ between decision
quality and prediction accuracy, an end-to-end method with prediction
regularization may be preferable.

7 Empirical Evaluation for Image-Based Shortest Path

Following Pogančić et al. [35] and Berthet et al. [6], we employ a truncated
ResNet18 convolutional neural network (CNN) architecture consisting of the
first five layers on Warcraft terrain images (refer to Section 5.2). As Table 5
shows, the methods we compare include a two-stage method, , , ,
and with truncated ResNet18. We train the CNN over 50 epochs with
batches of size 70. The learning rate is set to 0.0005 decaying at the epochs 30
and 40, and the hyperparameters n = 1,� = 1 for and , � = 10 for

. We use the Hamming distance for and the squared error of solutions
for , which are the loss functions used in the original papers.

The sample size of the test set ntest is 1000. To evaluate our methods, we

compute the relative regret c|w⇤
(ĉ)�z

⇤
(c)

z⇤(c) and path accuracy
Pd

j=1 (z
⇤
(c)j=z

⇤
(ĉ)j)

d

per instance on the test set; the latter is simply the fraction of edges in the
“predicted” solution that are also in the optimal solution.

As shown in Figure 14, the two-stage method, and achieve com-
parable levels of performance in predicting the shortest path on the Warcraft

Vertical axis: average regret
w.r.t. true OPT on unseen

test instances

Horizontal axis: Mean-
Squared Error on true costs

30 Bo Tang, Elias B. Khalil

Fig. 10: Normalized regret for the 2D knapsack (at the top) and TSP (at
the bottom) on the test set: The methods in the experiment include ,

and w/o relaxation. Then, we visualize the normalized regret under
di↵erent sample sizes and polynomial degrees to investigate the impact of the
relaxation method. For normalized regret, lower is better.

a tighter bound does reduce the regret, and shows advantages over
. Overall, using relaxations achieves fairly good performance with improved

computational e�ciency. Moreover, formulations with tighter linear relaxation
lead to better performance.

Finding #3

End-to-end predict-then-optimize with relaxation has excellent poten-
tial to improve computation e�ciency at a slight degradation in perfor-
mance, particularly when the true cost-generating function is not very
non-linear.

6.4 Prediction Regularization

As proposed in Elmachtoub and Grigas [16], the mean absolute error lMAE(ĉ, c) =
1

n

P
n

i
kĉi � cik1 or mean squared error lMSE(ĉ, c) = 1

2n

P
n

i
kĉi � cik22 of the

predicted cost vector w.r.t. true cost vector can be added to the decision loss
as l1 or l2 regularizers. When using regularization, we set either the l1 regular-
ization parameter �1 and the l2 regularization parameter �2 from 0.001 to 10
logarithmically. For the experiments, we still use the same instances, model,
and hyperparameters as before, while the number of training samples n, the
noise half-width ✏̄ and, the polynomial degree deg are fixed at 1000, 0.5 and 4.

Warcraft Shortest-Path Benchmark
Based on Pogančić, Marin Vlastelica, et al. "Differentiation of blackbox combinatorial solvers." ICLR 2020.

52

24 Bo Tang, Elias B. Khalil

Feature
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 0.8

0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 1.2 9.2 1.2 1.2

0.8 0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

1.2 0.8 0.8 1.2 1.2 0.8 1.2 1.2 7.7 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 1.2 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 0.8 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 1.2 0.8 0.8 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 1.2 0.8 0.8 1.2 0.8 0.8 1.2 7.7 7.7

0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 1.2 7.7 7.7

Cost Solution

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

Image inputs (RGB features) True costs Optimal solution (NW -> SE)

Warcraft Shortest-Path Benchmark
Based on Pogančić, Marin Vlastelica, et al. "Differentiation of blackbox combinatorial solvers." ICLR 2020.

53

ResNet-18
24 Bo Tang, Elias B. Khalil

Feature

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

24 Bo Tang, Elias B. Khalil

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 0.8

0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 1.2 9.2 1.2 1.2

0.8 0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

1.2 0.8 0.8 1.2 1.2 0.8 1.2 1.2 7.7 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 1.2 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 0.8 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 1.2 0.8 0.8 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 1.2 0.8 0.8 1.2 0.8 0.8 1.2 7.7 7.7

0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 1.2 7.7 7.7

Cost

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

Image inputs

Cost predictions

Warcraft Shortest-Path Benchmark
Based on Pogančić, Marin Vlastelica, et al. "Differentiation of blackbox combinatorial solvers." ICLR-20.

