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Constraint programming

“Solving combinatorial optimisation problems”

* Vehicle Routing

* Scheduling
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[Solved and visualized with the CPMpy constraint solving library]


https://cpmpy.readthedocs.io/

Constraint solving paradigm

Model +
Decision variables

Constraints _—}
Obijective function |




Current combinatorial optimisation practice

Model + Solve

Q‘/ .

Domain experts
Stakeholders



Research trend

Model +
Decision variables
Constraints e
Obijective function |~

1){learn to model

2) learn to solve (faster)

Can we learn

it instead?




1) learn to model

Predict-then-optimize/
Constraint Acquisition: Decision-focused learning:
learn the constraints learn the objective (and more)
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\ Model +
Decision variables |
Constraints _—
Objective function

ML-based
§§ :

stochastic optimisation

Constraining NN output
Neuro-Symbolic Al

it



2) learn to solve (faster)

Portfolios, automated tuning

and algorithm configuration Learning optimization proxies

it

Model +
Decision variables

Constraints _—}
Obijective function | —_

Learning to branch,
Learning search heuristics Reinforcement Learning
during search




Model + Solve examples
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Frietkot

Mayonnaise Ketchup Curry Ketchup Andalouse Samurai



The ‘frietkot’ problem

Mayonnaise Ketchup Curry Ketchup Andalouse Samurai

https://people.cs.kuleuven.be/~tias.guns/frietkot/


https://people.cs.kuleuven.be/~tias.guns/frietkot/

SAT solving

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

= list of clauses

CNF Store




SAT solvers

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

Solver: propagation, clause learning and search

* propagate: unit clauses (a \/ false — a=True)

* clause learning after encountering a failure:
* maintain implication graph of assignments
* onconflict (a/A NOT a), resolve the reason, add as clause

* search: branch on literal (e.g. most active one)




CPMpy demo: PySAT

Frietkot problem

+ “There Are No CNF Problems”



Constraint Programming Research

Model + Solve

Rich research on Rich research on
modeling languages, automatic transformations, efficient solvers, (global) constraint propagators,
solver independence, modelling tools automatic search, algorithm configuration, ...

Tools: MiniZinc, Essence’, CPMpy Tools: OrTools, Gecode, Gurobi, ...



Tias’ Belgian beer guide

Stella Artois, from Leuven, 5.2%, must-try factor: 5/10
el Duvel, devilish blond, 8.5%, must-try factor: 8/10

CEP= =

_i Vedett IPA, tastefully hoppy, 6%, must-try factor: 7.5/10

- £  Tripel Karmeliet, strong blond, 8.4%, must-try factor: 8.2/10

£* Gouden Carolus Whiskey Infused, 11.7%, must-try factor: 9.5/10

Kriek Lindemans, sweet cherry beer, 3.5%, must-try factor: 7/10



Belgian summerschool problem

Which beers to drink, such that you can i l : i
still pay attention tomorrow? D "'9 :

Model =

- Variables, with a domain - st, du, vi, tk, gw, ki :: {0,1}

- Constraints over variables - 52*<t + 85*du + B0*vi + 84* | + 117*kl + 35*qw <= 4*52
- Optionally: an objective - maximize(50*s1 + 80*du + 75*vi + 82* + 95%kl + 7*gw)

Model.solve()

CPMpy+Pandas demo




m.solve(): Solving Paradigms C"{

B

SAT Clauses
(no objective)

CP Clauses, Linear, Global,
Linear/any objective

MIP Linear constraints,
Linear objective



Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes



CP Solving: domain reductions




CP Solving: domain reductions




CP Solving: domain reductions

Domain Store

Ex: x 0,1}, Y = {0,1)}
. {/}B 1,2}, C={1,2}




CP Solving: domain reductions




CP Solving: domain reductions

(| 1 ore

Domain Store

Ex: X={0,1}, Y={0,1
A={02), B={#Z2}, C={1.2}




CP Solving: domain reductions

(| 1 xpore




Newer: CP-SAT Solving

CNF Store

Incl. domain
mapping




Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes



MIP solvers

Relax, cut and search

Relax: ignore integrality,
solve Linear Program to obtain lower bound

Cut: add constraint that avoids (fractional) solution

Search: split variable (x <= a, x > a)




MIP: relax, cut and search

Maximize Z= 8x; + 5x; 7=41.25
Constraints: X1=3.75,X,=2.25
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Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes



Modeling differences

* CP: high level, problem structure more explicit

 MIP: low level, relaxable and as linear constraints

(some modeling support in commercial solvers)

* SAT: low level, often need to write your own clause generators



How to choose between SAT/MIP/CP
solvers?

