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Constraint programming

“Solving combinatorial optimisation problems”

 Vehicle Routing

 Scheduling

 Packing

 Other combinatorial problems

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/


Decision variables
Constraints
Objective function

   Model          +          Solve

Constraint solving paradigm



   Model          +          Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert  
    



Decision variables
Constraints
Objective function

   Model          +          Solve

Research trend

Can we learn
it instead?

1) learn to model

           2) learn to solve (faster)



Decision variables
Constraints
Objective function

   Model          +          Solve

1) learn to model

Constraint Acquisition:
learn the constraints

Constraining NN output
Neuro-Symbolic AI

Predict-then-optimize/
Decision-focused learning:
learn the objective (and more)

ML-based
stochastic optimisation



Decision variables
Constraints
Objective function

   Model          +          Solve

2) learn to solve (faster)

Learning optimization proxies

Reinforcement Learning
during search

Portfolios, automated tuning
and algorithm configuration

Learning to branch,
Learning search heuristics



Model + Solve examples



Frietkot



The ‘frietkot’ problem

https://people.cs.kuleuven.be/~tias.guns/frietkot/

https://people.cs.kuleuven.be/~tias.guns/frietkot/


SAT solving

SAT solver
Unit Propagation

Inprocessing...

Search
  CDCL

CNF Store

Pure literals

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

          = list of clauses



SAT solvers
Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

Solver: propagation, clause learning and search
 propagate: unit clauses (a \/ false → a=True)
 clause learning after encountering a failure:

 maintain implication graph of assignments
 on conflict (a /\ NOT a), resolve the reason, add as clause

 search: branch on literal (e.g. most active one)



CPMpy demo: PySAT

Frietkot problem

+ “There Are No CNF Problems”



   Model          +          Solve

Constraint Programming Research

Rich research on
modeling languages, automatic transformations, 
solver independence, modelling tools

Tools: MiniZinc, Essence’, CPMpy

Rich research on
efficient solvers, (global) constraint propagators,
automatic search, algorithm configuration, ...

Tools: OrTools, Gecode, Gurobi, ...



Kriek Lindemans, sweet cherry beer,   3.5%,   must-try factor: 7/10 

Tias’ Belgian beer guide

Gouden Carolus Whiskey Infused,   11.7%,   must-try factor: 9.5/10 

Tripel Karmeliet, strong blond,   8.4%,   must-try factor: 8.2/10 

Duvel, devilish blond,   8.5%,   must-try factor: 8/10 

Vedett IPA, tastefully hoppy,   6%,   must-try factor: 7.5/10 

Stella Artois, from Leuven,   5.2%,   must-try factor: 5/10 



Belgian summerschool problem

- st, du, vi, tk, gw, kl :: {0,1}

- 52*st + 85*du + 60*vi + 84*tk + 117*kl + 35*gw <= 4*52 
- maximize(50*st + 80*du + 75*vi + 82*tk + 95*kl + 7*gw)

Model =

- Variables, with a domain

- Constraints over variables

- Optionally: an objective

Model.solve()

Which beers to drink, such that you can
   still pay attention tomorrow?

?

CPMpy+Pandas demo



m.solve(): Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Relaxation
Cutting planes

MIP Linear constraints,
Linear objective

Constraint Propagation=
domain eliminations



Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic, 
Strings, … (Theories)

Theory abstraction
SAT solving



CP Solving: domain reductions

Constraint Store

Domain Store

Ex:         X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C2: A + B >= 2

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .
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CP Solving: domain reductions

Constraint Store

Domain Store

Ex:         X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C3: B != C

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

Till fixpoint

C4: AllDifferent(A,B,C)

Search
 Branching



Newer: CP-SAT Solving

Constraint Store

Domain Store

Ex:  X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}

C1: X \/ Y

C3: B != C

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

C4: AllDifferent(A,B,C)

Search
  CDCL

CNF Store

Incl. domain
 mapping



Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic, 
Strings, … (Theories)

Theory abstraction
SAT solving



MIP solvers
Relax, cut and search

 Relax: ignore integrality,
            solve Linear Program to obtain lower bound

 Cut: add constraint that avoids (fractional) solution
 Search: split variable (x <= a, x > a)



MIP: relax, cut and search



Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic, 
Strings, … (Theories)

Theory abstraction
SAT solving



Modeling differences
 CP: high level, problem structure more explicit

 MIP: low level, relaxable and as linear constraints
 (some modeling support in commercial solvers)

 SAT: low level, often need to write your own clause generators 



How to choose between SAT/MIP/CP 
solvers?

