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What is Machine 
Learning?




You probably heard of it…
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How would you define machine learning?

“Mike is kicking the ball”
Mental Model

Learn Test



Many applications…
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• Recommender systems: e.g., Google, Facebook, Amazon, … try 
to show you ads you might like


• Email spam filters: by observing which mails you flag as “spam”, 
try to learn your preferences


• Natural language processing: e.g., Sentiment analysis: is this 
movie  review mostly positive or negative?


• Vision: learn to recognize pedestrians, … 

• … and many, many more


• P. Domingos’ bestseller The Master Algorithm provides an excellent 
account of how machine learning affects our daily life



Definitions of machine learning?
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• Tom Mitchell, 1996: Machine learning is the study of how to make programs 
improve their performance on certain tasks from (own) experience

• “performance” = speed, accuracy, …

• “experience” = earlier observations


• “Improve performance” in the most general meaning: this includes learning 
from scratch.  


• Useful (in principle) for anything that we don’t know how to program - 
computer “programs itself”

• Vision: recognizing faces, traffic signs, …

• Game playing, e.g., AlphaGo


• Link to artificial intelligence : computer solves hard problems autonomously



Machine learning vs. other AI
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• In machine learning, the key is data

• Examples of questions & their answer

• Observations of earlier attempts to solve some problem


• Machine learning makes use of inductive inference: reasoning from 
specific to general

• In statistics: sample → population

• In philosophy of science: concrete observations → general theory

• In machine learning: observations → any situation


• This aspect of machine learning links it to data mining, data analysis, 
statistics, …



Machine learning and AI
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• Many misconceptions about machine learning these days

• In the latest 15 years or so, “Deep Learning” has received a lot of 

attention: it revolutionized computer vision, speech recognition, 
natural language processing


• Avalanche of new researchers drawn to the field, without knowledge 
of the broader field of AI, or history of ML (“AI = ML = deep learning”)


• See, e.g., A. Darwiche, https://www.youtube.com/watch?v=UTzCwCic-Do 
(also published in Communications of the ACM, October 2018)

Logic, 
expert systems

Machine 
Learning

Deep  
Learning

“did not work”, 
“not precise”

“precise”, “formal”,
“worked much better”

“works best!”,
“forget all the rest”

AI

1970 1980 1990 2000 2010 Timeline

https://www.youtube.com/watch?v=UTzCwCic-Do


Machine learning and AI

8

• There is still progress on all fronts, deep learning is just one of them

• This course reflects that viewpoint

• (schema below is incomplete, just serves to illustrate complexity of 

scientific impact)

Logic
Works well for

some problems

Too rigid for other problems
(noise, uncertainty)

Constraint solving SAT solvers, ASP, …

Probabilistic
Logics

Statistical
Relational
Learning

Agents

“Subsymbolic”
methods

Deep learning

Machine Learning

Lifted Learning
& Inference

Neural networks

Works

Doesn’t

AI

Inductive log. prog.
   AI

ML

DL



The machine learning landscape
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Reinforcement learning

Clustering

Classification

Regression

Matrix
factorization Transfer learning

Learning theory

Convex
optimization

Greedy
search

Neural networks

Support vector 
machines

Probabilistic 
graphical models

Decision trees

Rule learners

Nearest neighbors
Deep learning

Bayesian
learning

Statistical 
relational 
learning

Automata

Recommender
systems

Vision

Natural 
language
processing

Speech

Tasks Techniques Models Applications



Basic concepts and 
terminology




Machine learning
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• ML in its typical form:


• Input = dataset


• Output = some kind of model


• ML in its most general form: 


• input = knowledge


• output = a more general form of knowledge


• Learning = inferring general knowledge from more specific knowledge (observations 
➔ model) = inductive inference


• Learning methods are often categorized according to the format of the input and 
output, and according to the goal of the learning process (but there are many more 
dimensions along which they can be categorized)



A typical task
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• Given examples of pictures + label (saying what’s on the picture), 
infer a procedure that will allow you to correctly label new pictures