No free lunch!

General guidelines:
* if decision problem: try SAT first
* if inherently Boolean: try (max)SAT first
* If few constraints or natural to relax: try MIP first
* if suitable globals or complex constraints: try CP first



Modeling: practical considerations %

Model size: MIP/SAT formulations can grow very large
(millions of constraints)

Modeling alternatives:
* often different ways of modeling same (sub)problem

* modeling choices matter, needs to be chosen
experimentally

Symmetric solutions and symmetry breaking



Yet another Belgian problem




BEST TECHNICAL
DEMONSTRATION AWARD
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1) Recognizing the Sudoku digits
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* Cutinto 81 pieces (introduces additional noise)
* Predict 1-9 or empty (printed and handwritten, robust to borders and markings)
* Custom but standard ML



2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

. Sudoku Rule N2 1: Use Numbers 1-9

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3
% 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,
without repeating any numbers within the row, column or square. Does it sound complicated? As you
can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces

already filled in; the more spaces filled in, the easier the game - the more difficult Sudoku puzzles

have very few spaces that are already filled in.

Model +

 Decision variables | __>
- Constraints -_—
~Qbjective function

Solve
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Model
2) solving the sudoku S | =)

~ Objective function

Model =
- Variables, with a domain - grid[i,j] :: {1..9} for i,jin {1..9}

- Constraints over variables - alldifferent(grid[i,:]) foriin {1..9}
alldifferent(grid[:,j]) forjin {1..9}
alldifferent(square(grid, k,1)) for k,l in {1..3}

grid[i,j] == given]i,j] if given[i,j] not empty fori,jin {1..9}

Sudoku Rule N2 1: Use Numbers 1-9

Model.solve()

Sudoku is played on a grid of 9 x 9 spaces. Within the rows and columns are 9 “squares” (made up of 3
% 3 spaces). Each row, column and square (9 spaces each) needs to be filled out with the numbers 1-9,
without repeating any numbers within the row, column or square. Does it sound complicated? As you

can see from the image below of an actual Sudoku grid, each Sudoku grid comes with a few spaces



2) solving the sudoku
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e = 0 # value for empty cells

given = np.
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Model

Decision variables
Constraints Ju—
 Objective function

model = Model()

# Variables
puzzle = intvar(l, 9, shape=given.shape, name="puzzle")

# Constraints on rows and columns
model += [AllDifferent(row) for row in puzzle]
model += [AllDifferent(col) for col in puzzle.T]

# Constraints on blocks
for i in range(0,9, 3):
for j in range(0,9, 3):
model += AllDifferent(puzzle[i:i+3, j:j+3])

# Constraints on values (cells that are not empty)
model += (puzzle[given!=e] == given[given!=e])

model.solve()



Global Constraints: AllDifferent

AllDifferent(), is what?
 “Each variables must have a different value”

 Can be decomposed into simpler constraints:
AllDifferent(x1,x2,x3) <=> (x, I=x,) &
(x, 1=x,) &
(X, 1= Xx,)
For n variables, n*(n-1)/2 pairwise inequalities




Example global constraint: alldifferent

AlIDifferent(x1,x2,x3,x4) <=> X, =X, X, |=X X, =X

gy sy Ag o 4

Initial domain

Source: A Hybrid AC3-Tabu Search Algorithm for Solving Sudoku Puzzles.



AllDifferent, only puzzles?

Hotel owner: has number of rooms available.
Requests come in, with start/end dates.

=> Do | have enough room to fit all requests?

 often: add to existing allocation
e optimisation: reshuffle to find new allocation?

