Introduction to
Constraint Solving

Prof. Tias Guns
<tias.guns@kuleuven.be>
w @TiasGuns

* X %
* *
* *

VRIJE
UNIVERSITEIT
BRUSSEL

mailto:tias.guns@kuleuven.be

Constraint programming

“Solving combinatorial optimisation problems”

* Vehicle Routing

* Scheduling

AAAAA

* Packing
2|7 b|24][s]a /[Z]
<[8l4]Z /|6[713] 2
> /[Z]7 slal<]6] 4] et
2> 7]2 6] / [#l< 4]
* Other combinatorial problems Qféﬁ
[4]6[8]/ a|7|Z[gl<]
NENNGES0F

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/

Constraint solving paradigm

Model +
Decision variables

Constraints _—}
Obijective function |

Current combinatorial optimisation practice

Model + Solve

Q‘/ .

Domain experts
Stakeholders

Research trend

Model +
Decision variables
Constraints e
Obijective function |~

1){learn to model

2) learn to solve (faster)

Can we learn

it instead?

1) learn to model

Predict-then-optimize/
Constraint Acquisition: Decision-focused learning:
learn the constraints learn the objective (and more)

= ¥

\ Model +
Decision variables |
Constraints _—
Objective function

ML-based
§§ :

stochastic optimisation

Constraining NN output
Neuro-Symbolic Al

it

2) learn to solve (faster)

Portfolios, automated tuning

and algorithm configuration Learning optimization proxies

it

Model +
Decision variables

Constraints _—}
Obijective function | —_

Learning to branch,
Learning search heuristics Reinforcement Learning
during search

Model + Solve examples

2

Frietkot

Mayonnaise Ketchup Curry Ketchup Andalouse Samurai

The ‘frietkot’ problem

Mayonnaise Ketchup Curry Ketchup Andalouse Samurai

https://people.cs.kuleuven.be/~tias.guns/frietkot/

https://people.cs.kuleuven.be/~tias.guns/frietkot/

SAT solving

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

= list of clauses

CNF Store

SAT solvers

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

Solver: propagation, clause learning and search

* propagate: unit clauses (a \/ false — a=True)

* clause learning after encountering a failure:
* maintain implication graph of assignments
* onconflict (a/A NOT a), resolve the reason, add as clause

* search: branch on literal (e.g. most active one)

CPMpy demo: PySAT

Frietkot problem

+ “There Are No CNF Problems”

Constraint Programming Research

Model + Solve

Rich research on Rich research on
modeling languages, automatic transformations, efficient solvers, (global) constraint propagators,
solver independence, modelling tools automatic search, algorithm configuration, ...

Tools: MiniZinc, Essence’, CPMpy Tools: OrTools, Gecode, Gurobi, ...

Tias’ Belgian beer guide

Stella Artois, from Leuven, 5.2%, must-try factor: 5/10
el Duvel, devilish blond, 8.5%, must-try factor: 8/10

CEP= =

_i Vedett IPA, tastefully hoppy, 6%, must-try factor: 7.5/10

- £ Tripel Karmeliet, strong blond, 8.4%, must-try factor: 8.2/10

£* Gouden Carolus Whiskey Infused, 11.7%, must-try factor: 9.5/10

Kriek Lindemans, sweet cherry beer, 3.5%, must-try factor: 7/10

Belgian summerschool problem

Which beers to drink, such that you can i l : i
still pay attention tomorrow? D "'9 :

Model =

- Variables, with a domain - st, du, vi, tk, gw, ki :: {0,1}

- Constraints over variables - 52*<t + 85*du + B0*vi + 84* | + 117*kl + 35*qw <= 4*52
- Optionally: an objective - maximize(50*s1 + 80*du + 75*vi + 82* + 95%kl + 7*gw)

Model.solve()

CPMpy+Pandas demo

m.solve(): Solving Paradigms C"{

B

SAT Clauses
(no objective)

