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Constrained Optimization

Preliminaries

* (Consider a problem of the form

O = argmin f(z)

<

subject to z € C

» with objective function f : R" — R with decision variables

z € R", subject to a set of constraints C.

» The form of f and C characterizes the complexity of optimization problems.

» Convex problems: f convex function and C co

NvVex set — e

ficiently solvable & strong

theoretical guarantees on the existence and unic

ueness of so

utions.

e Linear problems (LP): C = {z : Az < b} convex set with A € R"*", b € R™ and f affine

function.

e Quadratic programs (QP): € as above but with a quadratic objective.
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Constrained Optimization .

Preliminaries

* (Consider a problem of the form

O = argmin f(z)

<

subject to z € C

» with objective function f : R" — R with decision variables
z € R”, subject to a set of constraints C. x

» The form of f and C characterizes the complexity of optimization problems.

 Mixed integer program (MIP): A subset of the decision variables is required to take integer

values.
 Much more difficult problems than convex problems; The feasible set consists of distinct

points in R", not only non-convex but also disjoint. Generally NP-Hard.
* Nonlinear programs (NLP): Some of the constraints or the objective function are nonlinear.
Many NLPs are nonconvex and cannot be efficiently solved.
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Constrained Optimization

Solving methods

» Convex programs enjoy well-developed theory for their
resolution (including simplex, interior point, and augmented
Lagrangian methods).

 NLPs (hon-convex) include variant of methods used for
convex programs (penalty-based methods, interior points,...)

* MILPs require different approaches (NP-Hard), e.qg., branch
and bound.

Constraint Programming is an additional paradigm to solve
MI(L)P by combining branch and bound with reasoning
methods.

Ferdinando Fioretto | University of Virginia g@ Boyd et al., 2004 g@ Rossi et al., 2006 El@ Powell, 1969




Supervised learning

Preliminaries

+ Training dataset D = (X;, y;)._; with each X = (x;, .., X,) defining feature
vector and y Its associated label.

* Learn a parametric
function f, with @ € R™.

iNnputs prediction loss

% Va\
%

o(x) = h,
o(h)) = h,
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Supervised learning

Preliminaries

+ Training dataset D = (X;, y;)._; with each X = (x;, .., X,) defining feature
vector and y Its associated label.

* Learn a parametric
function f, with 8 € R™.

iNnputs prediction loss

» Train by updating @ in the N
opposite direction of the X = y &=  £(9,y)
gradients of the loss.
Vﬁf(ya y)

* Empirical Risk function:

St
min - Y (fa(@). )

6(x) = hy
o(h)) = h,
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Optimization in Science and Engineering

Ferdinando Fioretto | University of Virginia

. Bahamas

Optimization has a profound impact on
science, engineering, and society.

The rapid modernization of many scientific
and engineering domains is introducing
significant challenges that complicate their
operations.

New solutions must be deployed often and
be robust to different, uncertain, operating
conditions.

he result IS a massive Increase In
computational resources.

-orce systems operators to produce
suboptimal solutions, resulting In significant
economical and societal costs.
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Constrained optimization in Science and Engineering

The Electrical Power System

Impact

« Revenue: $400B (US, annual)
* Consumption: 4.18T KWh (US, annual)

» (Climate impact: 1.87B metric tons
(~40% of global) CO2 annual emissions

’bOQA
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Optimization in Power Systems
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Benefits from fast and accurate approximations.
Massive amounts of data are being generated.

Model 1 AC Optimal Power Flow (AC-OPF)

(’)(zid, qd) = argming ., D\ cost(p? )

subject to:

* 11

vimSvis’bi

A 1A
g min g - g max
SP; SP;

f\2 f\2 ~ f max
(pz'j) "‘(qz'j) <S¢j

Vie N
V(ij) € €
Vie N
Vie N
V(ij) € €

pl; = gijvi—viv; (bijsin(6:—0;) + gijcos(6:—0;)) V(i) €&
quj — —i)r,;j vz-z—ij (gz] Sin(ei—ej)—i)z'j COS(HZ'—HJ' )) V(’L]) (& g

-d
p{ —Bi = Yijyee P
od . f
a —q; = Z(z’j)eg qij

Vie N
Vie N

output: (p?,v) — The system operational parameters
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Can we use ML to build
better approximations?




Learning proxy optimizers

Learning to solve optimization problems

* \We are interested in solving problems of the following form:

dam/\OZd) = z" = argmin f(z,d)
— ? |
— subject to g¢;(z,d) >0, Vi € |m|

L
hi(z,d) =0, Vie|[p]

- where inequality g; < 0 and equality h; = 0 constraints are arbitrary but
continuous and differentiable.

Ferdinando Fioretto | University of Virginia 16



Learning proxy optimizers
Key idea

O(d) : z* = argmin f(z,d)

Ferdinando Fioretto | University of Virginia

Approximate
Optimizer
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Learning proxy optimizers
Key idea

O(d) : 2" = arg mzin f(z,d) ;E
& s.t. g(z,d) <0, |
h(z,d) =0 '

Data

Ferdinando Fioretto | University of Virginia h(f@ (d@)7 dl)

Approximate
Optimizer
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Learning proxy optimizers
Key idea

O(d) : 2" = arg mzin f(z,d) ;E

& St g(%d) = 0, l Approximate
h(z,d) =0

Optimizer

Data

challenge
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Learning proxy optimizers
Key idea

Constraints violations

O(d) : 2" = argmin f(z,d)

& S.T. g(Z,d) < 0, ,‘, Approximate
=0

h(Z, d) Training | Optimizer

Data

AN

r’.
=
~
N
S
—
S
1IN

challenge
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Lagrangian Duality

A brief review

* (Consider a problem of the type (only inequality constraints to ease presentation)

O = argmin f(z) subject to g(z) <0

Z

Ferdinando Fioretto | University of Virginia
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Lagrangian Duality

A brief review

* (Consider a problem of the type (only inequality constraints to ease presentation)

O = argmin f(z) subject to g(z) <0

Z

* [he associated Lagrangian dual function is: Violation-based Lagrangian function:

MH(z) = f(z) +Ag(2) - fr(z) = f(z) + Amax(0, g(z))

The penalty terms are always non-negat

ve:

captures a quantification of the constrai
violations

Ferdinando Fioretto | University of Virginia
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* [he associated Lagrangian dual function is: Violation-based Lagrangian function:
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IVE.
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Lagrangian Duality

A brief review

* (Consider a problem of the type (only inequality constraints to ease presentation)

O = argmin f(z) subject to g(z) <0

Z

* [he associated Lagrangian dual function is: Violation-based Lagrangian function:

MH(z) = f(z) +Ag(2) - fr(z) = f(z) + Amax(0, g(z))

IVE.

* [he optimization problem becomes: The penalty terms are always non-negat
. captures a quantification of the constrai
LRy = argmin f)(z) violations
s

* The strongest Lagrangian relaxation of O is found by LD = argmax f(LR)).
A=0

Ferdinando Fioretto | University of Virginia
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Learning proxy optimizers

With Lagrangian duality

e Explort the Lagrangian

Dual approach in the learning task to approximate minimizer ©

* Given multipliers A the Lagrangian loss function is defined as

N

Ferdinando Fioretto | University of Virginia

= 0(fo(d). 27 ) + Av(g(fo(d).d) < 0)

_=é> Fioretto et al., AAAI:20, ECAI:20
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Learning proxy optimizers

With Lagrangian duality

e Explort the Lagrangian

Dual approach in the learning task to approximate minimizer ©

* Given multipliers A the Lagrangian loss function is defined as

ZA(') — g(f@ (d), Z;k) + A V(Q(f@(d), d) < O) —> Constraint violation
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Learning proxy optimizers
With Lagrangian duality

* Exploit the Lagrangian Dual approach in the learning task to approximate minimizer ©

* Given multipliers A the Lagrangian loss function is defined as

gk() — g(f@ (d)7 Z;k) + A\v (g(fe (d)7 d) < O) —> Constraint violation
- To produce an approximation O = fy-(y of O for fixed multipliers A, we solve

0" (A) = arg;ﬂiﬂ 2”: X (fH(d’i>v Zf)
1=1
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Learning proxy optimizers
With Lagrangian duality

* Exploit the Lagrangian Dual approach in the learning task to approximate minimizer ©