CPMpy+Pandas+Plotly demo




Example: room scheduling (backup slide)

def model rooms(df, max rooms, verbose=True):
n_requests = len(df)

# All requests must be assigned to one out of the rooms (same reom during entire period).
requestvars = intvar(@, max rooms-1, shape=(n_requests,))

m = Model()

# Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna(row['room']):
m += (requestvars[idx] == int(row[ room']}))

# A room can only serve one request at a time.
# === requests on the same day must be in different rooms
for day in pd.date range(min{df['start']), max(df['end']}}:
overlapping = df[(df['start'] == day) & (day < df['end'])]
if len(overlapping) = 1:
m += AlLlDifferent(requestvars[overlapping.index])

index

— 500

return (m, requestvars) .
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Extending CP: global constraints

Examples:
* AllDifferent(X,Y,Z2)
e AX]=Y with X,Y variables, A an array “Element

 Cumulative(...) used in scheduling

model: succinctly express a substructure
solve, with specialised algorithms:
* optimized data structures = more efficient
* (sometimes) more pruning = more effective



3 short slides on CPMpy's design

Design principle:

Aim to be a thin layer on top of solver API

Central concept: CPMpy expression



Desigr Sovernorce

CPMpy
(user code)

creates

o

expressions/

| i Hardest part | |
i 3 i . solvers/ !
' No rewriting! ! transformations/ | |
| | 'Only 1-to-1 |
| Like a parser | . mapping of |

' supported

expressions



Transformations in a nutshell

( model )

Y
[toplevel-list()) &P lang (MiniZinc)]

[decomposev_in_tree()} - )(simpli:fy_bool()j;i - }[ SMT (Z3) ]

-

Y -
[push_down_negation()] [‘A BDD (PySDD) ]

simplif;_bool()
ity post0)

[ flat:en() J—- - -b(only_bv_implies()} - ->[ SAT (PySAT) ]

[reify_r:write()]

[onlymum:xpr_eq()} - {only_bv_implies()} - -l»[ CP (OR-Tools) ]

Y
[ linearize() ]

[only_posivtive_bv()} - h{ ILP (Gurobi,Exact) ]




Solvers

CPMpy only interfaces to Python APls

Key principle: solver can implement any subset of
expressions!

Solvers can also choose to:

* Support assumptions or not S

« Be incremental or not Tmizin
- gurobi

 EXxpose own solver parameters - pySDD

-Z3
- Exact

Wishlist: GCS, Choco, CPOptimiser,
Mistral2, Gecode




More Belgian problems...

* You want to do a guide tour through the city of Leuven,
and visit key highlights.

* What is the shortest tour that visits each highlight exactly
once, and returns to the starting point?



Traverling Salesman problem

* CP: with a ‘Circult’ global constraints

(can also be used for price-collecting TSP,
and other variants: just add constraints)

 MIP: ex. MTZ formulation (avoid disconnected
components)

CPMpy+Pandas+Geopy+Plotly demo




Job shop scheduling

CPMpy+Pandas+Plotly demo




@J

Beyond Model + Solve

® >
< ®
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Wider view




Wider view: integration

Machine Learning
predictions

Explainability

Master-
subproblem
algorithms

Visualisations

Interactive
solving




Modern Constraint Solving

Machine Learning

predictions Visualisations

Explainability
Interactive
solving

Master-
subproblem
algorithms




The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder,1997]

| think we reached it... MiniZinc, Essence’

“Beyond NP” — constraint solving as an oracle

* Use solver to solve subproblem of larger (imperative) algorithm
* |teratively build-up and solve a problem until failure
* Integrate neural network predictions (structured output prediction)

* (Generate proofs, explanations, or counterfactual examples, ...



What would the ideal constraint solving system be?

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

=



What would the ideal constraint solving system be?