• E.g.: learn to classify fish as “salmon” or “sea bass”



A generic approach
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• Find informative features (here: lightness, width)

• Find a line/curve/hyperplane/…  in this feature space that separates 

the classes
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Predictive versus descriptive
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• Predictive learning : learn a model that can predict a particular property / attribute / variable 
from inputs


• Many tasks are special cases of predictive learning


• E.g., face recognition: given a picture of a face, say who it is


• E.g., spam filtering: given an email, say whether it’s spam or not

Name of task Learns a model that can …

Concept learning /
Binary classification

Distinguish instances of class C from other instances

Classification Assign a class C (from a given set of classes) to an instance 
Regression Assign a numerical value to an instance

Multi-label classification Assign a set of labels (from a given set) to an instance
Multivariate regression Assign a vector of numbers to an instance

Multi-target prediction Assign a vector of values (numerical, categorical) to an instance 

Ranking Assign ≤ or > to a pair of instances



Predictive versus descriptive
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• Descriptive learning : given a data set, describe certain 
patterns in the dataset (or in the population it is drawn from)


• E.g., analyzing large databases:

• “Bank X always refuses loans to people who earn less than 

1200 euros per month”

• “99.7% of all pregnant patients in this hospital are female”

• “At supermarket X, people who buy cheese are twice as likely 

to also buy wine”



Function learning
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• Task : learn a function X →Y that fits the given data (with X and Y sets 
of variables that occur in the data)


• Such a function will obviously be useful for predicting Y from X


• May also be descriptive, if we can understand the function


• Often, some family of functions F is given, and we need to estimate 
the parameters of the function f in F that best fits the data


• e.g., linear regression : determine  and  such that  fits 
the data as well as possible


• What does “fit the data” mean?  Measured by a so-called loss function


• e.g., quadratic loss:                              with f the learned function and 
D the dataset

a b y = ax + b

∑
(x,y)∈D

( f (x) − y)2



Distribution learning
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• Task: given a data set drawn from a distribution, estimate this distribution


• Often made distinction: parametric vs. non-parametric


• Parametric: a family of distributions is given (e.g., “Gaussian”), we only need to 
estimate the parameters of the target distribution


• Non-parametric: no specific family is assumed


• Often made distinction: generative vs. discriminative


• Generative: learn the joint probability distribution (JPD) over all variables (once 
you have that, you can generate new instances by random sampling from it)


• Discriminative: learn a conditional probability distribution of Y given X, for some 
given set of variables X (called input variables) and Y (called target variables)

. . .. .. .. . . . .. .. .. .

Parametric Non-parametric



These categorizations are somewhat 
fuzzy…
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• A descriptive pattern may be useful for prediction

• “Bank X always refuses loans to people who earn less than 

1200 euros per month” (description)

• Bob earns 1100 euros per month => Bank X will not give him 

a loan

• While functions are directly useful for prediction, a probability 

distribution can be used just as well

• Given known information X, predict as value for Y, the value 

with the highest conditional probability given X



Parametric vs. non-parametric
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• Parametric: a family of functions (or distributions, or …) is given, 
and each function is uniquely defined by the values of a fixed set 
of parameters

• e.g. (function learning): linear regression

• e.g. (distribution learning): fitting a gaussian


• Non-parametric: no specific family of functions is assumed

• Typically, we are searching a space that contains models with 

varying structure, rather than just different parameter values

• This often requires searching a discrete space

• E.g.: decision trees, rules, …. (see later)



Link with “explainable AI”
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• Explainable AI (XAI) refers to the study of AI systems that can explain their 
decisions / whose decisions we can understand


• Two different levels here:

• We understand the (learned) model used for decision making   [global]

• We understand the individual decision   [local]


• E.g. “I could not get a loan because I earn too little”: we can understand this 
decision even if we don’t know the whole decision process the bank uses


• A learned model that is not straightforward to interpret, is called a black-
box model


• Machine learning poses additional challenges for XAI, as it often learns 
black-box models



Responsible AI : challenges
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• Privacy-preserving data analysis

• We need lots of data to learn from; this may include personal data

• How can we guarantee that the analysis of these data will not violate 

the privacy of the people whose data this is?