* Given multipliers A the Lagrangian loss function is defined as

gk() — g(f@ (d)7 Z;k) + A\v (g(fe (d)7 d) < O) —> Constraint violation
- To produce an approximation O = fy-(y of O for fixed multipliers A, we solve

0" (A) = arg;ﬂiﬂ En: X (fH(di)v Zf)
1=1

e To obtain O = fo+ (A=) (the strongest Lagrangian relaxation of O ), the Lagrangian dual
computes the optimal multipliers:

v = argmasmin 36 (fo(0). 1)

Ferdinando Fioretto | University of Virginia =@ Fioretto et al.,AAAI:20, ECAI:20



The Learning Step

* Use an iterative approach to find good
values of primal and dual variables

] _ Algorithm 1: LDF for Constrained Optimization Problems

: 1 k * . .
6”““ — argimnin t(d,z*)wD 5( 9>\ (d), Z*) input: D =(d;, 2;")j_; : Training data;
0 i _

1\ <0 Vi€ [m]

2 for epoch k =0,1,...do

3 foreach(d;, z;' )€ D do

4 2 [ (dy)

5 O(AN") < O(\") —aVe(5, 2)

6 AN N p S vi(gi(%1)) Vi€ [m])]

a,s = (so, S1,...) : Optimizer and Lagrangian step size:

Ferdinando Fioretto | University of Virginia =( Fioretto et al., AAAI:20, ECAI:20
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The Learning Step

* Use an iterative approach to find good
values of primal and dual variables

. < k %
§~ ! = argmin (a2 y~D | 2 (d), 2%)

Algorithm 1: LDF for Constrained Optimization Problems

8 _ .

Ferdinando Fioretto | University of Virginia

3
4
5

6

input: D =(d;, z; )], : Training data;

a,s = (so, S1,...) : Optimizer and Lagrangian step size:
1 A\« 0 Vic[m)
2 for epoch k =0,1,...do

foreach(d;, z;' )€ D do
g [ (di)
ON") <« O(N") — aVLl(%, 2])

AN N p S vi(gi(%1)) Vi€ [m])]

_=é> Fioretto et al., AAAI:20, ECAI:20
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The Learning Step

* Use an iterative approach to find good
values of primal and dual variables

_ Algorithm 1: LDF for Constrained Optimization Problems

: 1 k * . .
9"““ — argumiuin t(d,z*)wD 5( QA (d), Z*) input: D =(d;, z; )], : Training data;

6 _

AV = (Ak + pre(d, f; ks+1( ) | c
"

Constraint violation &9~ Max(0, g))
or |h(x)|

Ferdinando Fioretto | University of Virginia

1 A\« 0 Vic[m)
- C) 2 for epoch k =0,1,...do
3 foreach(dl, 2 )e D do
4 21 Ff@ (i)
5 ONF) — (N — aVe(%, 2)

6 NS AT+ p 30 vilgi(21) Vi€ [m]]

- a,s = (so, S1,...) : Optimizer and Lagrangian step size:
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The Learning Step

* Use an iterative approach to find good
values of primal and dual variables

] _ Algorithm 1: LDF for Constrained Optimization Problems

D k
6”‘““ — argumiuin t(d,z*)wD K( 9>\ (d), Z*) input: D =(d;, 2, )], : Training data;
0 - - a,s = (sg,S1,...): Optimizer and Lagrangian step size:
bl . 1 A\« 0 Vic[m)
\ + ()\ 7, d C C> 2 for epoch k =0,1,...do
TP ;( f k+1< )) | S 3 foreach(dl,zl)eDdo
L e.g., max(0, g(x)) 4 24— f@ (d )
Constraint violation or [h(x) . ] H(Ak) “ 9()\ )-_ aVﬁ(él,zl*)
o . . . . 6 )\fﬂ%)\f%— L vi(9:(21)) Ve |m
* [he “primal” step Is approximated using - P21 1ilgi(2) _l

a Stochastic Gradient method.

* [his step does not recompute the primal variables from scratch!
It uses a warm-start.

Ferdinando Fioretto | University of Virginia =@ Fioretto et al., AAAI:20, ECAI:20
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How does 1t works in Practice?

AC Optimal Power Flow Predictions

Solution Quality

Dist. to load flow sol. (%

Objective cost distance and runtime

Dist. to AC-OPF cost

% Runtime (sec.)

M: constrained-aware ML

Test Case M~
30 icee ps | 2.6972 2.0793 0.0007
v 1.2929 83.138 0.0037

118 ieee ps | 0.2011 0.1071 0.0038
B v 1.9971 3.4391 0.0866
100 ieee  P5 | 01336 00447  0.0084
B v 3.8526 31.698 0.1994

ps |10.7751 | 0.9843 0.0197

v 24284 | 36.288 0.1995

otal Average

Test Case M=
30_ieee 7.9894 29447 0.0180 | 0.1024 0.0148 < 10*
118_ieee | 4.7455 1.0973 0.5408 | 0.4207 0.0785 0.0001
300_ieee | 4.7508 1.9543 0.3011 | 8.0645 0.2662 0.0001
45733 | 2.3706 |0.2124 1x
Total Average Min Speedup

DC: linear approximation
(as used in industry)

Ferdinando Fioretto | University of Virginia

_=é> Fioretto et al., AAAI:20, TPWRS:21

AC: full non-linear model
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How does 1t works in Practice?

AC Optimal Power Flow Predictions

Solution Quality

Dist. to load flow sol. (%

Test Case M~
30 icee ps | 2.6972 2.0793 0.0007
v 1.2929 83.138 0.0037

118 ieee ps | 0.2011 0.1071 0.0038
B v 1.9971 3.4391 0.0866
100 ieee  P5 | 01336 00447  0.0084
B v 3.8526 31.698 0.1994

ps |10.7751 | 0.9843 0.0197

v 24284 | 36.288 0.1995

otal Average
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Objective cost distance and runtime

Dist. to AC-OPF cost

% Runtime (sec.)

Test Case M=
30_ieee 7.9894 29447 0.0180 | 0.1024 0.0148 < 10*
118_ieee | 4.7455 1.0973 0.5408 | 0.4207 0.0785 0.0001
300_ieee | 4.7508 1.9543 0.3011 | 8.0645 0.2662 0.0001
45733 | 2.3706 |0.2124 1x
Total Average Min Speedup

M: constrained-aware ML

DC: linear approximation
(as used in industry)

AC: full non-linear model

Summary: Constrained-aware ML can predict quantities

several orders of magnitude more accurate

the linear (

y and faster than

D(C) approximation (and a baseline learning model
M ™) and reports significantly fewer constraint violations.

_=é> Fioretto et al., AAAI:20, TPWRS:21




Why does it work?

* Solution trajectories can be approximated by
plecewise linear functions.

 RelU neural networks have the ability to capture
plecewise linear functions.

Per Unit
N

N

TanH

FCC Tanh
FCC RelLU

0.80 0.85 0.90 0.95 1.00
Power demand multiplier («a)

40
S
5 30 .
c o ® ¢
S 20 . ©
Y ®
O o
Q °
=10 — . ©% o o .
C‘ o 09 o ®
0 o %0 ¢ '0‘
0 20 40 60 80 100

Generator Complexity

Ferdinando Fioretto | University of Virginia =( Fioretto et al.,NeurlPS:21
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Why does it work?

* Solution trajectories can be approximated by
plecewise linear functions.

 RelU neural networks have the ability to capture
plecewise linear functions.

«  Theorem (model capacity). Let f: RY > R be a
piecewise linear function with p pieces. If f is
represented by a RelL U network with depth k+1, then
1t must have size at least %kp%— 1.

o Corollary: Conversely, any piecewise linear function f
that 1s represented by a ReL U network of depth k+1

k
: 2 :
and size at most s, can have at most <7S> pleces.

Per Unit
N

N

TanH

FCC Tanh
FCC RelLU

0.80 0.85 0.90 0.95 1.00
Power demand multiplier («a)

40
S
55 30 .
c o ® ¢
S 20 . ©
Y ®
O o
Q °
=10 — . ©% o o .

“ o 09 o ®
0 o %0 ¢ ‘0‘
0 20 40 60 80 100

Generator Complexity
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Why does it work?

* Solution trajectories can be approximated by
plecewise linear functions.

 RelU neural networks have the ability to capture
plecewise linear functions.