® Efficient repeated solving
=> Incremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

=



room

def

40

Incremental room assignment problem

model rooms(df, max_ rooms, verbose=True):
n_requests = len(df)

# ALl requests must be assigned to one out of the rooms (same room during entire period).

requestvars = intvar(@, max_rooms-1, shape=(n_requests,))
m = Model()

# Some requests already have a room pre-assigned
for idx, row in df.iterrows():
if not pd.isna{row['room']):
m += (requestvars[idx] == int(row['room']))

# A room can only serve one request at a time.
# <=> requests on the same day must be in different rooms
for day in pd.date_range(min(df['start']), max(df['end']}):
overlapping = df[(df['start'] <= day) & (day < df['end'])]
if len(overlapping) = 1:
m += AllDifferent(requestvars[overlapping.index])

return {m, requestvars)
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Assume requests come in sequentially.
Compute solution on every new request.
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Incrementality

Solving:

 MIP: can add constraints, change objective
(mechanisms not documented, e.g. start from previous basis)

« SAT: assumption variables: can be toggled on/off when calling solve
(reuses learned clauses, variable activity)

 CP: if CP-SAT, assumption variables like SAT
SMT: pop/push of constraints (Z3)

Modeling?
* Only if using solver API directly...
*  With CPMpy: part of the high-level modeling language!



Multiple solutions

New built-in: "m.solveAll()
Or MiniSearch-style:

Returns True (sol. found) or
False (no solution)

intvar(0,3, shape=2)
Model(x[0] = x[1

X
m

while m.solve(]):
print(x.value())

m += ~all(x == Xx.value()) # block solution
[3 0]
[3 1]
[3 2] Adds constraint
[2 0] to model
[1 0] (even if already

[2 1] solved before)



Non-dominated solutions
(disjunctive method)

def disjunctive method(model, objectives list):
while model.solve():
yield [objective.value() for objective in objectives list]

# one of the objectives must be better (assume all minimize)
model += cpmpy.any([obj < obj.value() for obj in objectives list])

CPMpy Land Conservation demo




Conversational Human-Aware Technology for Optimisation @

What would the ideal CP system be?

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® [Easy integration with Machine Learning libraries
=> Python and numpy arrays

)
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Multi-solver

Same syntax, plus can reuse variables and their values

m ort = SolverLookup.get("ortools", model knapsack)
m ort.solve()
print("\nOrtools:", m ort.status(), ":", m ort.objective value(), items.value())

m grb = SolverLookup.get("gurobi", model knapsack)
m grb.solve()
print("\nGureobi:", m grb.status(), ":", m grb.objective value(), items.value())

# use ortools to verify the gurobi solution
m ort += (items == items.value())
print("\tGurobi's is a valid solution according to ortools:", m ort.solve())

Ortools: ExitStatus.OPTIMAL (0.001146096 seconds) : 32.0 [ True False False True True True True True]

Gurobi: ExitStatus.OPTIMAL (0.0003108978271484375 seconds) : 32.8 [ True False True False

e]
Gurobi's is a valid solution according to ortools: True

True True True Tru



assum_model = Model(hard)

# make assumption indicators, add reified constraints

ind = BoolVar(shape=len(soft), name="ind")
for i,bv in enumerate(ind):
assum_model += [bv.implies(soft([i])]

# to map indicator variable back to soft_constraints
indmap = dict((v,i) for (i,v) in enumerate(ind))

Implicit Hitting Set algorithm

def OCUS_assum(soft, soft weights, hard=[], solver='ortools', verbose=1):
¥ Init With hard CONStraints

assum_solver = SolverLookup.lookup(solver) (assum_model)

if assum_solver.solve(assumptions=ind):
return []

i
hs_model = Model(
# Objective: min sum{x_1 * w_l)

minimize=sum(x_1 * w_1 for x_1, w_1l in zip(ind, soft_weights))

)

# instantiate hitting set solver

hittingset_solver = SolverLookup.lookup(solver)(hs_model)

whi. =l
hittingset_solver.solve()

# Get hitting set
hs = ind[ind.value() == 1]

if not assum_solver.solve(assumptions=hs)
return soft[ind.value() == 1]

# compute complement of model in formula F
C = ind[ind.value(} != 1]

# Add complement as a new set to hit: sum x[j] *

hittingset_solver += (sum(C) >= 1)

hij >= 1

(explanation-related

repeatedly
compute hitting
sets (MIP)

CP/SAT
as an oracle

Extract
Correction Subset



Conversational Human-Aware Technology for Optimisation @A’\

f 2
What would the ideal CP system be? \—r

® [Efficient repeated solving
=> |ncremental

® Use CP/SAT/MIP or any combination

=> solver independent and multi-solver

® Easy integration with Machine Learning libraries
=> Python and numpy arrays

SN
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Modern Constraint Solving: an example