• Generally, when data is collected, consent is needed for a specific 

purpose, and data must be used solely for that purpose — how can we 
guarantee it won’t be abused?


• Learning “safe” models : models that will not violate certain constraints 
that are imposed (including constraints on bias, discrimination, privacy, …)



Predictive learning
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• A very large part of machine learning focuses on predictive learning

• The prediction task, in general:


• Given: a description of some instance

• Predict: some property of interest (the “target”)


• Examples: 

• classify emails as spam / non-spam

• classify fish as salmon / bass

• forecast tomorrow’s weather based on today’s measurements


• How?  By analogy to cases seen before



Training & prediction sets
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• Training set: a set of examples, instance descriptions that 
include the target property (a.k.a. labeled instances)


• Prediction set: a set of instance descriptions that do not include 
the target property (“unlabeled” instances)


• Prediction task : predict the labels of the unlabeled instances

Dog Dog Dog

Cat Cat Cat

??? ???



Inductive vs. transductive learning
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We can consider as outcome of the learning process, either 

• the predictions themselves: transductive learning

• or: a function that can predict the label of any unlabeled 

instance: inductive learning

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4, )

.(x5, )

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4, )

.(x5, )

Transduction: outcome=predictions Induction: outcome = function 

for making predictions



Inductive vs. transductive learning

28

We can consider as outcome of the learning process, either 

• the predictions themselves: transductive learning

• or: a function that can predict the label of any unlabeled 

instance: inductive learning

Transduction: outcome=predictions Induction: outcome = function 

for making predictions

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4,y4)

.(x5,y5)

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4, )

.(x5, )

f: X→Y



Inductive vs. transductive learning
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We can consider as outcome of the learning process, either 

• the predictions themselves: transductive learning

• or: a function that can predict the label of any unlabeled 

instance: inductive learning

Transduction: outcome=predictions Induction: outcome = function 

for making predictions

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4,y4)

.(x5,y5)

.(x1,y1)

.(x2,y2)

.(x3,y3)

.(x4,f(x4))

.(x5,f(x5))

f: X→Y



Interpretable vs. black-box
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The predictive function or model learned from the data may be 
represented in a format that we can easily interpret, or not


Non-interpretable models are also called black-box models


In some cases, it is crucial that predictions can be explained (e.g.: bank 
deciding whether to give you a loan)


Note difference between explaining a model and explaining a prediction



• “Occam’s razor”: among equally accurate models, choose 
the simpler one


• Trade-off: explain data vs. simplicity

• Both overfitting and underfitting are harmful

Overfitting and underfitting

31



Levels of supervision
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• Supervised learning: learning a (predictive) model from labeled 
instances (as in cats & dogs example)


• Unsupervised learning: learning a model from unlabeled instances

• such models are usually not directly predictive (without any 

information on what to predict, how could you learn from that?)

• still useful indirectly, or for non-predictive tasks: see later


• Semi-supervised learning: learn a predictive model from a few 
labeled and many unlabeled examples



Semi-supervised learning
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• How can unlabeled examples help learn a better model?

+

-

+ -

?This illustration:
- 2 classes, called + and -
- Representing instances
in a 2-dimensional space



Semi-supervised learning
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• How can unlabeled examples help learn a better model?
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Semi-supervised learning
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• How can unlabeled examples help learn a better model?
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Unsupervised learning
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• Can you see three classes here?


• Even though we don’t know the names of the classes, we still see some structure 
(clusters) that we could use to predict which class a new instance belongs to


• Identifying this structure is called clustering


• From a predictive point of view, this is unsupervised learning

.
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PU-learning
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• PU-learning is a special case of semi-supervised learning 

• PU stands for “positive / unlabeled” 

• All the labeled examples belong to one class (called the 

“positive” class)

+

.

