
Introduction to
Constraint Solving

Prof. Tias Guns
<tias.guns@kuleuven.be>

@TiasGuns

mailto:tias.guns@kuleuven.be

Constraint programming

“Solving combinatorial optimisation problems”

 Vehicle Routing

 Scheduling

 Packing

 Other combinatorial problems

[Solved and visualized with the CPMpy constraint solving library]

https://cpmpy.readthedocs.io/

Decision variables
Constraints
Objective function

 Model + Solve

Constraint solving paradigm

 Model + Solve

Domain experts
Stakeholders

Current combinatorial optimisation practice

Opt. expert

Decision variables
Constraints
Objective function

 Model + Solve

Research trend

Can we learn
it instead?

1) learn to model

 2) learn to solve (faster)

Decision variables
Constraints
Objective function

 Model + Solve

1) learn to model

Constraint Acquisition:
learn the constraints

Constraining NN output
Neuro-Symbolic AI

Predict-then-optimize/
Decision-focused learning:
learn the objective (and more)

ML-based
stochastic optimisation

Decision variables
Constraints
Objective function

 Model + Solve

2) learn to solve (faster)

Learning optimization proxies

Reinforcement Learning
during search

Portfolios, automated tuning
and algorithm configuration

Learning to branch,
Learning search heuristics

Model + Solve examples

Frietkot

The ‘frietkot’ problem

https://people.cs.kuleuven.be/~tias.guns/frietkot/

https://people.cs.kuleuven.be/~tias.guns/frietkot/

SAT solving

SAT solver
Unit Propagation

Inprocessing...

Search
 CDCL

CNF Store

Pure literals

Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

 = list of clauses

SAT solvers
Input: Boolean formula in ‘Conjunctive Normal Form’ (CNF)

Solver: propagation, clause learning and search
 propagate: unit clauses (a \/ false → a=True)
 clause learning after encountering a failure:

 maintain implication graph of assignments
 on conflict (a /\ NOT a), resolve the reason, add as clause

 search: branch on literal (e.g. most active one)

CPMpy demo: PySAT

Frietkot problem

+ “There Are No CNF Problems”

 Model + Solve

Constraint Programming Research

Rich research on
modeling languages, automatic transformations,
solver independence, modelling tools

Tools: MiniZinc, Essence’, CPMpy

Rich research on
efficient solvers, (global) constraint propagators,
automatic search, algorithm configuration, ...

Tools: OrTools, Gecode, Gurobi, ...

Kriek Lindemans, sweet cherry beer, 3.5%, must-try factor: 7/10

Tias’ Belgian beer guide

Gouden Carolus Whiskey Infused, 11.7%, must-try factor: 9.5/10

Tripel Karmeliet, strong blond, 8.4%, must-try factor: 8.2/10

Duvel, devilish blond, 8.5%, must-try factor: 8/10

Vedett IPA, tastefully hoppy, 6%, must-try factor: 7.5/10

Stella Artois, from Leuven, 5.2%, must-try factor: 5/10

Belgian summerschool problem

- st, du, vi, tk, gw, kl :: {0,1}

- 52*st + 85*du + 60*vi + 84*tk + 117*kl + 35*gw <= 4*52
- maximize(50*st + 80*du + 75*vi + 82*tk + 95*kl + 7*gw)

Model =

- Variables, with a domain

- Constraints over variables

- Optionally: an objective

Model.solve()

Which beers to drink, such that you can
 still pay attention tomorrow?

?

CPMpy+Pandas demo

m.solve(): Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Relaxation
Cutting planes

MIP Linear constraints,
Linear objective

Constraint Propagation=
domain eliminations

Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic,
Strings, … (Theories)

Theory abstraction
SAT solving

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C2: A + B >= 2

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C2: A + B >= 2

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C2: A + B >= 2

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C3: B != C C4: AllDifferent(A,B,C)

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

Till fixpoint

CP Solving: domain reductions

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}, C={1,2}

C1: X \/ Y

C3: B != C

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

Till fixpoint

C4: AllDifferent(A,B,C)

Search
 Branching

Newer: CP-SAT Solving

Constraint Store

Domain Store

Ex: X = {0,1}, Y = {0,1}
A = {0,1}, B = {0,1,2}

C1: X \/ Y

C3: B != C

Circuit()

Cumulative()

. . .

. . .

C2: A + B >= 2

C4: AllDifferent(A,B,C)

Search
 CDCL

CNF Store

Incl. domain
 mapping

Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic,
Strings, … (Theories)

Theory abstraction
SAT solving

MIP solvers
Relax, cut and search

 Relax: ignore integrality,
 solve Linear Program to obtain lower bound

 Cut: add constraint that avoids (fractional) solution
 Search: split variable (x <= a, x > a)

MIP: relax, cut and search

Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic,
Strings, … (Theories)

Theory abstraction
SAT solving

Modeling differences
 CP: high level, problem structure more explicit

 MIP: low level, relaxable and as linear constraints
 (some modeling support in commercial solvers)

 SAT: low level, often need to write your own clause generators

How to choose between SAT/MIP/CP
solvers?