«  Theorem (model capacity). Let f: RY > R be a
piecewise linear function with p pieces. If f is
represented by a RelL U network with depth k+1, then
1t must have size at least %kp%— 1.

o Corollary: Conversely, any piecewise linear function f
that 1s represented by a ReL U network of depth k+1

k
: 2 :
and size at most s, can have at most <7S> pleces.

Per Unit
N

N

TanH

FCC Tanh
FCC RelLU

0.80 0.85 0.90 0.95 1.00
Power demand multiplier («a)

IEEE-118

P39 Pgs —— Pg7

=
o

00]

@)

Prediction Error (%)
N
l

N— 4

5000 10000 15000 20000 25000 30000
Model Parameter Size

N

Ferdinando Fioretto | University of Virginia =( Fioretto et al.,NeurlPS:21

24



Why does it work?

The importance of modeling constraints

* High-volatile regions are often associated :
with “problematic” constraints. ~ mmmmmmmmmemeees XY/>“Z‘

E 6 o T R e
» With classical training, the hidder - P
representation of a DNN does not accurately T4 T
learn the physical constraints regulating the

OPF solutions.

* |ntroducing constraints using Lagrangian-
based penalties is not a regularization term.

* |t helps the model accurately learn different
hidden features, I.e., to more accurately
capture the dependencies across variables

, 0.80 085 090 095 1.00 1.05 1.10 1.15 1.20
and thelr OUtpUtS. Power demand multiplier (a)

Ferdinando Fioretto | University of Virginia =( Fioretto et al.,NeurlPS:21




Scaling to massive problem sizes

Exploiting the problem structure

Power Network

Ferdinando Fioretto | University of Virginia

* [he architectures adopted to construct
poroxy optimizers predict decision variables,
thus they may have a large number of
outputs and may suffer scalability issues.

* Many optimization problems exhibit a rich
structure that is traditionally exploited.

* For example, power networks are
organized in voltage levels, exposing
subproblems that can be exploited.

_=é> Fioretto et al., TPWPS:21 26




Scaling to massive problem sizes
Lagrangian decomposition

Power Network Consider an optimization problem

Minimize f(x) subjectto: hi(x) >0, hy(x) >0, x >0

p? -

Ferdinando Fioretto | University of Virginia =( Fioretto et al., TPWPS:21
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Scaling to massive problem sizes

Lagrangian decomposition

Power Network

Ferdinando Fioretto | University of Virginia

Consider an optimization problem

Minimize f(x) subjectto: hi(x) >0, hy(x) >0, x >0

Decoupling constraints through the introduction of
new variables and performing a Lagrangian relaxation

Minimize f(x)+ A(x" — x)

X

subject to:  hy(x) >0, ha(x') >0, x,x" >0

_=é> Fioretto et al., TPWPS:21 27




Scaling to massive problem sizes
Lagrangian decomposition

Power Network Consider an optimization problem

Minimize f(x) subjectto: hi(x) >0, hy(x) >0, x >0

X -

Decoupling constraints through the introduction of
new variables and performing a Lagrangian relaxation

Minimize f(x)+ A(x" — x)

X

subject to:  hy(x) >0, ha(x') >0, x,x" >0

Which leads to two subproblems,

Minimize f(x) — Ax subjectto: hi(x) >0, x >0

g -

Minimize Ax’ subject to: hp(x") >0, x" > 0.

. - -

Ferdinando Fioretto | University of Virginia Eé) Fioretto et al.,TPWPS:21 27
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Scaling to massive problem sizes

Exploiting the problem structure

Power Network Deep Neural Network
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How does it work?

Optimizing country-wise systems

France EHV
Voltage magnitude Active power generation
_1o* — Ms 103 —— Mg
s | 2 s
5 10%; — M| — M2
Q ' GL) 102
g 101? - |
- < g '\’
3 o N
= = 10" Mfﬁ[h’u-*:ﬂ-ww'*AlrJ'-"W"rM'J’iu"rr'.
107
0 5000 10000 15000 20000 0 5000 10000 15000 20000
epochs epochs
) Predict time  Train Mem.

Test Case v 7, p? q’ (sec) (GB)

389 pegase 0.025 0.005 0.585 0425 0.0013 1.1

118 ieee 0.009 0.004 0.013 0.016 0.0013 1.1

300 ieee 0.006 0.020 0.183 0.068 0.0014 1.2

MSR 0.002 0.001 0.007 0.005 0.0016 1.5

France EHV | 0.012 0.008 0.032 0.104 0.0016 4.6

France_Lyon | 0.025 0.005 0.098 0.093 0.0020 13.9

Ferdinando Fioretto | University of Virginia

Eé) Fioretto et al., TPWPS:21

Maximum error (MW

| Active flow
106‘; — Mg
| — Mc
105§ — M2
10*
| Constrained-aware ML
10°:
102
0 5000 10000 15000 20000
epochs
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How does it work?

Optimizing country-wise systems

France EHV
Voltage magnitude Active power generation
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s | 2 s
5 10%; — M| — M2
Q ' GL) 102
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MSR 0.002 0.001 0.007 0.005 0.0016 1.5

France EHV | 0.012 0.008 0.032 0.104 0.0016 4.6

France_Lyon | 0.025 0.005 0.098 0.093 0.0020 13.9

Ferdinando Fioretto | University of Virginia

Eé) Fioretto et al., TPWPS:21

| Active flow
- 106‘; — Mg
| — Mc
105'5 _— Mg

Constrained-aware ML

Maximum error (MW
=
o
S

10000 15000 20000

epochs

0 5000

Summary: Constrained-aware ML can
predict quantrties with unprecedented
accuracy and scale to country-wise
(>14,000 variables) systems.
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Discrete solutions and data
challenges



Job Shop Scheduling Problems

Jobs: Machines
- Have precedences (,Al before A2")

- Must run on specific machines (blue, green, orange) -

B3
—

Schedule a set of jolbs of varying processing times over a set of machines
of varying processing power while minimizing the total length of the schedule.

Ferdinando Fioretto | University of Virginia 31



Challenges in Learning Discrete Problems
Job shop scheduling

« Data generated by "slowing down” machines,
simulating some unexpected ill-functioning

: : : : == B [D
component in the scheduling pipeline. =
=L EEN B
« Slowing down even a single machine by 1 o m—
second produces large variabllities in the o e E = — T
resulting schedules. s __ mmam
§= [ | | e |
. . . E [ .
* Due to multiple symmetric solutions and/or 2 T

when the outputs themselves are —
approximations.

* The resulting learning models produce

Inaccurate predictions. | | | | |
0 50000 100000 150000 200000 250000
Time

La-39

Ferdinando Fioretto | University of Virginia =0 Kotary et al. AAAI:22

300000
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Optimal Data Generation

Standard labels

120000 —

The solution trajectories may be significantly different 100000 —
depending on how the data is generated. Hence, the
more volatile the trajectory, the harder it will be to learn.

80000 —

60000 —

L1 from Root

Given a set of input data {X(i)}f.\; 1» the goal is to o
construct the associated targets ¥\ for each i € [N] -
that solve the following bi-level problem: 0 10 20 30 40 50

Percent Increase in Processing Times

20000 —

102 - Y 100000
' - 90000
- 80000

IIllIl— Z f(fg(il?(l)) y(l)) 101? - 70000

- 60000

Test Loss

- 50000

subject to : y(’) € argmin f(y, x(’)). 40000

yeC i) 107 L 30000

- 20000
100 102 102
Training Epoch

Ferdinando Fioretto | University of Virginia Eé) Kotary et al.,NeurlPS:21
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Optimal Data Generation

Standard labels

120000 —

The solution trajectories may be significantly different 100000 —
depending on how the data is generated. Hence, the
more volatile the trajectory, the harder it will be to learn.

80000 —

60000 —

L1 from Root

Given a set of input data {X(i)}f.\; 1» the goal is to o
construct the associated targets ¥\ for each i € [N] -
that solve the following bi-level problem: 0 10 20 30 40 50

Percent Increase in Processing Times

20000 —

102 - Y 100000
' - 90000
- 80000

mln_ Z f(fg(a:‘(l)) y(l)) Classical ERM 101? L 70000

- 60000

Test Loss

- 50000

subject to : y(’) € argmin f(y, x(’)). 40000

yeC i) 107 L 30000

- 20000
10° 102 102
Training Epoch
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Optimal Data Generation

Standard labels

120000 —

The solution trajectories may be significantly different 100000 —
depending on how the data is generated. Hence, the
more volatile the trajectory, the harder it will be to learn.