.
.

.

.
. .

.

.
.
.

.

.
. .

Learning the meaning of 
“kicking the ball” requires 
PU-learning because:
When Mike kicks the ball, 
the sentence may mention 
this, or not. When Mike does 
not kick the ball, it is never 
mentioned that he does not.

“Mike is kicking the ball”

+.
..



Weakly supervised learning
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• Weakly supervised learning is a generalized form of semi-supervised learning

• Semi-supervised: for a single instance, we either know its label or we do not

• Weakly supervised: we may have partial information about a label


• e.g., it is certainly a member of a given set (= superset learning)

• e.g., at least one instance among a given set of instances has the label, 

but we do not know which one (= multi-instance learning)

• e.g., we know two instances have the same label, but we don’t know 

which one it is (= constraint-based clustering)

• …

“This is either a Ferrari

or a Lamborghini”

“There’s a Lamborghini in this picture”



Relationship between different

supervision settings

39

Supervised

Learning Weakly supervised

Unsupervised

Learning

Predictive learning

Semi-supervised

learning

Multi-instance

learning

PU-learning

Superset

learning

Constraint-based

clustering



Reinforcement learning
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• Sometimes viewed as another form of supervision, but it’s different in more ways than just that

• The setting: 


• an agent can be in any of a number of states

• it can take actions that change its state and may give some reward

• it wants to maximize its rewards in the long run

• How should it behave?


• Formally, given a state space , transition function , reward function 

, and discount factor , find a policy that maximizes  

where 


•  and  are initially unknown to the agent


• The agent generates its own training data (through exploration)

S δ : S × A → S

r : S × A → ℝ γ ∈ [0,1]
∞

∑
i=0

γir(si, π(si))

si+1 = δ(si, π(si))
δ r



Illustration: Q-learning
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• Agent updates a function  that ultimately converges to 

 where  is the optimal policy


• … so that choosing the  that maximizes  is by definition optimal 
(hence, defines )

Q(s, a)

r(s, a) +
∞

∑
i=1

γir(si, π*(si)) π*

a Q(s, a)
π*



Q(s,a) ← r + 0.9 maxa' Q(s',a')

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Up
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Down
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Left
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Right

00
0
0

+11
0.90

0.81 0.73 0.66

Q(s,a) ← r + 0.9 maxa' Q(s',a')

0 0 0 0

Q(s,a) ← 1.0 + 0.9 maxa' Q(s',a')Q(s,a) ← 1.0 + 0.9 x 0.0

0 0 01

Q(s,a) ← 0.0 + 0.9 x 1.0

42



Some comments
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• In the illustration, the agent updated a table-based representation of 


• We can use that table as feedback to learn what kind of actions work well in 
what kind of states. That is, we learn a model of the Q function. This is 
model-based reinforcement learning


• We assumed a deterministic environment, but RL is often formulated in a 
probabilistic environment: Markov Decision Processes (MDP)


• We here assumed random exploration, but more clever versions exist 
(gradually increasing exploration of more promising parts of the state-action 
space)

Q(s, a)



Encoding data
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• An unsupervised learning task: learn functions  and 
 such that  is the identity function


• When , typically : dimensionality reduction


• When  is not a vector space,  is called an embedding


•  is called the encoder and  the decoder


• Encoding can be useful for understanding the structure of the 
input space

f : 𝒳 → ℝk

g : ℝ → 𝒳 g ∘ f
𝒳 = ℝm k < < m
𝒳 f

f g

f g



Probabilistic encoders
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• A “standard” encoder learns   and  such that  
is the identity function


• We can also consider probabilistic encoders, which are trained to 
reconstruct the input distribution over  but not individual cases


• That is: we learn  and  such that the distribution 
of  is equal to the distribution of 


• The distribution of  is called the latent distribution


• This is useful for training, e.g., generative models

f : 𝒳 → ℝk g : ℝ → 𝒳 g ∘ f

𝒳
f : 𝒳 → ℝk g : ℝ → 𝒳

g ∘ f(x) x
f(x)

f g



Format of input data



Format of input data
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• Input is often assumed to be a set of instances that are all described using the 
same variables (features, attributes)