CP Clauses, Linear, Global,
Linear/any objective

MIP Linear constraints,
Linear objective

Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes

CP Solving: domain reductions

CP Solving: domain reductions

CP Solving: domain reductions

Domain Store

Ex: x 0,1}, Y = {0,1)}
. {/}B 1,2}, C={1,2}

CP Solving: domain reductions

CP Solving: domain reductions

(| 1 ore

Domain Store

Ex: X={0,1}, Y={0,1
A={02), B={#Z2}, C={1.2}

CP Solving: domain reductions

(| 1 xpore

Newer: CP-SAT Solving

CNF Store

Incl. domain
mapping

Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes

MIP solvers

Relax, cut and search

Relax: ignore integrality,
solve Linear Program to obtain lower bound

Cut: add constraint that avoids (fractional) solution

Search: split variable (x <= a, x > a)

MIP: relax, cut and search

Maximize Z= 8x; + 5x; 7=41.25
Constraints: X1=3.75,X,=2.25
: A
O, + 5x; <= 45 g 61
X; +X; <=6 Rped ¥4
-] i . | /
- . ol | xff‘—-‘\l i
Feasible integer £=2Y Z=41 L~ \\‘
solution Xi=3. %53 b I O B ER LY
A .-':,‘.‘ l‘\l -
" 2 4 - - - - e ‘..';:,

- u -1 '\.\':-

" -

K: w=1 4 7 x‘-\._‘ H: =2 14 . - . . . ;"\:‘r

’ : ‘ M, l'\'\

L RN — +* - - - - +* __‘L__f_h
1 2 i i i i T
Feasiblz integer Z=40.52 =42 Infeasible
solution X;=4.44 ¥.=1 X;=4,X;=2 | Gyt 5xp=46
}(lq'_: .-_1_} ‘-x;_‘-_\.: Y
Feasible integer L=k Z=40 Optimal integer
solution Xi=4, X;=1 X=5X%=0 colution

Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes

Modeling differences

* CP: high level, problem structure more explicit

 MIP: low level, relaxable and as linear constraints

(some modeling support in commercial solvers)

* SAT: low level, often need to write your own clause generators

How to choose between SAT/MIP/CP
solvers?

No free lunch!

General guidelines:
* if decision problem: try SAT first
* if inherently Boolean: try (max)SAT first
* If few constraints or natural to relax: try MIP first
* if suitable globals or complex constraints: try CP first

Modeling: practical considerations %

Model size: MIP/SAT formulations can grow very large
(millions of constraints)

Modeling alternatives:
* often different ways of modeling same (sub)problem

* modeling choices matter, needs to be chosen
experimentally

Symmetric solutions and symmetry breaking

Yet another Belgian problem

BEST TECHNICAL
DEMONSTRATION AWARD

FEBRUARY 7-14, 2023

THE ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE

#roudly fredents

THE AWARD FOR 2023 AAA| BEST TECHNICAL DEMONSTRATION TO

Tias Gans, Emdiléo Gamdba,
Haxime Malamba Re [ettomba,
Tgunace Bleuty, Seane Serden,
& Milan Pesa

ADEMONSTRATION OF SUDOKU ASSISTANT —
AN Al-POWERED APP TO HELP SOLVE PEN-AND-PAPER SUDOKUS

PRESENTED ATTHE 37TH AA Al CONFEREMNCE OMN ARTIFICIAL INTELLIGENCE

JDUVNY
OPWARMER °

GETITON

i > Google Play |

1) Recognizing the Sudoku digits

i

9 ;33;:;35 | ;E
2 }HF H-u - : \i g m //‘@
2|8 | P3|
D k. E3C
5
8

1) —
o
o0
T
]
b3
o]
3
c
=
=]
=
+
=
o
3
o
(=]
=3
2
°

2xFully |
connected H
layer

* Cutinto 81 pieces (introduces additional noise)
* Predict 1-9 or empty (printed and handwritten, robust to borders and markings)
* Custom but standard ML

2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

. Sudoku Rule N2 1: Use Numbers 1-9

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3
% 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,
without repeating any numbers within the row, column or square. Does it sound complicated? As you
can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

already filled in; the more spaces filled in, the easier the game - the more difficult Sudoku puzzles

have very few spaces that are already filled in.