Sudoku
/ Assistant

Tias Guns, Milan Pesa, Maxime Mulamba,

! E Ignace Bleukx, Emilio Gamba, Senne Berden
rc ﬁ Al FLANDERS &

Fiaupash Pasan Oome WWW.FLANDERSAIRESEARCH.BE

ARTIFICIAL
K’ INTELLIGENCE
RESEARCH GROUP

GETITON
" Google Play




Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naive)
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17 R : 7 5 | 1749/826/534
5 | = 5 96 2s5glatsfoss
2x Convolution + Max pool layer
2x Fullly
connected :
layer
||
Pre-trained neural network Solving
accuracy failure rate time
img cell grid grid average (s)

baseline 94.75% 15.51% 14.67% 84.43% 0.01




Perception-based constraint solving
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i 2x Convolution + Max pool layer

2x Fullly

connected

layer

What is going on?

. Each cell predicts the maximum likelihood value:
?jij — arg 1max P(yU — ]4)|ij)

. But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

. If sudoku(y) = False: no solution, interpretation is wrong...
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Perception-based constraint solving

2x Fullly
connected
layer

What about the next most likely interpretation?



Perception Layer

RRORE | ox Fully &

el Ll __ 2xConvolution + Max pool layer | connected layer |

oL Constraint Solving Layer feo--o- e e s e %
' Decision . At :
: s Perception Objective
, variables Function '
: /' Problem B 2 — \: ________
: \ Constraints min — > STy == cllog 2 (v, = ¢| X |}
: ij e=1 S ELEEEEEEEE T |

Treat prediction as joint inference problem:

Q — arg mELXH P(yw = k|X‘3]) s.t. SlldOkll(g)

LY

This is the constrained ‘maximum likelihood’ interpretation

=> Structured output prediction

Used e.g. in NLP: [Punyakanok, COLING04]



Perception-based; constraint solving
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Can we use a constraint solver for that?

y = arg maXH P(y;; = k|X;;) s.t. sudoku(g)
]

* Log-likelihood trick:

min Z Z —log(Py(yij = k| X)) * 1[s;; = k] s.t.  sudoku(y)

n,jle ke
Li-:fff-n {1....9} constant




Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

s ' N — T
NN | . [ SR EURE
oL TRN6 |D o D (CR[
e U R EH
8 qt 5 P 258|a13967
2x Convolution + Max pool layer /‘i/
' connected | | P9 |
. layer
Pre-trained neural network
accuracy failure rate time
img cell grid grid average (s)
baseline 94.75% 15.51% 14.67% 84.43% 0.01
hybridl 99.69% 99.38% 92.33% 0% 0.79
hybrid2 99.72% 99.44% 92.93% 0% 0.83

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]



Sudoku Assistant demo, continued

12:00 v4dn 19-
1200 & v4n - v4t

Click a cell to see its predicted probabilities better:

Click to highlight values:

6 — 1 P 5
Check Alignment —Z _‘-Z_g -i_ F 6 ; | g J
Ta= [ b Tkl 8 29 6
s |70 I | = Tl T = [T & 4 9 1
15 HE N NEEN TP Th=TE | TR=T| 1 2 8
[ ENENEN S TTITE 1 7 Th=a= T 1 8 2
B O b A o I B Bl P 9 8 3
BN N NN =TT T e T = iy 3 4
Pl N EEEEN 26 1
|51 [ . 3 2 X
EN LN N i oot Show hint *
EEEEEREE N PR FRRSE
blank o Show solution o
] , _
4 ox
s ox



Implementation: integration

Frontend:
* React-native
* Only displays results

[
Backend T
] [ | |
| | |
| | |
| | |
| & ku_grid(img) | |
| I T =1 I
] i | i . I
; | | TODO: resize img to be modulo 9 pixels 5 I
| |
| | | |
} sudoku_grid_img | |
|
. N N S e rVi Ce O rCh } : seglmenl_lc_Bl_ce\Is(sudukLlu_gnd_img)
F I | | | |
y } | | cell_imgs |
|
| | ! | |
| 1 get_NN_preprocessed_i gs) 1
[ [ I ] il
* Solver Service (CPM ‘ A R S
|
py | : : gEIJ]VEdIIC‘IUFIS(CEII_ImgS) : J
| | | | | 7
} : : : : cell img preprocessing b
| | | | |

* Preloading, caching...




