

#### Introduction to Constraint Solving





#### Constraint programming

#### "Solving combinatorial optimisation problems"

- Vehicle Routing
- Scheduling
- Packing
- Other combinatorial problems









#### Constraint solving paradigm



#### Current combinatorial optimisation practice



#### **Research trend**



#### 1) learn to model



#### 2) learn to solve (faster)



### Model + Solve examples





## Frietkot





# The 'frietkot' problem





#### https://people.cs.kuleuven.be/~tias.guns/frietkot/

# SAT solving

Input: Boolean formula in 'Conjunctive Normal Form' (CNF)

= list of clauses



### SAT solvers

Input: Boolean formula in 'Conjunctive Normal Form' (CNF)

Solver: propagation, clause learning and search

- propagate: <u>unit</u> clauses (a  $\lor$  false  $\rightarrow$  a=True)
- <u>clause learning</u> after encountering a failure:
  - maintain implication graph of assignments
  - on conflict (a  $\land$  NOT a), resolve the reason, add as clause
- search: <u>branch</u> on literal (e.g. most *active* one)

## CPMpy demo: PySAT

Frietkot problem

+ "There Are No CNF Problems"

#### **Constraint Programming Research**



Rich research on modeling languages, automatic transformations, <u>solver independence</u>, modelling tools

Tools: MiniZinc, Essence', CPMpy

Rich research on efficient solvers, (global) constraint propagators, automatic search, algorithm configuration, ...

Tools: OrTools, Gecode, Gurobi, ...

# Tias' Belgian beer guide

Stella Artois, from Leuven, 5.2%, must-try factor: 5/10



Duvel, devilish blond, 8.5%, must-try factor: 8/10



Vedett IPA, tastefully hoppy, 6%, must-try factor: 7.5/10



Tripel Karmeliet, strong blond, 8.4%, must-try factor: 8.2/10



Gouden Carolus Whiskey Infused, 11.7%, must-try factor: 9.5/10



Kriek Lindemans, sweet cherry beer, 3.5%, must-try factor: 7/10

# Belgian summerschool problem

Which beers to drink, such that you can still pay attention tomorrow?

#### Model =

- Variables, with a domain
- Constraints over variables
- Optionally: an objective

- st, du, vi, tk, gw, kl :: {0,1}

- 52\*st + 85\*du + 60\*vi + 84\*tk + 117\*kl + 35\*gw <= 4\*52
- maximize(50\*st + 80\*du + 75\*vi + 82\*tk + 95\*kl + 7\*gw)

Model.solve()

#### <u>CPMpy+Pandas demo</u>





# m.solve(): Solving Paradigms

|     | Model                                            |
|-----|--------------------------------------------------|
| SAT | Clauses<br>(no objective)                        |
| CP  | Clauses, Linear, Global,<br>Linear/any objective |
| MIP | Linear constraints,<br>Linear objective          |

# **Solving Paradigms**















## Newer: CP-SAT Solving



# **Solving Paradigms**



#### **MIP** solvers

Relax, cut and search

- Relax: ignore integrality, solve Linear Program to obtain lower bound
- Cut: add constraint that avoids (fractional) solution
- Search: <u>split</u> variable  $(x \le a, x > a)$



#### MIP: relax, cut and search





# **Solving Paradigms**



## Modeling differences

• CP: high level, problem structure more explicit

• MIP: low level, *relaxable* and as linear constraints (some modeling support in commercial solvers)

• SAT: low level, often need to write your own clause generators

# How to choose between SAT/MIP/CP solvers?

No free lunch!

General guidelines:

- if decision problem: try SAT first
- if inherently Boolean: try (max)SAT first
- if few constraints or natural to relax: try MIP first
- if suitable globals or complex constraints: try CP first

# Modeling: practical considerations



- Model size: MIP/SAT formulations can grow very large (millions of constraints)
- Modeling alternatives:
  - often different ways of modeling same (sub)problem
  - modeling choices matter, needs to be chosen experimentally
- Symmetric solutions and symmetry breaking

## Yet another Belgian problem







#### BEST TECHNICAL DEMONSTRATION AWARD

FEBRUARY 7-14, 2023

THE ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE proudly presents THE AWARD FOR 2023 AAAI BEST TECHNICAL DEMONSTRATION TO

Tias Guns, Emilio Gamba, Maxime Mulamba Ke Tchomba, Ignace Bleukx, Senne Berden, & Milan Pesa