80000 —

60000 —

L1 from Root

Given a set of input data {X(i)}f.\; 1» the goal is to o
construct the associated targets ¥\ for each i € [N] -
that solve the following bi-level problem: 0 10 20 30 40 50

Percent Increase in Processing Times

20000 —

102 - Y 100000
' - 90000
- 80000

mln_ Z f(fg(a:‘(l)) y(l)) Classical ERM 101? L 70000

- 60000

Test Loss

Across all : L 50000
subject to : y(’) € argmin f(y, x(’)). optimal solutions E | 40000
yeC i) 107 L 30000

- 20000
10° 102 102
Training Epoch

Ferdinando Fioretto | University of Virginia Eé) Kotary et al.,NeurlPS:21

I (y) =y |1



Optimal Data Generation

Theorem (model capacity). Let f: RY = R be a piecewise linear
function with p pieces. If f is represented by a ReL U network
with depth k+1, then it must have size at least %kp%— 1.

Theorem (approximation). If f: [0,1]" — R 4s L-Lipschitz
continuous, then for every € > 0, there exists some single-

layer neural n%ziwwk p of size N such that ||f — pl|l, L €
where N = ('Hn?).

N-1
coe i 1 I l
ninimize TV({y()}f\il) =5 E , ly Y - y()Hp
i=1

subject to : y'”) = argmin f(y, ).
YeC ,a)

Ferdinando Fioretto | University of Virginia Eé) Kotary et al.,NeurlPS:21

L1 from Root

Standard labels

120000 —

100000 —

80000 —

60000 —

40000 —

20000 —

Test Loss

| | |
10 20 30

Percent Increase in Processing Times

40

|
50

*

-100000
- 90000
- 80000
- 70000
- 60000
- 50000
-40000
- 30000

-20000

10°

Ty
Training Epoch

102

I (y) =y |1
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Optimal Data Generation

Theorem (model capacity). Let f: RY = R be a piecewise linear
function with p pieces. If f is represented by a ReL U network
with depth k+1, then it must have size at least %kp%— 1.

Theorem (approximation). If f: [0,1]" — R 4s L-Lipschitz
continuous, then for every € > 0, there exists some single-

layer neural n%ziwwk p of size N such that ||f — pl|l, L €
where N = ('Hn?).

N-1
. . . l 1 l l
ninimize TV({y”}?il) =5 E ly“ ) — 4, TV
i=1

subject to : y'”) = argmin f(y, ).
yeC i)
Across all

optimal solutions

Ferdinando Fioretto | University of Virginia Eé) Kotary et al.,NeurlPS:21
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100000 —
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-100000
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Optimal Data Generation

Theorem (model capacity). Let f: RY = R be a piecewise linear
function with p pieces. If f is represented by a ReL U network
with depth k+1, then it must have size at least %kp%— 1.

Theorem (approximation). If f: [0,1]" — R 4s L-Lipschitz
continuous, then for every € > 0, there exists some single-

layer neural n%ziwwk p of size N such that ||f — pl|l, L €
where N = ('Hn?).

N-1
. . . l 1 l l
ninimize TV({y”}?il) =5 E ly“ ) — 4, TV
i=1

subject to : y'”) = argmin f(y, ).
yeC i)
Across all

optimal solutions
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120000 —

100000 —

80000 —
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40000 —

20000 —

Test Loss
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40

|
50

*

-100000
- 90000
- 80000
- 70000
- 60000
- 50000
-40000
- 30000

-20000
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Solution Volatility and Optimized Dataset

14 14
13 13
12 L - -
11 11 -
10 10 | SN
w 9 - v Q-
5 8 5 8
£ 7 j— £ 7 j— I E— e —
s o lmE : o imE =
= 5 | = 5 |
4 4
3 3
2 5 )
1 1 e
0 0 e
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000
Time AME
La-39 - standard labeled La-39 - optimized labeled

Ferdinando Fioretto | University of Virginia =0 Kotary et al.,NeurlPS:21




How does 1t works in Practice?

Job shop scheduling problems

ta30

/

ta50
o
© o
20.2 8
= > 0.2
— )
© =
& 0.1 ©
el k £ o1
= 0.1-

O o

0.0- @) *

*
10° 102 00 — —
Runtime (s) 10 . 10
Runtime (s)
swvO07 swv1l3

0.3
o QO.4'
© ©
O O
é;,O.Z é?
© © ]
c = 0.2
= 0.1 +
o Qo
© ° * j\\\\\\\‘__

0.0 0.0

100 102 100 102
Runtime (s) Runtime (s)

Deep Learning based solution

Ferdinando Fioretto | University of Virginia =0 Kotary et al. AAAI:22

State-of-the-art commercial solver

dredict feasib

e solut

often several order of
magnitude faster than highly

(IBM cp-optimizer)

summary: In these settings,
the ML-based mode

S Cdhn

Ons

optimized combinatorial

solvers.
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How does 1t works in Practice?

Job shop scheduling problems

Instance Size Pred Err(x10) |  Con Viol(x10%) | Opt. Gap Heuristics (%) | Opt. Gap DNNs (%) | Time SoTA Eq(s) T
JXM FC JSP-DNN FC JSP-DNN SPT LWR MWR LOR MOR FC JSP-DNN FC JSP-DNN
yn02 20x20 | 2.770 0.138 1.134 0.122 628 837 40 934 40 1280+ 54 -0.045 £ 0.9 || 10.20 1800+
ta25 20x20 | 1.607 0.361 0.631 0.244 593 877 59 187 46 13.61 +3.13 -0.143 + 0.8 || 11.02 1800+
ta30 30x15 | 4.338 1.196 1.483 0.357 558 910 63 856 46 15.01 +2.63 -0.48 + 5.18 || 9.06 1800+
tad0 30x20 | 7.880 3.341 1.863 0.104 492 794 57 836 25 23.11 +7.33 3.19 + 1.88 8.40 12.04
taS50 S50x10 | 4.580 1.322 1.223  0.225 789 789 53 1116 43 18.30 +£ 5.22 5.85+ 2.72 8.02 90.30
swv03 20x15 | 9473 2.683 2777  0.850 203 212 75 190 50 28.61 +14.27 7.62 + 2.51 4.04 36.36
swv05> 20x10 | 6.586 2.950 2.325 0.626 183 192 80 177 66 20.78 £ 10.54 6.34 + 1.82 7.24 18.18
swvO7 20x10 | 4.587 0.681 1.222  0.223 299 295 68 352 43 10.69 + 6.83 0.01+ 4.75 26.0 254.5
swv09 20x15 | 5.678 3.462 2.132  0.211 322 270 69 285 75 22.12 + 8.52 5.42 +1.21 6.48 28.32
swvll 50x10 | 7.958 3.244 2711  0.282 237 231 94 263 73 23.18 +2.27 4.80 + 4.47 7.02 92.00
swvl3d 50x10 | 23.21 3.557 1.615 0.323 225 203 114 218 79 22779 +16.21 8.11 +4.20 7.08 24.08

Ferdinando Fioretto | University of Virginia

=0 Kotary et al. AAAI:22
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Under the hood

X | ; 7 Y IIA Y |
Vo 0, Do a5
d d N - »»»»ﬁg LTI LR 49
(pd,ad)| | || : -l : q
d _d |
(P q°) e il : ‘
i"""'""""""'""""""'"""""""J; """""""""""""""""""""" E """"""""""""" ._- '_'_'_'_'_'_'_'_'_'_'_'_'_'_I:_:_:_:_:_:_:_:_:_:_:_:E V6CL V6b """"""E
| e > 0 I : . " Kirchoff’s Current Law
o * Al*l(pf,qf)
vl T
// v \\
1% 1% 1% Ohm’s Law
Machines Layers 4 oa 0b
Shared Layers
an™] *l
Jobs Layers % .
o . Constrained-aware
dlz\" - s .
4z Tar] I R B B network architecture
1 for scheduling problems
aizy’)| [+

Ferdinando Fioretto | University of Virginia

Constrained-aware
network architecture
for energy systems




Summary: ML proxy optimizers

Enforcing physical principle and hard constraints

o

Motivation: Need for well-performing optimization surrogates that also obey the enforcement of physical
orinciples and hard constraints.