No free lunch!

General guidelines:
 if decision problem: try SAT first
 if inherently Boolean: try (max)SAT first
 if few constraints or natural to relax: try MIP first
 if suitable globals or complex constraints: try CP first

Modeling: practical considerations
 Model size: MIP/SAT formulations can grow very large

(millions of constraints)
 Modeling alternatives:

 often different ways of modeling same (sub)problem
 modeling choices matter, needs to be chosen

experimentally
 Symmetric solutions and symmetry breaking

Yet another Belgian problem

Perception-based Constraint Solving:
a demo application

https://sudoku-assistant.cs.kuleuven.be

1) Recognizing the Sudoku digits

 Cut into 81 pieces (introduces additional noise)

 Predict 1-9 or empty (printed and handwritten, robust to borders and markings)

 Custom but standard ML

2) solving the sudoku

Rules of Sudoku (source: sudoku.com)

Decision variables
Constraints
Objective function

 Model + Solve

2) solving the sudoku

Model =

- Variables, with a domain

- Constraints over variables

Model.solve()

Decision variables
Constraints
Objective function

 Model

- grid[i,j] :: {1..9} for i,j in {1..9}

- alldifferent(grid[i,:]) for i in {1..9} – rows
alldifferent(grid[:,j]) for j in {1..9} – columns
alldifferent(square(grid, k,l)) for k,l in {1..3} – squares

 grid[i,j] == given[i,j] if given[i,j] not empty for i,j in {1..9}

2) solving the sudoku Decision variables
Constraints
Objective function

 Model

Global Constraints: AllDifferent

AllDifferent(), is what?

● “Each variables must have a different value”

● Can be decomposed into simpler constraints:

 AllDifferent(x1,x2,x3) <=> (x1 != x2) &
 (x1 != x3) &
 (x2 != x3)
For n variables, n*(n-1)/2 pairwise inequalities

Example global constraint: alldifferent
AllDifferent(x1,x2,x3,x4) <=> x1 != x2, x1 != x3, …, x3 != x4

Source: A Hybrid AC3-Tabu Search Algorithm for Solving Sudoku Puzzles.

AllDifferent, only puzzles?

Hotel owner: has number of rooms available.

Requests come in, with start/end dates.

=> Do I have enough room to fit all requests?

● often: add to existing allocation
● optimisation: reshuffle to find new allocation?

CPMpy+Pandas+Plotly demo

51

Example: room scheduling (backup slide)

Extending CP: global constraints
Examples:

 AllDifferent(X,Y,Z)
 A[X] = Y with X,Y variables, A an array “Element”
 Cumulative(...) used in scheduling

model: succinctly express a substructure
solve, with specialised algorithms:

 optimized data structures = more efficient
 (sometimes) more pruning = more effective

3 short slides on CPMpy's design

Design principle:

 Aim to be a thin layer on top of solver API

 Central concept: CPMpy expression

Design

No rewriting!

Like a parser

CPMpy
(user code)

Model
 constraints:

 expression tree
 objective:

 expression tree

creates

Solver Interface

CPM_ortools

CPM_pysat

CPM_gurobi

CPM_pysat

CPM_minizinc

CPM_pySDD

CPM_z3

expressions/

solvers/

Only 1-to-1
mapping of
supported
expressions

Hardest part

transformations/

Transformations in a nutshell

Solvers

CPMpy only interfaces to Python APIs

Key principle: solver can implement any subset of
expressions!

Solvers can also choose to:
 Support assumptions or not
 Be incremental or not
 Expose own solver parameters

Currently:
- ortools
- pysat
- minizinc
- gurobi
- pySDD
- Z3
- Exact

Wishlist: GCS, Choco, CPOptimiser,
 Mistral2, Gecode

More Belgian problems...
● You want to do a guide tour through the city of Leuven,

and visit key highlights.

● What is the shortest tour that visits each highlight exactly
once, and returns to the starting point?

Traverling Salesman problem

● CP: with a ‘Circuit’ global constraints
(can also be used for price-collecting TSP,
 and other variants: just add constraints)

● MIP: ex. MTZ formulation (avoid disconnected
 components)

CPMpy+Pandas+Geopy+Plotly demo

Job shop scheduling

CPMpy+Pandas+Plotly demo

Beyond Model + Solve

 Model + Solve

Wider view

 Model + Solve

Wider view: integration

Visualisations

Machine Learning
predictions

Interactive
solving

Explainability

Master-
subproblem
algorithms ...

 Model + Solve

Modern Constraint Solving

Visualisations

Machine Learning
predictions

Interactive
solving

Explainability

Master-
subproblem
algorithms ...