54

ResNet-18

24 Bo Tang, Elias B. Khalil

Feature

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

24 Bo Tang, Elias B. Khalil

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 0.8

0.8 0.8 0.8 0.8 0.8 1.2 1.2 1.2 1.2 9.2 1.2 1.2

0.8 0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

1.2 0.8 0.8 1.2 1.2 0.8 1.2 1.2 7.7 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 1.2 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 0.8 0.8 0.8 0.8 1.2 7.7 1.2 1.2

1.2 0.8 1.2 1.2 1.2 0.8 0.8 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 1.2 0.8 0.8 1.2 0.8 0.8 1.2 7.7 7.7

0.8 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 7.7 7.7 7.7

0.8 0.8 1.2 9.2 9.2 9.2 9.2 1.2 1.2 1.2 7.7 7.7

Cost

Fig. 5: Warcraft terrain shortest path dataset: (Left) Each input feature is a
k ⇥ k terrain map image as a grid of tiles; (Middle) the respective weights is
a matrix indicating traveling costs; (Right) the corresponding binary matrix
represents the shortest path from top left to bottom right.

6 Empirical Evaluation for PyEPO Datasets

In this section, we present experimental results for the benchmark datasets
of Section 5.1. The experiments aimed to investigate the training time and
normalized regret (as defined in Section 4.5) on a test set of size ntest = 1000.
As Table 3 shows, the methods we compare include the two-stage approach
with di↵erent predictors and / / with a linear prediction model
g(x;✓). Notably, was not shown due to its overall subpar performance.

Unlike direct decision loss functions and , and allow the
use of arbitrary loss functions, and the flexibility in the loss could be useful for
di↵erent problems. In the original paper, Pogančić et al. [35] used the Hamming
distance between the true optimum and the predicted solution, while Berthet
et al. [6] employed the squared di↵erence between solutions. However, in our
experiments, compared to the regret, using the Hamming distance is only
sensible for the shortest path problem but leads to much worse decisions in
knapsack and TSP. For the sake of consistency, we only use regret (4) as the
loss for .

All the numerical experiments were conducted in Python v3.7.9 with 32
Intel E5-2683 v4 Broadwell CPUs and 32GB memory. Specifically, we used Py-

Torch [33] v1.10.0 for training end-to-end models, and Scikit-Learn [34] v0.24.2
and Auto-Sklearn [18] v0.14.6 for the predictors of the two-stage method.
Gurobi [22] v9.1.2 was the optimization solver used throughout.

6.1 Performance Comparison between Di↵erent Methods

We compare the performance between two-stage methods, , , and
with varying training data size n 2 {100, 1000, 5000}, polynomial de-

gree deg 2 {1, 2, 4, 6}, and noise half-width ✏̄ 2 {0.0, 0.5}. We then conduct

Image inputs Cost predictions

34 Bo Tang, Elias B. Khalil

Method Description
2S Two-stage method where the predictor is a truncated ResNet18

Truncated ResNet18 with SPO+ loss [16]
Truncated ResNet18 with di↵erentiable black-box optimizer and Hamming distance loss [35]
Truncated ResNet18 with di↵erentiable perturbed optimizer and squared error loss [6]
Truncated ResNet18 with perturbed Fenchel-Young loss [6]

Table 5: Methods compared in the experiments.

terrain, while obtains solutions that agree the most with the optima (i.e.,
highest Path Accuracy). It seems that the Warcraft shortest path problem may
not require end-to-end learning. However, it is noteworthy that , despite
lacking knowledge of the true costs, yields a competitive result, encouraging
researchers to broaden the applications for end-to-end learning.

0 10 20 30 40 50

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

R
eg

re
t

Learning Curve on Test Set
2S

SPO+

PFYL

DBB

DPO

2S SPO+ PFYL DBB DPO

Methods

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
el

at
iv

e
R

eg
re

t

Relative Regret for each Instance on Test Set

Fig. 14: Learning curve, relative regret, and path accuracy for the shortest
path problem on the test set: The methods in the experiment include a two-
stage neural network, , , , and . The learning curve shows
relative regret on the test set, and the box plot demonstrates the distribution
of relative regret on the test set. For relative regret, lower is better.

Finding #6

End-to-end learning is e↵ective in rich contextual features such as im-
ages. Moreover, the study highlights that can achieve impressive
performance levels, even without knowing the costs during training.