Optimization

¢ process
x =—=»| Modelfy & —>f, (x)

System state

mization principles within the ML models training cycle.

Insight: Combine opt

» |agrangian-dual framework [ECML-19, AAAI-20]

Decision making

* [agrangian decomposition [TPWRS-21] Models

parameters

Settings:
 Optimal power flows in energy systems [AAAI-20, TPWRS-21, PMAS-22]
 Manufacture task scheduling [NeurlPS-21, AAAI-22]

e [ransprecision computing [ECML-19] A A
* Enforcing fairness in ML models [ECAI-20, AAAI-21, IUJCAI-22, AAAI-22]

* Enforcing fairness & robustness in ML models [CVPR-23*, ArXiv:22]

 Model pruning [NeurlPS-22

Ferdinando Fioretto | University of Virginia 39



Agenda

Intro and ML for
Motivations Optimization

s R

Ferdinando Fioretto | University of Virginia

Optimization
for ML

s

Open Questions

54
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Optimization as Network Layers
fo

Data Prediction | 0SS

x,y) => - e = (¢, c)

Ferdinando Fioretto | University of Virginia

41



Optimization as Network Layers
fo

Data Prediction | 0SS

x,y) = — 2 (e) —  t(z*(e),z*(c))

C z"(¢)
= [Optimization Iayer} —> ...

Ferdinando Fioretto | University of Virginia

42



Optimization as Network Layers

Data f 0 Prediction | 0SS
(y) = = 20 = Uz(@),2(0)
/ \

C
c. —> [Optimization Iayer] —> ...

Processes embedding (¢) and outputs

solutions z*(¢) satisfying “arbitrary"
Structure.

Integrates domain knowledge and
hard constraints in the learning
pipeline (Including at inference time).

Ferdinando Fioretto | University of Virginia 42



Optimization as Network Layers

Data f 0 Prediction | 0SS
x,y) = = Z2(C) —  (27(¢),2z"(c))
&= <«
/ \
A 2" (¢
.. C% [Optimization Iayer] —> ()
< i
Processes embedding (¢) and outputs
solutions z*(¢) satisfying “arbitrary"
structure.

Integrates domain knowledge and
hard constraints in the learning
pipeline (Including at inference time).

Ferdinando Fioretto | University of Virginia 42



Optimization as Network Layers

Data f 0 Prediction | 0SS
x,y) = > z(¢) —  ((z"(¢),z"(c))
= <«
— w ot d¢ 9z*(e) ol
A Z* é A— : : : —
.. C% [Optimization Iayer]% J0 00 oc 0z*(c)
< i
Processes embedding (¢) and outputs
solutions z*(¢) satisfying “arbitrary"
structure.

Integrates domain knowledge and
hard constraints in the learning
pipeline (Including at inference time).

Ferdinando Fioretto | University of Virginia 42



Optimization as Network Layers

Data f 0 Prediction | 0SS
. A Jacobian matrix of
(X, Y) —> | —> Z*(C) —> Z(z*(é), Z*(C)) / partial derivatives
R <
— w ot d¢ [0z (é)] of
A Z* é = . - . —
.. C% [Optimization Iayer] —> ... J0 00 oc 0z*(c)
< i
Processes embedding (¢) and outputs
solutions z*(¢) satisfying “arbitrary"
Structure.

Integrates domain knowledge and
hard constraints in the learning
pipeline (Including at inference time).

Ferdinando Fioretto | University of Virginia 43



How do you differentiate
through optimization programs?




Implicit differentiation

Convex quadratic programs

QP Layer

Current layer Previous layer

* QP layers can be learned by taking the gradients of
some loss function w.r.t. the parameters.

o Differentia

KKT cond

loNn can be obtained

oy differentiating the

tions (sufficient and r

for optima

ity) at a solution to th

Ferdinando Fioretto | University of Virginia

ecessary conditions
e problem.

=l Amos and Kolter ICML:2017

' VRN

Zi+1 = argmin §ZTQ(27;)Z +q(%)

subject to A(z;)z = b(z;)
G(zi)z < h(z)

T2

45



Implicit differentiation

Convex quadratic programs

QP Layer

Current layer Previous layer

* QP layers can be learned by taking the gradients of v 1 ¢ N

some loss function w.r.t. the parameters.

o Differentia

KKT cond

loNn can be obtained

Zi+1 = argmin §ZTQ(27;)Z +q(%)

oy differentiating the subject to A(zi)z = b(2:)

tions (sufficient and r

for optima

* The Lagrangian of the Q

ity) at a solution to th

ecessary conditions G(zi)z < h(zi)
e problem.

1

2 IS L(z,v,\) = §ZTQZ + gl z+ v (A2 —b) + M (Gz — h)

 [he KKT conditions for stationarity, primal feasibility, and complementary slackness are:

Qz+q+ ATV  + GI M =0
AZ*—b:O >

optimal dual

dQz* + Qdz + dg + dAT v+
ATdy + dGTX* + GTdA =0

Taking the differentials

DX\ )(Gz" — h) =0, dAz" + Adz —db =0

Diagonal matrix

from vector

Ferdinando Fioretto | University of Virginia

D(G=* — h)d\ + D(OV)(dG2* + Gdz — dh) = 0

=l Amos and Kolter ICML:2017

T2
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Implicit differentiation

. QP L
Convex quadratic programs e
Current layer Previous layer
v /N
Zig1 = argmin -~ z° Q(z;)z + q(z)
» with these equations, we can form the Jacobians of 2
z* w.r.t. any of the data parameters. subject to A(z;)z = b(2;)
G(z:)z < h(z;)
dz* o
. For example, to compute ” e R"" one would

substitute db = I, solve the equation and retrieve the resulting value of dz.

optimal dual
Qz* +q+ AV  + G N =0 | - dQz* + Qdz + dg + dATv* +
Taking the differentials T R -
Az —b=0 > Atdy +dG* N+ GHdA =0
D()\*)(Gz* _ h) =0, dAz" + Adz — db =0

D(Gz* — h)dA + DO\ (dGz* + Gdz — dh) = 0
Diagonal matrix
from vector

Ferdinando Fioretto | University of Virginia E]@ Amos and Kolter ICML:2017

T2
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Implicit differentiation

Linear Programs

LP Layer Predictions from
previous layer

4

% ATZ

« LP layers cannot be learned directly by differentiating z° = argmin y

through the KKT conditions.

* [he optimal so

ution to an L

Z

subject to Az <b

P may not offer useful differentials

w.r.t. predictions y . This is because V? f(z,y) = y' zis zero

Ferdinando Fioretto | University of Virginia

objective

E‘@ Wilder et al. AAAI 2019
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Implicit differentiation

Linear Programs

* P layers cannot be learned directly by differentiating

through the KKT conditions.

* [The optimal solution to an LP may not offer useful differentials
w.r.t. predictions y . This is because V? f(z,y) = y' zis zero

 Small changes in the model parameters y may

cause discrete jumps to a new vertex.

Ferdinando Fioretto | University of Virginia

E‘@ Wilder et al. AAAI 2019

*

<

LP Layer

= argmin ¢

Z

Predictions from
previous layer

4

subject to Az <b

objective

48



Implicit differentiation

. LP L redictions from
Linear Programs (Smooth surrogates) aye" %3053 yer
* LP layers cannot be learned directly by differentiating z" = argmin ?QTZ

through the KKT conditions.

The optimal so

ution to an L

Z

subject to Az <b

P may not offer useful differentials

w.r.t. predictions y . This is because Vg f(z,y) = y' zis zero.

Small changes in the model parameters y may
cause discrete jumps to a new vertex.

objective

Solution: Add a regularizer to smooth the objective:

2" = argmin

<

subject to

Ferdinando Fioretto | University of Virginia

7'z + 9]zl

Az <b

essian Vg f(z,y) =2y > 0

E‘@ Wilder et al. AAAI 2019
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Implicit differentiation

Linear Programs (Perturbed optimizers) LPLayer  eious myer

» A different idea: Stochastically perturbing the coefficients y with

e
z* = argmin |7 2

Z

noise from some distribution Z.

subject to Az <b

» This creates a distribution of z in the solution space for a given .