No free lunch!

General guidelines:
 if decision problem: try SAT first
 if inherently Boolean: try (max)SAT first
 if few constraints or natural to relax: try MIP first
 if suitable globals or complex constraints: try CP first



Modeling: practical considerations
 Model size: MIP/SAT formulations can grow very large 

(millions of constraints)
 Modeling alternatives:

 often different ways of modeling same (sub)problem
 modeling choices matter, needs to be chosen 

experimentally
 Symmetric solutions and symmetry breaking



Yet another Belgian problem



Perception-based Constraint Solving:
a demo application

https://sudoku-assistant.cs.kuleuven.be



1) Recognizing the Sudoku digits

 Cut into 81 pieces (introduces additional noise)

 Predict 1-9 or empty (printed and handwritten, robust to borders and markings)

 Custom but standard ML



2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

Decision variables
Constraints
Objective function

   Model          +          Solve



2) solving the sudoku

Model =

- Variables, with a domain

- Constraints over variables

 

 

 

Model.solve()

Decision variables
Constraints
Objective function

   Model

- grid[i,j] :: {1..9}         for i,j in {1..9}

- alldifferent(grid[i,:])     for i in {1..9}   – rows
alldifferent(grid[:,j])     for j in {1..9}   – columns
alldifferent(square(grid, k,l))    for k,l in {1..3}  – squares

  grid[i,j] == given[i,j] if given[i,j] not empty   for i,j in {1..9}



2) solving the sudoku Decision variables
Constraints
Objective function

   Model



Global Constraints: AllDifferent

AllDifferent(), is what?

● “Each variables must have a different value”

● Can be decomposed into simpler constraints:

     AllDifferent(x1,x2,x3) <=> (x1 != x2) &
                                           (x1 != x3) &
                                           (x2 != x3)
For n variables, n*(n-1)/2 pairwise inequalities



Example global constraint: alldifferent
AllDifferent(x1,x2,x3,x4) <=> x1 != x2, x1 != x3, …, x3 != x4

Source: A Hybrid AC3-Tabu Search Algorithm for Solving Sudoku Puzzles.



AllDifferent, only puzzles?

Hotel owner: has number of rooms available.

Requests come in, with start/end dates.

=> Do I have enough room to fit all requests?

● often: add to existing allocation
● optimisation: reshuffle to find new allocation?

CPMpy+Pandas+Plotly demo



51

Example: room scheduling (backup slide)



Extending CP: global constraints
Examples:

 AllDifferent(X,Y,Z)
 A[X] = Y        with X,Y variables, A an array  “Element”
 Cumulative(...) used in scheduling

model: succinctly express a substructure
solve, with specialised algorithms:

 optimized data structures = more efficient
 (sometimes) more pruning = more effective



3 short slides on CPMpy's design

Design principle:

        Aim to be a thin layer on top of solver API

        Central concept: CPMpy expression



Design

No rewriting!

Like a parser

CPMpy
(user code)

Model
 constraints:

  expression tree 
 objective:

  expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

expressions/

solvers/

Only 1-to-1
mapping of
supported
expressions

Hardest part

transformations/



Transformations in a nutshell



Solvers

CPMpy only interfaces to Python APIs

Key principle: solver can implement any subset of 
expressions!

Solvers can also choose to:
 Support assumptions or not
 Be incremental or not
 Expose own solver parameters

Currently:
- ortools
- pysat
- minizinc
- gurobi
- pySDD
- Z3
- Exact

Wishlist: GCS, Choco, CPOptimiser,
               Mistral2, Gecode



More Belgian problems...
● You want to do a guide tour through the city of Leuven, 

and visit key highlights.

● What is the shortest tour that visits each highlight exactly 
once, and returns to the starting point?