Show solution?

Trivial for CP system (subsecond),
Boring and demotivating for user?

In general: human-aware Al & Al assistants:

* Support users in decision making
* Respect human agency
* Provide explanations and learning opportunities



Constraint solving is more than mathematical abstractions...

IR0 Q) GooHeATy 4 fy cevoer B Cowwarr
PUVERTY HUNGER AND WELL-BEING EDUCATION EQUALITY AND SANITATION
SUSTAINABLE ? w (‘g H
DEVELOPMENT v
;m i e | NI
GOALS W
IIIIUSTII\' INNOVATION REI]IJ[:EI] SUSTAINABLE CITIES 1 RESPONSIBLE 13 CLIMATE 1 LIFE 1 LIFE
.QNI]INFEASIRULTIJEE INIE[lUMITIES AND COMMUNITIES CONSUMPTION ACTION BELDW WATER ON LAND
A AND PRODUCTION . >
2 - ol
& > Aﬁg_ QO o | 2=
v n & ———

DECENT WORK AND
ECONOMIC GROWTH

i

15 PEAGE, JUSTICE 17 PARTNERSHIPS
ANDSTRONG FORTHE GOALS
INSTITUTIONS

Y|P




Bigger picture




Bigger picture

* Learning implicit user preferences

Learning from the environment @




Bigger picture

* Learning implicit user preferences
* Learning from the environment

* Explaining constraint solving




Bigger picture

Learning implicit user preferences
Learning from the environment
Explaining constraint solving

Stateful interaction




CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

[ Towards co-creation of constraint optimisation solutions ]

* Solver that learns from user and environment
* Towards conversational: explanations and stateful interaction



”}\ GETITON

Google Play
Sudoku Assistant, explanation steps

170 van 1200 v4n 12:00 v4n
Click a cell to see its predicted probabilities better: !
=TT Click to highlight values: Hint sudoku

6 — 1 5

1 3= r 7 - r 8 _ r :- 6 1 5 : T[] 5]

Te_ ke Tl T T 3 7 8 3 / g

Ta— o il ST 8 2 9 6 8 2]9 J

“h T Te={ T[T e B ° ! ! ’ 1

AT ThT T k= T 1 2 8 ! ’ 8
o T Tl T TRTs— T ! . 2 : ol IS
3 - - == == T 5 . n S 9 8 BHE

T T Ts— Th=e—1 3 4 g i ¥

5 2 6 1 > L2’ e U]

2] 2~ %* ©O ©

App image Ml image
Hide hint *
0%
blank Show solution .
Show solution '

0%
3 Scan Another Sudoku @
4 0%
5 0% Scan Another Sudoku a




Modern Constraint Solving

Machine Learning

predictions Visualisations

Explainability
Interactive
solving

Master-
subproblem
algorithms




CPMpy transformations in a nutshell

( model )

Y
[toplevel-list()) EP lang (MiniZinc)]

[decomposev_in_tree()} - )(simpli:fy_bool()j;i - b( SMT (Z3) j

Y T -
[push_down_negation()] [A BDD (PySDD) ]

simplif;_bool()
ity post0)

[ flat:en() J—- - -b(only_bv_implies()} - ->[ SAT (PySAT) ]

[reify_r:write()]

(onlymum:xpr_eq()} - {only_bv_implies()} - -l»[ CP (OR-Tools) ]

Y
[ linearize() ]

[only_posivtive_bv()} - h{ ILP (Gurobi,Exact) ]




Solving Paradigms

SAT Clauses Unit Propagation

(no objective) Clause learning
CP Clauses, Linear, Global, Constraint Propagation=
Linear/any objective domain eliminations
MIP Linear constraints, Relaxation

Linear objective Cutting planes



The end / to be continued

Model +
Decision variables
Constraints e
Obijective function |~

1){learn to model

2) learn to solve (faster)

Can we learn

it instead?




1 -
! i

AR [

https://school.a4cp.org/summer2023/



https://school.a4cp.org/summer2023/
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