Model +

 Decision variables | __>
- Constraints -_—
~Qbjective function

Solve

e[~ TN
d(b-hy

2 3|7

N | = N ©|O

Model
2) solving the sudoku S | =)

~ Objective function

Model =
- Variables, with a domain - grid[i,j] :: {1..9} for i,jin {1..9}

- Constraints over variables - alldifferent(grid[i,:]) foriin {1..9}
alldifferent(grid[:,j]) forjin {1..9}
alldifferent(square(grid, k,1)) for k,l in {1..3}

grid[i,j] == given]i,j] if given[i,j] not empty fori,jin {1..9}

Sudoku Rule N2 1: Use Numbers 1-9

Model.solve()

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3
% 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,
without repeating any numbers within the row, column or square. Does it sound complicated? As you

can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

2) solving the sudoku

*
e .
2|+ T
Al Tlae _
8 117/5(3
3|1
79 5

e = 0 # value for empty cells

given = np.

(@ &g
Tk =
=, L

array([
2, 4,
4, 3,
e, 2,
e, e,
e, e,
e, e,
e, e,
e, 8,
e, 1,

-

wm =~

51,
el,
171,

e]l,
e],

el,
o1,

» ell)

Model

Decision variables
Constraints Ju—
 Objective function

model = Model()

Variables
puzzle = intvar(l, 9, shape=given.shape, name="puzzle")

Constraints on rows and columns
model += [AllDifferent(row) for row in puzzle]
model += [AllDifferent(col) for col in puzzle.T]

Constraints on blocks
for i in range(0,9, 3):
for j in range(0,9, 3):
model += AllDifferent(puzzle[i:i+3, j:j+3])

Constraints on values (cells that are not empty)
model += (puzzle[given!=e] == given[given!=e])

model.solve()

Global Constraints: AllDifferent

AllDifferent(), is what?
 “Each variables must have a different value”

 Can be decomposed into simpler constraints:
AllDifferent(x1,x2,x3) <=> (x, I=x,) &
(x, 1=x,) &
(X, 1= Xx,)
For n variables, n*(n-1)/2 pairwise inequalities

Example global constraint: alldifferent

AlIDifferent(x1,x2,x3,x4) <=> X, =X, X, |=X X, =X

gy sy Ag o 4

Initial domain

Source: A Hybrid AC3-Tabu Search Algorithm for Solving Sudoku Puzzles.

AllDifferent, only puzzles?

Hotel owner: has number of rooms available.
Requests come in, with start/end dates.

=> Do | have enough room to fit all requests?

 often: add to existing allocation
e optimisation: reshuffle to find new allocation?

CPMpy+Pandas+Plotly demo

Example: room scheduling (backup slide)

def model rooms(df, max rooms, verbose=True):
n_requests = len(df)

All requests must be assigned to one out of the rooms (same reom during entire period).
requestvars = intvar(@, max rooms-1, shape=(n_requests,))

m = Model()

Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna(row['room']):
m += (requestvars[idx] == int(row[room']}))

A room can only serve one request at a time.
=== requests on the same day must be in different rooms
for day in pd.date range(min{df['start']), max(df['end']}}:
overlapping = df[(df['start'] == day) & (day < df['end'])]
if len(overlapping) = 1:
m += AlLlDifferent(requestvars[overlapping.index])

index

— 500

return (m, requestvars) .

400

40

30 e e—

Room Number

20

mI

o
h=]

Sep 15 Sep 29

Extending CP: global constraints

Examples:
* AllDifferent(X,Y,Z2)
e AX]=Y with X,Y variables, A an array “Element

 Cumulative(...) used in scheduling

model: succinctly express a substructure
solve, with specialised algorithms:
* optimized data structures = more efficient
* (sometimes) more pruning = more effective

3 short slides on CPMpy's design

Design principle:

Aim to be a thin layer on top of solver API

Central concept: CPMpy expression

Desigr Sovernorce

CPMpy
(user code)

creates

o

expressions/

| i Hardest part | |
i 3 i . solvers/ !
' No rewriting! ! transformations/ | |
| | 'Only 1-to-1 |
| Like a parser | . mapping of |

' supported

expressions

Transformations in a nutshell

(model)