Traverling Salesman problem

● CP: with a ‘Circuit’ global constraints
(can also be used for price-collecting TSP,
 and other variants: just add constraints)

● MIP: ex. MTZ formulation (avoid disconnected
                                           components)

CPMpy+Pandas+Geopy+Plotly demo



Job shop scheduling

CPMpy+Pandas+Plotly demo



Beyond Model + Solve



   Model          +          Solve

Wider view



   Model          +          Solve

Wider view: integration

Visualisations

Machine Learning
predictions

Interactive 
solving

Explainability

Master-
subproblem
algorithms ...



   Model          +          Solve

Modern Constraint Solving

Visualisations

Machine Learning
predictions

Interactive 
solving

Explainability

Master-
subproblem
algorithms ...



The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder,1997]

I think we reached it… MiniZinc, Essence’

“Beyond NP” → constraint solving as an oracle

• Use solver to solve subproblem of larger (imperative) algorithm

• Iteratively build-up and solve a problem until failure

• Integrate neural network predictions (structured output prediction)

• Generate proofs, explanations, or counterfactual examples, ...



What would the ideal constraint solving system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
   => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays



What would the ideal constraint solving system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
   => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays



Incremental room assignment problem

Assume requests come in sequentially.
Compute solution on every new request. 



Incrementality

Solving:

• MIP: can add constraints, change objective
    (mechanisms not documented, e.g. start from previous basis)

• SAT: assumption variables: can be toggled on/off when calling solve
    (reuses learned clauses, variable activity)

• CP: if CP-SAT, assumption variables like SAT

• SMT: pop/push of constraints (Z3)

Modeling?

• Only if using solver API directly...

• With CPMpy: part of the high-level modeling language!



Multiple solutions
New built-in: `m.solveAll()`

Or MiniSearch-style: Returns True (sol. found) or
              False (no solution)

Adds constraint
to model
(even if already
 solved before)



Non-dominated solutions
(disjunctive method)

CPMpy Land Conservation demo



Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
   => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays



Multi-solver

Same syntax, plus can reuse variables and their values



Implicit Hitting Set algorithm (explanation-related)

repeatedly 
compute hitting 

sets (MIP)

CP/SAT
 as an oracle

Extract 
Correction Subset 



Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
  => solver independent and multi-solver
 

 Easy integration with Machine Learning libraries
=> Python and numpy arrays



Modern Constraint Solving: an example



Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naïve)

Pre-trained neural network Solving



Perception-based constraint solving

Pre-trained neural network Solving

What is going on?

 Each cell predicts the maximum likelihood value:
 

 But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

 If                      = False: no solution, interpretation is wrong...



Perception-based constraint solving

What about the next most likely interpretation?



 Treat prediction as joint inference problem:
 

 This is the constrained ‘maximum likelihood’ interpretation

         => Structured output prediction

              Used e.g. in NLP: [Punyakanok, COLING04]

Pre-trained neural network



Perception-based constraint solving
X

ij

Pre-trained neural network

Can we use a constraint solver for that?

 Log-likelihood trick:
 

       constant



Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network



Sudoku Assistant demo, continued



Implementation: integration

Frontend:
 React-native
 Only displays results

 
Backend:
 FastAPI (Python)
 NN Service (PyTorch)
 Solver Service (CPMpy)
 Preloading, caching...



Show solution?

Trivial for CP system (subsecond),

Boring and demotivating for user?

 

In general: human-aware AI & AI assistants:

 Support users in decision making
 Respect human agency 
 Provide explanations and learning opportunities



Constraint solving is more than mathematical abstractions...



Bigger picture

 

 

 

 



Bigger picture

 Learning implicit user preferences

 Learning from the environment
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Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction



CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction



Sudoku Assistant, explanation steps



   Model          +          Solve

Modern Constraint Solving

Visualisations

Machine Learning
predictions

Interactive 
solving

Explainability

Master-
subproblem
algorithms ..

.



CPMpy transformations in a nutshell



Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic, 
Strings, … (Theories)

Theory abstraction
SAT solving



Decision variables
Constraints
Objective function

   Model          +          Solve

The end / to be continued

Can we learn
it instead?

1) learn to model

           2) learn to solve (faster)



Enjoy!

https://school.a4cp.org/summer2023/

https://school.a4cp.org/summer2023/
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