• The data are “i.i.d.”: “independent and identically distributed”


• The training set can be seen as a random sample from one distribution


• The training set can be shown as a table (instances x variables) : tabular data


• This is also called the standard setting


• There are other formats: instances can be


• nodes in a graph


• whole graphs


• elements of a sequence


• …



Format of input data: tabular

48

Sepal 
length 

Sepal 
width 

Petal 
length

Petal 
width

Class

5.1 3.5 1.4 0.2 Setosa

4.9 3.0 1.4 0.2 Setosa

7.0 3.2 4.7 1.4 Versicolor

6.3 3.3 6.0 2.5 Virginica

Sepal 
length 

Sepal 
width 

Petal 
length

Petal 
width

Class

4.8 3.2 1.3 0.3 ?

7.1 3.3 5.2 1.7 ?

Training
set

Prediction
set



Format of input data: sequences
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• Learning from sequences:

• 1 prediction per sequence?

• 1 prediction per element?


• 1 element in sequence can be …

• A number (e.g., time series)

• A symbol (e.g., strings)

• A tuple

• A more complex structure 

abababab: +
aabbaabb: -



Format of input data: trees
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• 1 prediction per tree / per node in the tree

• Nodes can be … 


• Unlabeled

• Labeled with symbols (e.g., HTML/XML structures)

• …

ul

<li> <li>

<b>

<li>

(text)

“Adress:”

+

-

-

- - -

-

E.g.: this tree indicates as “positive” a text field
preceded by Address: inside a list (<li>) context



Format of input data: graph
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• Example: Social network

• Target value known for some 

nodes, not for others

• Predict node label

• Predict edge

• Predict edge label

• …

• Use network structure for 

these predictions



Format of input data: raw data
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• “Raw” data are in a format that seems simple (e.g., a vector of 
numbers), but components ≠ meaningful features


• Example: photo (vector of pixels)

• Raw data often need to be processed in a non-trivial way to obtain 

meaningful features; on the basis of these features, a function can be 
learned


• This is what deep learning excels at

(Image: Nielsen, 2017, Neural networks and deep learning)



Format of input data: knowledge
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• “Knowledge” can consist of facts, rules, definitions, …. 

• We can represent knowledge about some domain in a 

knowledge representation language (such languages are often 
based on logic)

...
hacc(M,A):- atm(M,A,o,2,_,_,_).
hacc(M,A):- atm(M,A,o,3,_,_,_).
hacc(M,A):- atm(M,A,s,2,_,_,_).
hacc(M,A):- atm(M,A,n,ar,_,_,_).
zincsite(M,A):-

atm(M,A,du,_,_,_,_).
hdonor(M,A) :-

atm(M,A,h,_,_,_,_), 
not(carbon_bond(M,A)), !.

...

atm(m1,a1,o,2,3.43,-3.11,0.04).
atm(m1,a2,c,2,6.03,-1.77,0.67).
...
bond(m1,a2,a3,2).
bond(m1,a5,a6,1).
bond(m1,a6,a7,du).
...



Data preprocessing
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• Data may not be in a format that your learner can handle

• Data wrangling: bring it into the right format

• Even if it’s in a format you learner can handle (e.g., tabular), the 

features it contains may not be very informative, or there may be 
very few relevant features among many irrelevant ones.  

• E.g.: individual pixels in an image are usually not very informative


• Feature selection: select among many input features the most 
informative ones


• Feature construction: construct new features, derived from the 
given ones



What learning method to use?