A DEMONSTRATION OF SUDOKU ASSISTANT — AN AI-POWERED APP TO HELP SOLVE PEN-AND-PAPER SUDOKUS

#### Solving:





PRESENTED AT THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE

#### 1) Recognizing the Sudoku digits



- Cut into 81 pieces (introduces additional noise)
- Predict 1-9 or empty (printed and handwritten, robust to borders and markings)
- Custom but standard ML

#### 2) solving the sudoku

#### Rules of Sudoku (source: sudoku.com)

Sudoku Rule Nº 1: Use Numbers 1-9

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 "squares" (made up of 3 x 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9, without repeating any numbers within the row, column or square. Does it sound complicated? As you can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces already filled in; the more spaces filled in, the easier the game – the more difficult Sudoku puzzles have very few spaces that are already filled in





## 2) solving the sudoku



### Model =

- Variables, with a domain
- Constraints over variables

#### - grid[i,j] :: {1..9} for i,j in {1..9}

 alldifferent(grid[i,:]) for i in {1..9} – rows alldifferent(grid[:,j]) for j in {1..9} – columns alldifferent(square(grid, k,l)) for k,l in {1..3} – squares

grid[i,j] == given[i,j] if given[i,j] not empty for i,j in {1..9}

• Sudoku Rule № 1: Use Numbers 1-9

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 "squares" (made up of 3 x 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9, without repeating any numbers within the row, column or square. Does it sound complicated? As you can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

### Model.solve()

#### Model

## 2) solving the sudoku



Model



| <pre>e = 0 # value for empty cells</pre> |    |    |    |    |    |    |    |      |  |  |
|------------------------------------------|----|----|----|----|----|----|----|------|--|--|
| given = np.array([                       |    |    |    |    |    |    |    |      |  |  |
| [e,                                      | e, | 2, | 4, | 1, | e, | e, | e, | 5],  |  |  |
| [1,                                      | e, | 4, | З, | e, | e, | e, | e, | e],  |  |  |
| [e,                                      | 8, | e, | 2, | 7, | 5, | З, | 4, | 1],  |  |  |
|                                          |    |    |    |    |    |    |    |      |  |  |
| [e,                                      | e, | e, | e, | З, | 1, | e, | e, | e],  |  |  |
| [7,                                      | 9, | e, | e, | e, | e, | e, | 2, | e],  |  |  |
| [e,                                      | e, | e],  |  |  |
|                                          |    |    |    |    |    |    |    |      |  |  |
| [e,                                      | e, | e, | e, | e, | 4, | e, | 6, | e],  |  |  |
| [5,                                      | e, | e, | 8, | e, | e, | 4, | e, | 9],  |  |  |
| [e,                                      | 4, | e, | 1, | e, | З, | 5, | 7, | e]]) |  |  |

```
model = Model()
# Variables
puzzle = intvar(1, 9, shape=given.shape, name="puzzle")
# Constraints on rows and columns
model += [AllDifferent(row) for row in puzzle]
model += [AllDifferent(col) for col in puzzle.T]
# Constraints on blocks
for i in range(0,9, 3):
    for j in range(0,9, 3):
        model += AllDifferent(puzzle[i:i+3, j:j+3])
# Constraints on values (cells that are not empty)
model += (puzzle[given!=e] == given[given!=e])
model.solve()
```

## **Global Constraints: AllDifferent**

AllDifferent(), is what?

- "Each variables must have a different value"
- Can be **decomposed** into simpler constraints: AllDifferent(x1,x2,x3) <=>  $(x_1 \mid = x_2) \&$  $(x_1 \mid = x_3) \&$  $(x_2 \mid = x_3)$

For *n* variables,  $n^{*}(n-1)/2$  pairwise inequalities

## Example global constraint: alldifferent

AllDifferent(x1,x2,x3,x4) <=>  $x_1 != x_2, x_1 != x_3, ..., x_3 != x_4$ 

Initial domain



Source: A Hybrid AC3-Tabu Search Algorithm for Solving Sudoku Puzzles.

# AllDifferent, only puzzles?

Hotel owner: has number of rooms available. Requests come in, with start/end dates.

=> Do I have enough room to fit all requests?

- often: add to existing allocation
- optimisation: reshuffle to find new allocation?