Y
[toplevel-list()) &P lang (MiniZinc)]

[decomposev_in_tree()} -)(simpli:fy_bool()j;i - }[SMT (Z3)]

-

Y -
[push_down_negation()] [‘A BDD (PySDD)]

simplif;_bool()
ity post0)

[flat:en() J—- - -b(only_bv_implies()} - ->[SAT (PySAT)]

[reify_r:write()]

[onlymum:xpr_eq()} - {only_bv_implies()} - -l»[CP (OR-Tools)]

Y
[linearize()]

[only_posivtive_bv()} - h{ ILP (Gurobi,Exact)]

Solvers

CPMpy only interfaces to Python APls

Key principle: solver can implement any subset of
expressions!

Solvers can also choose to:

* Support assumptions or not S

« Be incremental or not Tmizin
- gurobi

 EXxpose own solver parameters - pySDD

-Z3
- Exact

Wishlist: GCS, Choco, CPOptimiser,
Mistral2, Gecode

More Belgian problems...

* You want to do a guide tour through the city of Leuven,
and visit key highlights.

* What is the shortest tour that visits each highlight exactly
once, and returns to the starting point?

Traverling Salesman problem

* CP: with a ‘Circult’ global constraints

(can also be used for price-collecting TSP,
and other variants: just add constraints)

 MIP: ex. MTZ formulation (avoid disconnected
components)

CPMpy+Pandas+Geopy+Plotly demo

Job shop scheduling

CPMpy+Pandas+Plotly demo

@J

Beyond Model + Solve

® >
< ®

%

Wider view

Wider view: integration

Machine Learning
predictions

Explainability

Master-
subproblem
algorithms

Visualisations

Interactive
solving

Modern Constraint Solving

Machine Learning

predictions Visualisations

Explainability
Interactive
solving

Master-
subproblem
algorithms

The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder,1997]

| think we reached it... MiniZinc, Essence’

“Beyond NP” — constraint solving as an oracle

* Use solver to solve subproblem of larger (imperative) algorithm
* |teratively build-up and solve a problem until failure
* Integrate neural network predictions (structured output prediction)

* (Generate proofs, explanations, or counterfactual examples, ...

What would the ideal constraint solving system be?

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

=

What would the ideal constraint solving system be?

® Efficient repeated solving
=> Incremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

=

room

def

40

Incremental room assignment problem

model rooms(df, max_ rooms, verbose=True):
n_requests = len(df)

ALl requests must be assigned to one out of the rooms (same room during entire period).

requestvars = intvar(@, max_rooms-1, shape=(n_requests,))
m = Model()

Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna{row['room']):
m += (requestvars[idx] == int(row['room']))

A room can only serve one request at a time.
<=> requests on the same day must be in different rooms
for day in pd.date_range(min(df['start']), max(df['end']}):
overlapping = df[(df['start'] <= day) & (day < df['end'])]
if len(overlapping) = 1:
m += AllDifferent(requestvars[overlapping.index])

return {m, requestvars)

=
=
5
=
=
o
5
=
=
z
&
>
z
&
=
=
z
=
[~
>
z
&
™
E

Index
700

600

500

400

300

200

Assume requests come in sequentially.
Compute solution on every new request.

— MNon-incremental

Incremental
20 1

151

104

05 4

0.0 - — ——
0 100 200 300 400 500 GO0

Incrementality

Solving:

 MIP: can add constraints, change objective
(mechanisms not documented, e.g. start from previous basis)

« SAT: assumption variables: can be toggled on/off when calling solve
(reuses learned clauses, variable activity)

 CP: if CP-SAT, assumption variables like SAT
SMT: pop/push of constraints (Z3)

Modeling?
* Only if using solver API directly...
* With CPMpy: part of the high-level modeling language!