2 (9) =

Lz |2 % (§ + eZ)]

Ferdinando Fioretto | University of Virginia

objective

E]@ Berthet et al 2020
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Implicit differentiation

Linear Programs (Perturbed optimizers) - Layer proviouslayer

z* = argmin |7 2
<

subject to Az <b

- A different idea: Stochastically perturbing the coefficients y with
noise from some distribution Z.

» This creates a distribution of z in the solution space for a given .

2°(y) =Ez [z % (1 + e2)]

* [he perturbed LP is now differentiable with derivative: objective
0z* (Y 1
Z@Ey) = - %7 [z * (7 + eZ)v:{Z)T} /.

parameter of the noise distribution

* (no close form) approximated via Monte-Carlo sampling.

Ferdinando Fioretto | University of Virginia E]@ Berthet et al 2020




Some Applications




Differentiable permutations

Certified fairness in learning to rank

* Ranking systems are pervasive in online web searches, job searches, property
renting, streaming content, etc.

* | earning to rank: construct mappings between lists of n items and permutations
of the list [n] by learning a ranking policy 11 from which rankings can be sampled.

Query _Xl f 0
(CEQ) q
%
q < - I1
X Lo
q v relevance
q ] ) 3 4 5 scores
7L 172 A S M A

ltems 1o rank

Ferdinando Fioretto | University of Virginia

=0 Kotary et al WWW-22
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Differentiable permutations

Certified fairness in learning to rank

* Ranking systems are pervasive in online web searches, job searches, property
renting, streaming content, etc.

* | earning to rank: construct mappings between lists of n items and permutations
of the list [n] by learning a ranking policy 11 from which rankings can be sampled.

» Algorithms used to learn rankings are typically oblivious to their potential
disparate impacts on different groups of individuals.

Query _Xl f 0 -
(CEO) |74 g ¥ 1
> v % Q.
qaq o nm = - g | & ‘
T N m 4 L ™ & \"®  relevance
q 1 0 A
A7 L Y, Y, )’3 v yc’lj ¢ scores

ltems 1o rank

Ferdinando Fioretto | University of Virginia E‘@ Kotary et al WWW-22
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores
i 1 f s, Al
X, Yq
% A
{ < - > >yQ
n % NN
Aq Vg

N
) 1
0"= argmax N § ,U( fo(xq)yq)

* Fair learning to rank: Learn rankings
subject to fairness exposure constraints
among protected groups.

s.t. |v( fg(xq),g)|§5 Vge [N],ge G.

Ferdinando Fioretto | University of Virginia

=0 Kotary et al WWW-22

54



Differentiable permutations

Learning fair rankings: challenges

query relevance scores » Fair learning to rank: Learn rankings
o] Jo $1 subject to fairness exposure constraints
1 N T, among protected groups.
q < —> % >yQ
%
n v o 39
4 Vg « Penalty-based methods are “satisfied

on average, thus disparities in favor of
one group can cancel out those in favor
of another group for different queries

N
) 1
0= argmax Z U( fo(xq) yq)

» Cannot provide a tunable tradeoft
s.t. |v( fo(xg).9)| <6 VgeINLgeG.  petween fairness and utility.

Ferdinando Fioretto | University of Virginia ?@ Kotary et al WWW-22 54




Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy
_)Cl f 0 j}l_
q q I1*(y,) = argmax 7, Hw
- A II
{ < - 9 >yQ . subject to AIIL < b
- & Solver Execution
n A/
g Yq . -
_ _ IT"(yq) = argmaxyy y, Hw

subject to: ZHU =1 Vie|n]

J
ZHU =1 Vje|[n]
l

0<Il;; <1 Vi, j€|n]
v(Il,g)| <0 Vge G

Ferdinando Fioretto | University of Virginia E‘@ Kotary et al WWW-22




Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy
_)Cl f v j}l_
q q I1*(y,) = argmax 7, Hw
- A I
{ < - 9 >yQ — subject to AIIL < b
- ~ & Solver Execution |
xn yn predictions
q q e T
_ _ IT"(yq) = argmaxyy y, Hw

subject to: ZHU =1 Vie|n]

J
ZHU =1 Vje|[n]
l

0<Il;; <1 Vi, j€|n]
v(Il,g)| <0 Vge G

Ferdinando Fioretto | University of Virginia E‘@ Kotary et al WWW-22




Differentiable permutations

Learning fair rankings: challenges

query

{ <

A

represent ranking policies 11 as a linear objective

relevance scores LP fair ranking policy
Jo N
yq * ([ ~ ~ ]
IT"(y,) = argmax y, Hw
% A I1
= 9 >yQ . subject to AIl <b
- & Solver Execution - bermutation matrix

n j}n predictions
q AT
_ IT"(y4) = argmaxpy Yg LLw

subject to: ZHU- =1 Vie|n]

doubly stochastic form

ZH” =1 Vje|[n]

Birkhoff-von Neumann decomposition allows to
OSH,']' <1 Vi,je|n]

function. v(IL,g)| <6 Vge G

Ferdinando Fioretto | University of Virginia E]@ Kotary et al WWW-22
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Differentiable permutations

Learning fair rankings: challenges

query

{ <

A

represent ranking policies 11 as a linear objective

relevance scores LP fair ranking policy
Jo ol
g 1" (4,) = j 1
N R (y,) = arg;nax y, w
- ; >yq : subject to AIl < b
n = j\}n & Solver Execution predictions permutation matrix
1 # IT"(y4) = argmaxpy yT ITw

subject to: ZH-]- =1 Vie|n]

doubly stochastic form

ZH” =1 Vje|[n]

Birkhoff-von Neumann decomposition allows to
OSH,']' <1 Vi,je|n]

function. v(IL,g)| <6 Vge G

Position bias disparity
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy
_)Cl f 0 j}l_
1 1 I1*(y,) = argmax v, Hw
q q
% A\ I1
q < - E >yq subject to AIl < b
xn - AN & Solver Execution
q yq

Ferdinando Fioretto | University of Virginia

-

=0 Kotary et al WWW-22

Regret loss

— L (IT"(y,), " (y,))

Regret between exact and
learned policies
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy Regret loss
_xl f v j}l_
q N q I1*(y,) = argmax 7, Hw
A 1 . L H* A , H>I<
q < - 9 >yq . subject to AIl <b ( (yQ) (yQ))
o - ~ Qg Solver Execution
q Vg backpropagation
- — — -—
94, oI (3, DL (4,). 1T (yy)
o0 Y, OI* (y,)

Ferdinando Fioretto | University of Virginia
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy Regret loss
B 1 f 0 Al
xq yq I1*(7,) = argmax 7, Iw
- 5 . mo — L (IT*(1,), 1% (y,))
{ < - —> >yQ subject to AIl < b 7 !
" =4 A Solver Execution
Aq Vg backpropagation
- e < -
994 OIT" (yq) OL(IT* (y,), 1T (yq))
50 0 OIT* ()

» Discontinuous w.r.t. y for fixed .

Ferdinando Fioretto | University of Virginia
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy Regret loss
B 1 f 0 Al
-x y * [ ~ ~ T
q N q A 1" (y,) = argmax g, [Tw T () T
{ < - —> >yQ —> subject to AIl < b - (I (94), 10 (yq )
7 - A Qg Solver Execution
q Vg backpropagation
N A — —
99q OIT* (y,) OL(IT* (y,), 1T* (y,))
50 0 OIT* ()
. o 2 Lop0r(y.§) = T (2§ - y) - T ()
» Discontinuous w.r.t. y for fixed y. T gy TSP Y =AY Y 9

» Convex surrogate loss function which forms a convex
upper-bounding function over L.
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Differentiable permutations

Learning fair rankings: challenges

query relevance scores LP fair ranking policy Regret loss
_)Cl f v j\;l_
q N q I1*(y,) = argmax 7, Hw
A 1 I E H* A , H>I<
q < - 9 >yQ . subject to AIl <b ( (yQ) (yQ))
o - ~ Qg Solver Execution
q Vg backpropagation
- — — -—
94, oI (3, DL (4,). 1T (yy)
o0 Y, OI* (y,)

In contrast to SoTA fair-LtR methods, this end-to-end solution does not require
sampling from ranking policy during training in order to evaluate the ranking utilities.