<u>CPMpy+Pandas+Plotly demo</u>



## Example: room scheduling (backup slide)

```
def model_rooms(df, max_rooms, verbose=True):
    n_requests = len(df)

# All requests must be assigned to one out of the rooms (same room during entire period).
    requestvars = intvar(0, max_rooms-1, shape=(n_requests,))

m = Model()

# Some requests already have a room pre-assigned
for idx, row in df.iterrows():
    if not pd.isna(row['room']):
        m += (requestvars[idx] == int(row['room']))

# A room can only serve one request at a time.
# <=> requests on the same day must be in different rooms
for day in pd.date_range(min(df['start']), max(df['end'])):
        overlapping = df[(df['start'] <= day) & (day < df['end'])]
        if len(overlapping) > 1:
            m += AllDifferent(requestvars[overlapping.index])
```

```
return (m, requestvars)
```



## Extending CP: global constraints

Examples:

- AllDifferent(X,Y,Z)
- A[X] = Y with X,Y variables, A an array "Element"
- Cumulative(...) used in scheduling

model: succinctly express a substructure

solve, with specialised algorithms:

- optimized data structures = more efficient
- (sometimes) more pruning = more effective

### 3 short slides on CPMpy's design

Design principle:

Aim to be a thin layer on top of solver API

Central concept: CPMpy expression



### Transformations in a nutshell



### Solvers

CPMpy only interfaces to Python APIs

Key principle: solver can implement any subset of expressions!

Solvers can also choose to:

- Support assumptions or not
- Be incremental or not
- Expose own solver parameters

| Currenti<br>- ortools<br>- pysat<br>- minizir<br>- gurobi<br>- pySDE<br>- Z3<br>- Exact | IC                                             |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------|--|
| Wishlist                                                                                | : GCS, Choco, CPOptimiser,<br>Mistral2, Gecode |  |

## More Belgian problems...

• You want to do a guide tour through the city of Leuven, and visit key highlights.

• What is the shortest tour that visits each highlight exactly once, and returns to the starting point?



## Traverling Salesman problem

 CP: with a 'Circuit' global constraints (can also be used for price-collecting TSP, and other variants: just add constraints)

• MIP: ex. MTZ formulation (avoid disconnected components)

<u>CPMpy+Pandas+Geopy+Plotly demo</u>

## Job shop scheduling

<u>CPMpy+Pandas+Plotly demo</u>

## Beyond Model + Solve



### Wider view



### Wider view: integration



### Modern Constraint Solving



# The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder, 1997]

I think we reached it... MiniZinc, Essence'

### "Beyond NP" $\rightarrow$ constraint solving as an **oracle**

- Use solver to solve subproblem of larger (imperative) algorithm
- Iteratively build-up and solve a problem until failure
- Integrate neural network predictions (structured output prediction)
- Generate proofs, explanations, or counterfactual examples, ...



#### What would the ideal constraint solving system be?

- Efficient repeated solving
   => Incremental
- Use CP/SAT/MIP or any combination
   => solver independent and multi-solver
- Easy integration with Machine Learning libraries
   => Python and numpy arrays



#### What would the ideal constraint solving system be?

- Efficient repeated solving
   => Incremental
- Use CP/SAT/MIP or any combination
   => solver independent and multi-solver
- Easy integration with Machine Learning libraries
   => Python and numpy arrays

### Incremental room assignment problem



Assume requests come in sequentially. Compute solution on every new request.



## Incrementality

Solving:

- <u>MIP</u>: can add constraints, change objective (mechanisms not documented, e.g. start from previous basis)
- <u>SAT</u>: *assumption* variables: can be toggled on/off when calling solve (reuses learned clauses, variable activity)
- <u>CP</u>: if CP-SAT, assumption variables like SAT
- <u>SMT</u>: pop/push of constraints (Z3)

Modeling?

- Only if using solver API directly...
- With CPMpy: part of the high-level modeling language!

## Multiple solutions



# Non-dominated solutions (disjunctive method)

```
def disjunctive_method(model, objectives_list):
    while model.solve():
        yield [objective.value() for objective in objectives_list]
    # one of the objectives must be better (assume all minimize)
    model += cpmpy.any([obj < obj.value() for obj in objectives list])</pre>
```

CPMpy Land Conservation demo

Conversational Human-Aware Technology for Optimisation

#### What would the ideal CP system be?

- Efficient repeated solving
   => Incremental
- Use CP/SAT/MIP or any combination
   => solver independent and multi-solver
- Easy integration with Machine Learning libraries
   => Python and numpy arrays