Multiple solutions

New built-in: "m.solveAll()
Or MiniSearch-style:

Returns True (sol. found) or
False (no solution)

intvar(0,3, shape=2)
Model(x[0] = x[1

X
m

while m.solve(]):
print(x.value())

m += ~all(x == Xx.value()) # block solution
[3 0]
[3 1]
[3 2] Adds constraint
[2 0] to model
[1 0] (even if already

[2 1] solved before)

Non-dominated solutions
(disjunctive method)

def disjunctive method(model, objectives list):
while model.solve():
yield [objective.value() for objective in objectives list]

one of the objectives must be better (assume all minimize)
model += cpmpy.any([obj < obj.value() for obj in objectives list])

CPMpy Land Conservation demo

Conversational Human-Aware Technology for Optimisation @

What would the ideal CP system be?

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

)

~

—r

{3
—

Multi-solver

Same syntax, plus can reuse variables and their values

m ort = SolverLookup.get("ortools", model knapsack)
m ort.solve()
print("\nOrtools:", m ort.status(), ":", m ort.objective value(), items.value())

m grb = SolverLookup.get("gurobi", model knapsack)
m grb.solve()
print("\nGureobi:", m grb.status(), ":", m grb.objective value(), items.value())

use ortools to verify the gurobi solution
m ort += (items == items.value())
print("\tGurobi's is a valid solution according to ortools:", m ort.solve())

Ortools: ExitStatus.OPTIMAL (0.001146096 seconds) : 32.0 [True False False True True True True True]

Gurobi: ExitStatus.OPTIMAL (0.0003108978271484375 seconds) : 32.8 [True False True False

e]
Gurobi's is a valid solution according to ortools: True

True True True Tru

assum_model = Model(hard)

make assumption indicators, add reified constraints

ind = BoolVar(shape=len(soft), name="ind")
for i,bv in enumerate(ind):
assum_model += [bv.implies(soft([i])]

to map indicator variable back to soft_constraints
indmap = dict((v,i) for (i,v) in enumerate(ind))

Implicit Hitting Set algorithm

def OCUS_assum(soft, soft weights, hard=[], solver='ortools', verbose=1):
¥ Init With hard CONStraints

assum_solver = SolverLookup.lookup(solver) (assum_model)

if assum_solver.solve(assumptions=ind):
return []

i
hs_model = Model(
Objective: min sum{x_1 * w_l)

minimize=sum(x_1 * w_1 for x_1, w_1l in zip(ind, soft_weights))

)

instantiate hitting set solver

hittingset_solver = SolverLookup.lookup(solver)(hs_model)

whi. =l
hittingset_solver.solve()

Get hitting set
hs = ind[ind.value() == 1]

if not assum_solver.solve(assumptions=hs)
return soft[ind.value() == 1]

compute complement of model in formula F
C = ind[ind.value(} != 1]

Add complement as a new set to hit: sum x[j] *

hittingset_solver += (sum(C) >= 1)

hij >= 1

(explanation-related

repeatedly
compute hitting
sets (MIP)

CP/SAT
as an oracle

Extract
Correction Subset

Conversational Human-Aware Technology for Optimisation @A’\

f 2
What would the ideal CP system be? \—r

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® Easy integration with Machine Learning libraries
=> Python and numpy arrays

SN

B

Modern Constraint Solving: an example

Sudoku
/ Assistant

Tias Guns, Milan Pesa, Maxime Mulamba,

! E Ignace Bleukx, Emilio Gamba, Senne Berden
rc ﬁ Al FLANDERS &

Fiaupash Pasan Oome WWW.FLANDERSAIRESEARCH.BE

ARTIFICIAL
K’ INTELLIGENCE
RESEARCH GROUP

GETITON
" Google Play

Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naive)

=] $: ——p 3 5
N | A —— [
¥ \?‘TH ; - &/ A 815234[679
T — : 326981745
9 & a7 H 49 : = F
191,e N G ﬁ> = | 6| fo,! ﬁ) CP ﬁ>::1;z§:;:§
£ I I I : 3 79 1 64357 9[g12
17 R : 7 5 | 1749/826/534
5 | = 5 96 2s5glatsfoss
2x Convolution + Max pool layer
2x Fullly
connected :
layer
||
Pre-trained neural network Solving
accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01

Perception-based constraint solving

- [P
@gt__i_ T :] 1 Py ,;@21 I 5
I=tsa | ! I I : P 1 - . 96 2(157]483
3 I~] : . ' \ po | argmax _— A4~ F 8|25 () 734698251
|7 | ' — 8/ 4 8152346789
. 2‘“\2---_, ' : Pz &8 |7 326/981[7245
a9l A~ : : ™™ 4810 6 18 P 491765328
5 3¢ [/ : : | P4 | 5 13a |1 sg734219686
3 ¢ i ~ ' 5_";35 3 79 1 64 3579812
Iz 3 i : 7 5 -— 179826534
s | b ' : 5 9 6 258413067
i 2x Convolution + Max pool layer

2x Fullly

connected

layer

What is going on?