8 Conclusion

Because of the lack of easy-to-use generic tools, the potential power of the end-
to-end predict-then-optimize has been underestimated or even overlooked in
various applications. Our PyEPO package aims to alleviate barriers between
the theory and practice of the end-to-end approach.

PyEPO, the PyTorch-based end-to-end predict-then-optimize tool, is specif-
ically designed for linear objective functions, including linear programming and

34 Bo Tang, Elias B. Khalil

Method Description
2S Two-stage method where the predictor is a truncated ResNet18

Truncated ResNet18 with SPO+ loss [16]
Truncated ResNet18 with di↵erentiable black-box optimizer and Hamming distance loss [35]
Truncated ResNet18 with di↵erentiable perturbed optimizer and squared error loss [6]
Truncated ResNet18 with perturbed Fenchel-Young loss [6]

Table 5: Methods compared in the experiments.

terrain, while obtains solutions that agree the most with the optima (i.e.,
highest Path Accuracy). It seems that the Warcraft shortest path problem may
not require end-to-end learning. However, it is noteworthy that , despite
lacking knowledge of the true costs, yields a competitive result, encouraging
researchers to broaden the applications for end-to-end learning.

2S SPO+ PFYL DBB DPO

Methods
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
at

h
A

cc
ur

ac
y

Path Accuracy for each Instance on Test Set

Fig. 14: Learning curve, relative regret, and path accuracy for the shortest
path problem on the test set: The methods in the experiment include a two-
stage neural network, , , , and . The learning curve shows
relative regret on the test set, and the box plot demonstrates the distribution
of relative regret on the test set. For relative regret, lower is better.

Finding #6

End-to-end learning is e↵ective in rich contextual features such as im-
ages. Moreover, the study highlights that can achieve impressive
performance levels, even without knowing the costs during training.

8 Conclusion

Because of the lack of easy-to-use generic tools, the potential power of the end-
to-end predict-then-optimize has been underestimated or even overlooked in
various applications. Our PyEPO package aims to alleviate barriers between
the theory and practice of the end-to-end approach.

PyEPO, the PyTorch-based end-to-end predict-then-optimize tool, is specif-
ically designed for linear objective functions, including linear programming and

2-Stage, SPO+, and PFYL, all using a
truncated ResNet-18, perform the best. DBB,
originally benchmarked on this dataset, is far

worse.

SPO+ and PFYL match true optimal paths better
than other methods, including 2-Stage.

Summary
• Predict-then-Optimize is a highly practical paradigm.

• SPO+ and PFYL are very effective end-to-end learning methods.

• The “naive” 2-stage approach is sufficient training set is large.

• Open questions:

• Predictions in the constraints; see Hu, Xinyi, Jasper CH Lee, and Jimmy HM Lee. "Branch &
Learn with Post-hoc Correction for Predict+ Optimize with Unknown Parameters in Constraints." CPAIOR 2023.

• Reducing training time; see work by Tias Guns and collaborators.

• More applications; see work by B. Dilkina, M. Tambe, B. Wilder, H. Bastani

Bo Tang

Manuscript: https://arxiv.org/abs/2206.14234

https://arxiv.org/abs/2206.14234

Machine Learning for Integer Programming

56

Mixed-Integer Linear
Programming

SL + GNN
[TMLR-22]

[AAAI-22]

[NeurIPS-20]

SL + Simple models [IJCAI-17]

[AAAI-16]

Custom ML [AAAI-22]
[NeurIPS-21]

Branch

Schedule heuristics

Select nodes

Detect backdoors

Warmstart solver

SL: Supervised Learning
RL: Reinforcement Learning
GNN: Graph Neural Networks

Machine Learning for Discrete Optimization

57

MILP Column
Generation

Stochastic
Programming

Graph
Optimization

Multiobjective
optimization

RL + GNN [NeurIPS-22] [TMLR-22]

[NeurIPS-17]

SL + GNN
[TMLR-22]

[AAAI-22]

[NeurIPS-20]

SL + Simple
models

[IJCAI-17]

[AAAI-16] [NeurIPS-22] https://arxiv.org/

abs/2307.03171

Custom ML [AAAI-22]
[NeurIPS-21]

Survey on GNN

for CombOpt
[JMLR 2023]

https://arxiv.org/abs/2307.03171

https://tinyurl.com/ACP23-PredictAndOptimize

Lab Colab:

PyEPO Github/Docs:
https://github.com/khalil-research/PyEPO

https://tinyurl.com/ACP23-PredictAndOptimize
https://github.com/khalil-research/PyEPO