55

• Which learners are suitable for your problem, depends strongly 
(but not solely!) on the structure of the input data


• Many learners use the standard format

• A set of instances, where each instance is described by a 

fixed set of attributes (a.k.a. features, variables)

• also called attribute-value format or tabular format


• Other learners handle input knowledge with a more complex 
structure (sequences, graphs, …) or raw data


• Different learners have a different inductive bias



Output formats, 
methods (overview)



Output formats

57

• The output of a learning system is a model

• Many different types of model exist

• The learning algorithm or method is strongly linked to the type of model

• High-level overviews of machine learning methods often categorize 

them along this axis



Different views of the landscape
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Domingos: 
“five tribes”

Flach: 
“three types of models”

- Symbolists
- Connectionists
- Evolutionaries
- Bayesians
- Analogizers

- Probabilistic
- Geometric
- Logical

Bishop: 
“Ultimately, everything 
is Bayesian”

- Bayes



Parametrized functions

59

• Typically, a certain format for the functions is provided; e.g.: 
linear functions of the inputs 


• Within this set, we look for the parameter values that best fit the 
data


• Standard example: linear regression
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Conjunctive concepts
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• A conjunctive concept is expressed as a set of conditions, all of 
which must be true


• “x has class C if and only if <condition1> and <condition2> and 
… and <condition k>”


• E.g.: accept application for mortgage if and only if :              
salary ≥ 3 * monthly payback and no other mortgage running



• A rule set is a set of rules of the form “if … then …” or “if … then 
… else …”


• Example: definition of leap years

Rule sets

61

If year is a multiple of 400 then leap
else if year is a multiple of 100 then not leap
else if year is multiple of 4 then leap
else not leap

Examples of leap years:
1900, 1992, 2004, …

Examples of non-leap years:
1993, 2000, 2011, 2018,  …

Input

Output



Decision trees
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• A decision tree represents a stepwise procedure to arrive at 
some decision

Is today a good day to play tennis?



Instance-based learning

(a.k.a. “nearest neighbor methods”)

63

• The “model” is simply the data set itself


• Predictions for new cases are made by comparing it to earlier observed cases


• If it’s similar for observed features, it’s probably also similar for unobserved (to 
be predicted) features

.

.
.

.
.

.
.

.
.

...
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Probabilistic graphical models

64

• A PGM represents a (high-dimensional) joint distribution over 
multiple variables as a product of (low-dimensional) factors


• Different type of PGMs: Bayesian networks, Markov networks, 
factor graphs, …

P(A, B, C, D, E) = P(A) ⋅ P(B) ⋅ P(C |A, B) ⋅ P(D |C) ⋅ P(E |C)

f(a, b, c, d, e) = f1(a) ⋅ f2(b) ⋅ f3(a, b, c) ⋅ f4(c, d) ⋅ f5(c, e)

A B

C

D E

f1(a) f2(a)

f3(a, b, c)

f5(c, e)f4(c, d)

Example: Bayesian network



Neural networks
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• A neural network is a complex structure of neurons, each of 
which aggregate multiple input signals into a single output signal

x

y

z

Out

h11 = f(a11x+b11y+c11z)



Advanced NN architectures
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• The network we just saw just stacked a few layers of neurons on top of 
each other


• Much more advanced architectures exist, which serve a specific purpose

• e.g. convolutional networks scan a picture for patterns (the scanning 

is hard-wired, the patterns to look for are learned) 

• LSTMs process sequences of data sequentially, and have memory 

cells that allow them to store info for re-use later on (the memory is 
hard-wired, what to remember when is learned)


• Transformer models process sets/sequences by enriching their 
elements with context info (“attention”) and processing everything 
simultaneously, not sequentially



Illustration: convolutional step
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• In this example, the “map” essentially lights up in those positions where a sub-image 

similar to the kernel  was found


• Note: convolution layers are translation-invariant (sub-image is found regardless of 
position in the picture) but not rotation- or scale-invariant: need to train on rotated / 
scaled versions separately