### **Multi-solver**

Same syntax, plus can reuse variables and their values

```
m_ort = SolverLookup.get("ortools", model_knapsack)
m_ort.solve()
print("\nOrtools:", m_ort.status(), ":", m_ort.objective_value(), items.value())
m_grb = SolverLookup.get("gurobi", model_knapsack)
m_grb.solve()
print("\nGurobi:", m_grb.status(), ":", m_grb.objective_value(), items.value())
# use ortools to verify the gurobi solution
m_ort += (items == items.value())
print("\tGurobi's is a valid solution according to ortools:", m_ort.solve())
```

```
Ortools: ExitStatus.OPTIMAL (0.001146096 seconds) : 32.0 [ True False False True True True True True]
Gurobi: ExitStatus.OPTIMAL (0.0003108978271484375 seconds) : 32.0 [ True False True False True True True True e]
Gurobi's is a valid solution according to ortools: True
```

### Implicit Hitting Set algorithm (explanation-related)





Conversational Human-Aware Technology for Optimisation

#### What would the ideal CP system be?

- Efficient repeated solving
   => Incremental
- Use CP/SAT/MIP or any combination
   => solver independent and multi-solver
- Easy integration with Machine Learning libraries
   => Python and numpy arrays

## Modern Constraint Solving: an example







### Pedagogical instantiation: visual sudoku (naïve)





#### What is going on?

• Each cell predicts the maximum likelihood value:

$$\hat{y}_{ij} = \arg \max P(y_{ij} = k | X_{ij})$$

- But you need all 81 predictions (one for each given cell), it is a multi-output problem: together this is the 'maximum likelihood' interpretation
- If  $sudoku(\hat{y}) = False$ : no solution, interpretation is wrong...



#### What about the *next* most likely interpretation?



• Treat prediction as *joint inference* problem:

$$\hat{y} = \arg \max \prod_{ij} P(y_{ij} = k | X_{ij})$$
 s.t. sudoku $(\hat{y})$ 

- This is the **constrained** 'maximum likelihood' interpretation
  - => Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]



Can we use a constraint solver for that?

$$\hat{y} = \arg \max \prod_{ij} P(y_{ij} = k | X_{ij})$$
 s.t. sudoku $(\hat{y})$ 

• Log-likelihood trick:

$$\min \sum_{\substack{(i,j) \in \\ given \{1,...,9\}}} \sum_{\substack{k \in \\ 1,...,9\}}} -\frac{\log(P_{\theta}(y_{ij} = k | X_{ij})) * \mathbb{1}[s_{ij} = k]}{\text{constant}} \quad \text{s.t.} \quad \text{sudoku}(\hat{y})$$

Hybrid: CP solver does joint inference over raw probabilities



|          | accuracy       |                 |                       | failure rate                   | $\operatorname{time}$             |  |
|----------|----------------|-----------------|-----------------------|--------------------------------|-----------------------------------|--|
|          | $\mathbf{img}$ | $\mathbf{cell}$ | $\operatorname{grid}$ | $\operatorname{\mathbf{grid}}$ | $\mathbf{average} \ (\mathbf{s})$ |  |
| baseline | 94.75%         | 15.51%          | 14.67%                | 84.43%                         | 0.01                              |  |
| hybrid1  | 99.69%         | 99.38%          | 92.33%                | 0%                             | 0.79                              |  |
| hybrid2  | 99.72%         | 99.44%          | 92.93%                | 0%                             | 0.83                              |  |

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

### Sudoku Assistant demo, continued

741

12:00







● ■

# Implementation: integration

Frontend:

- React-native
- Only displays results

Backend:

- FastAPI (Python)
- NN Service (PyTorch)
- Solver Service (CPMpy)
- Preloading, caching...



# Show solution?

Trivial for CP system (subsecond),

Boring and demotivating for user?



In general: <u>human-aware AI</u> & AI assistants:

- *Support* users in decision making
- Respect human *agency*
- Provide *explanations* and learning opportunities

### Constraint solving is more than mathematical abstractions...





- Learning implicit user preferences
- Learning from the environment



- Learning implicit user preferences
- Learning from the environment
- Explaining constraint solving



- Learning implicit user preferences
- Learning from the environment
- Explaining constraint solving
- Stateful interaction





### CHAT-Opt: Conversational Human-Aware Technology for Optimisation



- Solver that learns from user and environment
- Towards conversational: explanations and stateful interaction



### Sudoku Assistant, explanation steps

12:00

**7** 

12:00

741

#### Click a cell to see its predicted probabilities better:









### Modern Constraint Solving



### CPMpy transformations in a nutshell



# **Solving Paradigms**



### The end / to be continued



### Enjoy!



https://school.a4cp.org/summer2023/