. Each cell predicts the maximum likelihood value:
?jij — arg 1max P(yU —]4)|ij)

. But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

. If sudoku(y) = False: no solution, interpretation is wrong...

T T I
N 0 —
| I [I
[Q\| ™ «©

L e e o e 1
O | o | © < | o
T R |
h 8
L | [I T T

o) [Q\| Lo
. N I |l A T .

N QA (@) — 0

RO | N T | DU | IR | NN TN | NN | R
O
| | | I T || I
(@] ™ 00} <t —
I PO PO PO SURUE I N B T
«© — o 0)) AP

Perception-based constraint solving

2x Fullly
connected
layer

What about the next most likely interpretation?

Perception Layer

RRORE | ox Fully &

el Ll __ 2xConvolution + Max pool layer | connected layer |

oL Constraint Solving Layer feo--o- e e s e %
' Decision . At :
: s Perception Objective
, variables Function '
: /' Problem B 2 — \: ________
: \ Constraints min — > STy == cllog 2 (v, = ¢| X |}
: ij e=1 S ELEEEEEEEE T |

Treat prediction as joint inference problem:

Q — arg mELXH P(yw = k|X‘3]) s.t. SlldOkll(g)

LY

This is the constrained ‘maximum likelihood’ interpretation

=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]

Perception-based; constraint solving

. - [Po]
EF“‘«_-'*;'“::_::.L_ 5 5 1 ' ’ Py A E; [T 7] &
= N T‘zf-::"--—-zgii \E argmax _— A 825 4
~ < . : 8/ a
N ' : 8 |7
CLTle | B (e[l 0 e
s = : 5 s |1
) el 0™ i :_}PS 30 78 1
17 J : : 7
8 q L : 6

2x Convolution + Max pool layer

: 5

=) a9
2xFully
connected :
layer

Pre-trained neural network [

36 2(157|483
734/ 9 E|251
8 15/234|6739
3i26/981(745
49 1|7 & 5328
587342196
&4 3579812
1 79/8 26534
25 &[41 3967

Can we use a constraint solver for that?

y = arg maXH P(y;; = k|X;;) s.t. sudoku(g)
]

* Log-likelihood trick:

min Z Z —log(Py(yij = k| X)) * 1[s;; = k] s.t. sudoku(y)

n,jle ke
Li-:fff-n {1....9} constant

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

s ' N — T
NN | . [SR EURE
oL TRN6 |D o D (CR[
e U R EH
8 qt 5 P 258|a13967
2x Convolution + Max pool layer /‘i/
' connected | | P9 |
. layer
Pre-trained neural network
accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybridl 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Sudoku Assistant demo, continued

12:00 v4dn 19-
1200 & v4n - v4t

Click a cell to see its predicted probabilities better:

Click to highlight values:

6 — 1 P 5
Check Alignment —Z _‘-Z_g -i_ F 6 ; | g J
Ta= [b Tkl 8 29 6
s |70 I | = Tl T = [T & 4 9 1
15 HE N NEEN TP Th=TE | TR=T| 1 2 8
[ENENEN S TTITE 1 7 Th=a= T 1 8 2
B O b A o I B Bl P 9 8 3
BN N NN =TT T e T = iy 3 4
Pl N EEEEN 26 1
|51 [. 3 2 X
EN LN N i oot Show hint *
EEEEEREE N PR FRRSE
blank o Show solution o
] , _
4 ox
s ox

Implementation: integration

Frontend:
* React-native
* Only displays results

[
Backend T
] [| |
& ku_grid(img)	
I T =1 I	
] i	i . I
;	
} sudoku_grid_img	
. N N S e rVi Ce O rCh } : seglmenl_lc_Bl_ce\Is(sudukLlu_gnd_img)	
F I	
y }	
	!
1 get_NN_preprocessed_i gs) 1	
[[I] il
* Solver Service (CPM ‘ A R S
|
py | : : gEIJ]VEdIIC‘IUFIS(CEII_ImgS) : J
| | | | | 7
} : : : : cell img preprocessing b
| | | | |

* Preloading, caching...