Ferdinando Fioretto | University of Virginia E]@ Kotary et al WWW-22




How does it work?

constrained-aware ML

Ferdinando Fioretto | University of Virginia

0.01 0.02 0.03

Avg. 6-fairness (all queries)

0.00

unweighted

penalty-based methods

| =i ATk WOWRI - - —— - - - - - - 1.6 - "\" """"""""""""""""""
= 16 LT N,
*
S wk
@) 1.4
C 1.4_ w
® 8 O
& O 01.2-
D 12 W °
O o 1.0
A
|A T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.0 0.2 0.4
Avg. 6-fairness (all queries) Avg. 6-fairness (all queries)
1.8] ===-mm e,
1.81 4—a--3 . — i I Yok A Ak T e W
_|_J
— 1.6- 1.6
= o 9
B a a
9 1.4- 1.4
O
= O SNSRI soA phM MMy A 1 5| cunlgew oee o ¢ o aulyan s
1.2 -

0.05 0.10 0.15
Avg. 6-fairness (all queries)

0.00

merit-weighted

=0 Kotary et al WWW-22

Summary: This integration provides
query-level fairness guarantees!

(0-fairness).

t attains much higher utilities as the
earning task learns to maximize utility
within the feasible subspace.
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Why does it work?

Properties of end-to-end LPs

| ] R A

1.4-

German credit
DCG

1.2

0.00 0.02 0.04 0.06 0.08 0.10 0.0 0.2 0.4
Avg. 6-fairness (all queries) Avg. 6-fairness (all queries)

1 8 oo
1.8- —————— . — i —*— —*—i—i — T | |l| v " .. ]
-|—J
— 161 1.6
= o ©
3 B 2
O 14 1.4-
O
= , ® WNNOON S04 phish Ay A 1 5| cuntgee see o © o sulnioas o
0.00 0.01 0.02 0.03 0.00 0.05 0.10 0.15

Avg. 6-fairness (all queries) Avg. 6-fairness (all queries)

unweighted merit-weighted
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Theoretical insights: There is not a
single point but a region of y which are
under y.

A\

regret-optima

ltem scores need not be predicted
orecisely to find model parameters that
maximize the empirical utility under

falrness constraints. -



End-to-end combinatorial ensemble learning

 Ensemble learning aims at creating accurate and robust ML models by
combining predictions from individual models.

» Key challenge: to find effective ways to combine the individual predictors for any
particular input sample.

Ensemble

agents fl f2 % fn
models

ensemble prediction

- agents R
_>@ predictions |y1 y2 % y

-

data samples

(z,y) € X XY

Ferdinando Fioretto | University of Virginia E]@ Di Vito et al IJCAI-23
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

Ensemble

agents f 1 f 2 f n _ -
models OT
ensemble

prediction

agents ~

_>@ predictions |y1 y2 yn —_— Y

-
data samples

(,y) € X x Y

Ferdinando Fioretto | University of Virginia E‘@ Di Vito et al IJCAI-23




End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble rapsac
agents f1 f2 fn
models OT
ensemble
1—|- prediction
agents
~—>@ predlctlons Iyl y2 ynl — y
T
data samples 0
Selection net L
(x,y) € X XY T

forward pass

o

K(é) argmax ¢'b
b

subject to 1'b =k
b € {0, 1}’”’)

&

Ferdinando Fioretto | University of Virginia E]@ Di Vito et al IJCAI-23
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble solution
agents f 1 f 2 f n
models OT
ensemble
T prediction
1

agents

—> y —> L(7

— ORI .

data samples Selection net - -

(x,y) € X XY T

forward pass

o

K(é) argmax ¢'b
b

subject to 1'b =k
b € {0, 1}’”’)

&
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble solution
agents f 1 f 2 f n
models OT
ensemble
T prediction
1

agents 7

— Yy — L(Y,y)

~_>@ predictions ,yl U2 ynl

backward pass

data samples Selection net - - aﬁ
(z,y) € X x Y A OKC (&)
forward pass A A
4_—> : K(C) arg]gnax ¢'b ¢
0c¢ 8]1{(&) subject to 1'b =k
00 e b e 0.1}
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble solution
agents f 1 f 2 f n
models OT
ensemble
T prediction
1

agents 7

—> Y —> L(,y)

~_>@ predictions ,yl )2 ynl

backward pass

data samples Selection net - - aﬁ
(z,y) € X x Y A OKC (&)
forward pass P
—> —> K(c)
- —
o OK(e)
00 oc
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble solution
agents f 1 f 2 f n
models OT
ensemble
T prediction
1

agents 7

—> Y —> L(,y)

~_>@ predictions ,yl )2 ynl

backward pass
0 oL
(;Jla;a SEarT;\FjliS Y Selection net - T - 50 p(2) o exp (—v(z))
forward pass P /V

—> ¢ —> K(¢) — E,..z [K(¢+ €2)]
D — R E— Differentiable perturbed optimizer

¢ OK(e)

00 ¢
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End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

unweighted
knapsack
Ensemble solution
agents f 1 f 2 f n
models OT
ensemble
T prediction
1

agents 7

—> Y —> L(,y)

~_>@ predictions ,yl )2 ynl

backward pass
data samples 0 0L
P Selection net - - p(2) o exp (—v(2))
(z,y) € X x Y A OKC (&)
forward pass P A i A /V
—> ¢ —> K(¢) — E,..z [K(¢+ €2)]
D — R E— Differentiable perturbed optimizer
oc 0K (¢ )
- <A ) _ 87 [/C(c+ez) v’(z)T}
00 0¢ N
standard Normal

Ferdinando Fioretto | University of Virginia =% Di Vito et al IJCAI-23 random variable 63




End-to-end combinatorial ensemble learning

Knapsack layers for specialized ensembles

Summary: Selecting embedding
through an end-to-end

constrained-aware ML

Vi

P J 90 \ : ° ° ® : : . .
08{ e A P R . ntegration of a combinatorial
B R o| cao| e optimization problem in the ML
< 3 75 model brings large accuracy
S 94 5 70 oains.
< < .
S e Unweighted average S 65 Unweighted average
2 92 - ---- Plurality voting Z ---- Plurality voting .
---- Super Learner (*) 60 1 ---- Super Learner (¥) T’]e eal”ﬂlﬂg -taSk ‘eal”ﬂS 1o
o i % o e2e-CEL (%) C " . .
o0- S I 55 Random selection maximize utility associated with
o To 20 30 4 50 00 3 4 & & 10 12 12 1 €ach sample independently

Ensemble size Ensemble size

Ferdinando Fioretto | University of Virginia

Accuracy (%)
Dataset e2e-CEL SL UA PV RS
MNIST 98.55 06.88 96.81 95.99 96.83
UTKFACE 90.97 85.07 84.60 80.78 84.60
FER2013 66.31 64.95 63.89 63.15 63.89
CIFAR10 64.09 60.13 60.59 60.35 60.59

g‘@ Di Vito et al [JCAI-23
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Unrolling

DNN solver
features prediction
* *
= 2 Cop- © e Lla
unrolling
> el e el

all operations on the computation grapn

» lterative optimizer which refines an initial starting point x, by applying an upaate routine
Xrp+1(c) = U(xk(c), c)

which converges if Xx(c) = x*(c) as k — o

Ferdinando Fioretto | University of Virginia =( Kotary and Fioretto:lJCAI:23
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Unrolling

DNN solver
features prediction
* *
_ e O (¢)— L(x*)
.. @% - r*(c)— L(x
unrolling
i s o o

all operations on the computation grapn

» lterative optimizer which refines an initial starting point x, by applying an upaate routine
Xrp+1(c) = U(xk(c), c)

which converges if Xx(c) = x*(c) as k — o

» [f the Jacobians of 9 can be computed analytically, we can avoid unrolling each eval. of
2 by modeling its backward pass with a Jacobian-vector product.

Ferdinando Fioretto | University of Virginia Eé) Kotary and Fioretto:IJCAI:23



Unfolding

features pre[()ili\lcl:lion solver
S > £8P ¢ o x”(c)— L(x™)

unrolling

el el el e el

all operations on the computation grapn

Only the outer iterations unfoldln. g_» segments of the computation graph
need to be unrolled Gr—— < — < — replaced with precomputed optimization
stens and derivatives

» lterative optimizer which refines an initial starting point x, by applying an upaate routine
Xrp+1(c) = U(xk(c), c)

which converges if Xx(c) = x*(c) as k — o

» [f the Jacobians of 9 can be computed analytically, we can avoid unrolling each eval. of
2 by modeling its backward pass with a Jacobian-vector product.