The changing role of solvers

Holy Grail: user specifies, solver solves [Freuder,1997]

I think we reached it… MiniZinc, Essence’

“Beyond NP” → constraint solving as an oracle

• Use solver to solve subproblem of larger (imperative) algorithm

• Iteratively build-up and solve a problem until failure

• Integrate neural network predictions (structured output prediction)

• Generate proofs, explanations, or counterfactual examples, ...

What would the ideal constraint solving system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

What would the ideal constraint solving system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

Incremental room assignment problem

Assume requests come in sequentially.
Compute solution on every new request.

Incrementality

Solving:

• MIP: can add constraints, change objective
 (mechanisms not documented, e.g. start from previous basis)

• SAT: assumption variables: can be toggled on/off when calling solve
 (reuses learned clauses, variable activity)

• CP: if CP-SAT, assumption variables like SAT

• SMT: pop/push of constraints (Z3)

Modeling?

• Only if using solver API directly...

• With CPMpy: part of the high-level modeling language!

Multiple solutions
New built-in: `m.solveAll()`

Or MiniSearch-style: Returns True (sol. found) or
 False (no solution)

Adds constraint
to model
(even if already
 solved before)

Non-dominated solutions
(disjunctive method)

CPMpy Land Conservation demo

Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Efficient repeated solving
 => Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

Multi-solver

Same syntax, plus can reuse variables and their values

Implicit Hitting Set algorithm (explanation-related)

repeatedly
compute hitting

sets (MIP)

CP/SAT
 as an oracle

Extract
Correction Subset

Conversational Human-Aware Technology for Optimisation

What would the ideal CP system be?

 Efficient repeated solving
=> Incremental

 Use CP/SAT/MIP or any combination
 => solver independent and multi-solver

 Easy integration with Machine Learning libraries
=> Python and numpy arrays

Modern Constraint Solving: an example

Perception-based constraint solving

Pedagogical instantiation: visual sudoku (naïve)

Pre-trained neural network Solving

Perception-based constraint solving

Pre-trained neural network Solving

What is going on?

 Each cell predicts the maximum likelihood value:

 But you need all 81 predictions (one for each given cell), it is a multi-output problem:
together this is the ‘maximum likelihood’ interpretation

 If = False: no solution, interpretation is wrong...

Perception-based constraint solving

What about the next most likely interpretation?

 Treat prediction as joint inference problem:

 This is the constrained ‘maximum likelihood’ interpretation

 => Structured output prediction

 Used e.g. in NLP: [Punyakanok, COLING04]

Pre-trained neural network

Perception-based constraint solving
X

ij

Pre-trained neural network

Can we use a constraint solver for that?

 Log-likelihood trick:

 constant

Perception-based constraint solving

Hybrid: CP solver does joint inference over raw probabilities

hybrid2

hybrid1

[Maxime Mulamba, Jayanta Mandi, Rocsildes Canoy, Tias Guns, CPAIOR20]

Pre-trained neural network

Sudoku Assistant demo, continued

Implementation: integration

Frontend:
 React-native
 Only displays results

Backend:
 FastAPI (Python)
 NN Service (PyTorch)
 Solver Service (CPMpy)
 Preloading, caching...

Show solution?

Trivial for CP system (subsecond),

Boring and demotivating for user?

In general: human-aware AI & AI assistants:

 Support users in decision making
 Respect human agency
 Provide explanations and learning opportunities

Constraint solving is more than mathematical abstractions...

Bigger picture

Bigger picture

 Learning implicit user preferences

 Learning from the environment

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

Bigger picture

 Learning implicit user preferences

 Learning from the environment

 Explaining constraint solving

 Stateful interaction

CHAT-Opt:
Conversational Human-Aware Technology for Optimisation

Towards co-creation of constraint optimisation solutions

 Solver that learns from user and environment
 Towards conversational: explanations and stateful interaction

Sudoku Assistant, explanation steps

 Model + Solve

Modern Constraint Solving

Visualisations

Machine Learning
predictions

Interactive
solving

Explainability

Master-
subproblem
algorithms ..

.

CPMpy transformations in a nutshell

Solving Paradigms

Model Solve

SAT Clauses
(no objective)

Unit Propagation
Clause learning

CP Clauses, Linear, Global,
Linear/any objective

Constraint Propagation=
domain eliminations

MIP Linear constraints,
Linear objective

Relaxation
Cutting planes

SMT Linear, Difference logic,
Strings, … (Theories)

Theory abstraction
SAT solving

Decision variables
Constraints
Objective function

 Model + Solve

The end / to be continued

Can we learn
it instead?

1) learn to model

 2) learn to solve (faster)

Enjoy!

https://school.a4cp.org/summer2023/

https://school.a4cp.org/summer2023/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 86
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