Show solution?

Trivial for CP system (subsecond),
Boring and demotivating for user?

In general: human-aware Al & Al assistants:

* Support users in decision making
* Respect human agency
* Provide explanations and learning opportunities

Constraint solving is more than mathematical abstractions...

IR0 Q) GooHeATy 4 fy cevoer B Cowwarr
PUVERTY HUNGER AND WELL-BEING EDUCATION EQUALITY AND SANITATION
SUSTAINABLE ? w (‘g H
DEVELOPMENT v
;m i e | NI
GOALS W
IIIIUSTII\' INNOVATION REI]IJ[:EI] SUSTAINABLE CITIES 1 RESPONSIBLE 13 CLIMATE 1 LIFE 1 LIFE
.QNI]INFEASIRULTIJEE INIE[lUMITIES AND COMMUNITIES CONSUMPTION ACTION BELDW WATER ON LAND
A AND PRODUCTION . >
2 - ol
& > Aﬁg_ QO o | 2=
v n & ———

DECENT WORK AND
ECONOMIC GROWTH

i

15 PEAGE, JUSTICE 17 PARTNERSHIPS
ANDSTRONG FORTHE GOALS
INSTITUTIONS

Y|P

Bigger picture

Bigger picture

* Learning implicit user preferences

Learning from the environment @

Bigger picture

* Learning implicit user preferences
* Learning from the environment

* Explaining constraint solving

Bigger picture

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

[Towards co-creation of constraint optimisation solutions]

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction

”}\ GETITON

Google Play
Sudoku Assistant, explanation steps

170 van 1200 v4n 12:00 v4n
Click a cell to see its predicted probabilities better: !
=TT Click to highlight values: Hint sudoku

6 — 1 5

1 3= r 7 - r 8 _ r :- 6 1 5 : T[] 5]

Te_ ke Tl T T 3 7 8 3 / g

Ta— o il ST 8 2 9 6 8 2]9 J

“h T Te={ T[T e B ° ! ! ’ 1

AT ThT T k= T 1 2 8 ! ’ 8
o T Tl T TRTs— T ! . 2 : ol IS
3 - - == == T 5 . n S 9 8 BHE

T T Ts— Th=e—1 3 4 g i ¥

5 2 6 1 > L2’ e U]

2] 2~ %* ©O ©

App image Ml image
Hide hint *
0%
blank Show solution .
Show solution '

0%
3 Scan Another Sudoku @
4 0%
5 0% Scan Another Sudoku a

Modern Constraint Solving

Machine Learning

predictions Visualisations

Explainability
Interactive
solving

Master-
subproblem
algorithms

CPMpy transformations in a nutshell

(model)

Y
[toplevel-list()) EP lang (MiniZinc)]

[decomposev_in_tree()} -)(simpli:fy_bool()j;i - b(SMT (Z3) j

Y T -
[push_down_negation()] [A BDD (PySDD)]

simplif;_bool()
ity post0)

[flat:en() J—- - -b(only_bv_implies()} - ->[SAT (PySAT)]

[reify_r:write()]

(onlymum:xpr_eq()} - {only_bv_implies()} - -l»[CP (OR-Tools)]

Y
[linearize()]

[only_posivtive_bv()} - h{ ILP (Gurobi,Exact)]

Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes

The end / to be continued

Model +
Decision variables
Constraints e
Obijective function |~

1){learn to model

2) learn to solve (faster)

Can we learn

it instead?

1 -
! i

AR [

https://school.a4cp.org/summer2023/

https://school.a4cp.org/summer2023/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 86
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