Ferdinando Fioretto | University of Virginia Eé) Kotary and Fioretto:IJCAI:23




Unfolding at a fixed point

* \We can unfold all the forward pass!

Ferdinando Fioretto | University of Virginia

faat DNN solver
eatures prediction
* *
- R o x*(c)—L(x™)
%
- R C
unrolling
= = = === operations on the computation graph

unfolding |
— — e— segments of the computation graph
G < — — C01ACE0 WITh precomputed optimization
steps and derivatives

fixed-point folding

blacklbox forward pass and

& G hgckward pass, repeated
_

Eé) Kotary and Fioretto:[JCAI:23 67




Unfolding at a fixed point

* \We can unfold all the forward pass!

1.0 - Fwd. Pass: xg =n
: . . : Fwd. Pass: xg = x*
» Optimizing an iterative procedure, s ~o— Bwd. Pass: xo =1
: : : 5 | —-== Bwd. Pass: xg =X’
generally requires a starting point x;, £
Lo
—
» Convergence of the forward pass is e .
guaranteed regardless of the nature of x;, ke
How about the backward pass? ~ 02-
0.0 A

0 10 20 30 40 50 60 70
Unfolded PGD Iteration
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Unfolding at

* \We can unfold all the forward pass!

» Optimizing an iterative procedure,
generally requires a starting point X,

» Convergence of the forward pass is

guaranteed regardless of the nature of X;,.
How about the backward pass?

* \WWhen an unfolded optimi

precomputed optimal so

a fixed point

1.0 -

o o o
~ o (0]

Relative L1 Error

o
N

zer IS Iterated at a 0.0-

Fwd. Pass: Xg =n
Fwd. Pass: xp = x*
—®— Bwd. Pass: xg=n

- == Bwd. Pass: Xg =X~

ution x, = x*, the

backward pass converges, but at its own rate.

Ferdinando Fioretto | University of Virginia
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Unfolded PGD lteration
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Unfolding at

a fixed point

Forward and backward pass error in unfolding PGD

Fwd.Pass:xp=n
Fwd.Pass:xg=x*

— Bwd.Pass: Xg=n

-=—= Bwd.Pass: xp= X*

.

» We can unfold all the forward pass! 10°

» Optimizing an iterative procedure, 102 1
generally requires a starting point X, L \

« Convergence of the forward pass is p \
guaranteed regardless of the nature of x,. $ 107
How about the backward pass?

* \When an unfolded optimizer is iterated at a
precomputed optimal solution x, = x*, the w2+

backward pass converges, but at its own rate.

Ferdinando Fioretto | University of Virginia

Eé) Kotary and Fioretto:[JCAI:23

20 30 40 50 60 70
Unfolded PGD Iteration

70



Unfolding at a fixed point

* [he backward pass of a fixed point optimizer
does need to be computed to produce
gradients for backdrop.

» However, since the iterates X, are all fixed, so
. . . o foux) | U
S their associated Jacobian| ax; I

used to model the backward pass of the
update function %.

 Therefore the calculation of this Uacobian
needs to be computed only once!

au/@w:q) 8”/8:13:(13
z”(c) z*(c) z*(c) z*(c)
\ Y ‘\ Y ‘\\k Y
U(x*(c),c) U(xz"(c),c) Uz (c),c)
P A\
au/acq;// @0\60 aﬂ\a"’/
C

Figure 5: Computational graph for unfolding three iterations of (U)
at a precomputed optimal solution x*

* \What remains is to iterate this backward pass until convergence to an accurate

gradient of x*(c)

Ferdinando Fioretto | University of Virginia
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Folded optimization

. Key Idea: Replace unfolding at a fixed-point x* uprolne . e
with the analytical solution of a linear system ““:r;;;i:;““
(see paper for more details). - ———p  SEQMENS OF G COMPUIETON GraPN

Gr— < — — C0IGCEA WITh precomputed optimization
steps and derivatives

» Unrolling is computationally equivalent to solving fxed-pointiolding -

closed-tform equations using a specific algorithm gy T backwardpass repeated
and does not require automatic differentiation.

* [his results in a system for converting any Corollary 1}; Ba;kpfjopagclzrion of the fixed-point unfolding
unrolled implementation of an iterative optimizer |« %"/ me‘i . e'\P 80
. ' : . 0 — d
nto a folded optimizer that eliminates unrolling oot = ®J, + 0, (18b)

entirely.

where Jj, = 85‘0’“ (c).
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Folded optimization

Some results

Decisior

focused learning

with non-convex program
5
Model
- —— Two-5tage
3 4 — Integrated
n
= 3
2
3 2
a'd
2
<! —
0
0 20 40 60 80

Training lteration
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Training Epoch

O
o
N

0.00

Portfolio optimization: Scalability

|
|
| ~\
L \
‘.\. \

\\ ,

\ [ e————
-
10 20 30 40 50

Avg Regret: Test

Up to 80% faster than cvxpy




Summary: Optimizers as Network Layers

Enforcing structure in ML embeddings

Motivation: Need to enforce structure in Machine Learning embeddings.

Insight: Integrate optimizers within neural architectures as layers.

Settings:
e Optimal power flows in energy systems [IJCAI-23]

e [airness In ranking systems [WWWw-22]
e Ensemble learning [AAMAS-23]

 Denoising [IUCAI-23] A A

Ferdinando Fioretto | University of Virginia
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Agenda

Intro and ML for
Motivations Optimization

o <

Ferdinando Fioretto | University of Virginia

Optimization
for ML

oy

o".

Open Questions

54
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Knowledge transfer and generalization

Needs

Generalization: A critical shortcoming of current

proxy optimizers is their inability to generalize \/ﬁ/\\/
beyond their data distribution. N

» (Can transfer learning on the dual space help to N - ’O’ TN L$
“warmstart” a different proxy optimizer? - N
0

Ferdinando Fioretto | University of Virginia
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Knowledge transfer and generalization

Needs

Generalization: A critical shortcoming of current

proxy optimizers is their inability to generalize \/ﬁ/\\/
beyond their data distribution. N

* Can transfer learning on the dual space help to R - ’O’ Y\ I8y
“warmstart” a different proxy optimizer? - N
0

Data need: Proxy optimizers require training data P

which is expensive to attain. E.ED

* (Can self-supervised approaches address this ol
challenge” iy -

» Can we exploit sketching and data £y

summarization techniques? L

"

Ferdinando Fioretto | University of Virginia



Scientific ML and digital twins

Needs

systems are not static. The dynamic of these 0z/ o1
systems should be incorporated into the decision-
Making process.

System dynamics: Many scientific and engineering & @

PINN

* How to exploit proxy-optimizers and ML digital
twins to produce solutions which are both Heok
efficient and can satisfy the system's dynamics? ax/at%)

-
a
-
a
-
_—
=
o

[ 20 model

|
-
Pa
B
e _wr
B ‘
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Concluding remarks and discussion points

What are we missing?

* Despite the variety of approaches, the success of decision-focused learning has
been demonstrated on a limited set of problems, mainly on LP formulations.

» Challenges posed by the parametrization of constraints stand in the way of broader
applications.

* |ssues associated with the runtime of solvers in-the-loop still make some potential
applications impractical.

» Current surrogate optimization methods cannot reliably guarantee the problem
constraints to be satisfied.

* Uniform benchmarks for systematic comparison are needed.

Ferdinando Fioretto | University of Virginia
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Conclusions

Constraint-aware Machine Learning

Motivated by the need for Scientific and Engineering applications requiring to solve
many optimization problems at increasingly fast rates and large scales.

? Proxy-optimizers as tools to obtain fast, approximate solutions to
N 5 optimization problems

& Optimization-layers as effective tools to enhance the modeling ability and
'"‘ expressiveness of ML models.

The integration between constrained optimization and machine learning Is an
excmng and promising direction for the development of new, transformative,

tools In constrained optimization and ML.

Ferdinando Fioretto | University of Virginia
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Constraint-aware Machine Learning

Thank you!

James Kotary My Dinh Cuong Tran Vincenzo Di Vito Jacob Christopher

Ferdinando Fioretto

G https://nandofioretto.com

9 nandofioretto@gmail.com o

g @nandofioretto \-/‘7
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