X
conv(X, K1) pool

h × w × 3 h′￼× w′￼× n1 h1 × w1 × n1

conv(_, K2) pool conv(_, K3) pool A(W1 ⋅ _) A(W2 ⋅ _)

h′￼1 × w′￼1 × n2 h2 × w2 × n2 h2 × w2 × n3 h3 × w3 × n3 n4 n5



Illustration: Sutskever et al.’s “Sequence to 
sequence learning with neural networks” (2014)
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• Example instance: ik speel piano <eos> I play the piano <eos>

x(1)

h(1)

x(2)

h(2)

x(3)

h(3)

x(4)

h(4) h(5)

y(1) y(2) y(3) y(4) y(5)

Special symbol <eos> 
indicates end of input

h(6) h(7) h(8)

Generate 
<eos> to 
indicate end

Encoder LSTM

Decoder LSTM

Ik speel piano <eos>

I play the piano <eos>



Illustration: Transformer
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• Figure to the right (from Vaswani et al.) shows the 
architecture of the full transformer model


• Left = encoder, right = decoder


• The link between encoder & decoder is an attention 
layer that works similar to Bahdanau’s attention


• The input and output self-attention layers (with 
feedforward NN stacked on top) replace the RNNs


• The decoder uses masked attention: it is not allowed to 
look at words that will be generated later


• The positional encoding added to words uses periodic 
functions (sin/cos) with various periods


• More details in Vaswani et al. (incl. code & appendices)



Illustration: BERT
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• Input = a single sentence, or a pair of sentences 

• Model is trained on multiple different pre-training tasks


o “Masked LM”: mask some words, model must predict them

o “Next sentence prediction”: labeled pairs of sentences (next, 

not-next) 

Illustration from

Devlin et al.



Search methods
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• How do we find the most suitable model?

• Sometimes, there is a closed form solution (e.g., linear regression)

• If not, we typically need to search some hypothesis space

• Two very different types of spaces, each with their own search 

methods : 

• Discrete spaces (methods: hill-climbing, best-first, …)

• Continuous spaces (methods: gradient descent, …)


• Typically: 

• Model structure not fixed in advanced => discrete 

• Fixed model structure, tune numerical parameters => continuous



Example: gradient descent in a 
continuous space
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.
.

.
.
.

. .
. .

X

Y

y=2x y=x+3y=-x+10

A

B

(a,b) represents y = ax + b

1-1 2

Input/output space Parameter space

Color encodes
loss

(1,3).

.(-1,10)

.(2,0)

x

Gradient 
descent



Example: Version Spaces
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• The goal: identify a conjunctive concept from data

• = a symbolic description of some concept, consisting of a 

conjunction of conditions

• More specific: given a hypothesis space H (all possible descriptions), 

return all concepts in H that are consistent with the data. This set is 
called the Version Space. When the version space is a singleton, the 
concept has been identified


• The algorithm called Candidate Elimination does this by exploiting a 
generality ordering over H, and returning only the most general and 
most specific hypotheses in H that are consistent with the data (the 
“borders” of H)


• This involves an exhaustive search in a discrete space



• A company produces intelligent robots.  Some robots 
misbehave.  We suspect that one particular combination of 
features is the cause for this misbehavior.


• For ease of discussion, we here assume robots have four 
relevant characteristics:

• Color : B R M 

• Body shape : S T

• =Legs/wheels: L W

• #“eyes” : 1 2


• Find the combination that misbehaves

Candidate Elimination: illustration
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• We will represent a hypothesis as a tuple <color, body, legs, 
eyes> where color = B, R, M or ? (? means “any color”) etc.


• Hypothesis space: {B,R,M,?} x {S,T,?} x {L,W,?} x {1,2,?}

• Let S(h) be the set of robots characterized by a hypothesis h


• Hypothesis h1 is more general than h2 if and only if S(h2)⊆S(h1)


• Most general hypothesis is … <?,?,?,?>


• Most specific hypothesis is … there are many!  <B,T,L,1> is one


• Can extend hypothesis space with ⊥: S(⊥)=∅

Candidate Elimination: illustration
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censored

censored



Search space is a lattice
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<?,?,?,?>

B??? R??? M??? ?S?? ?T?? ??L? ??W? ???1 ???2

BS?? BT?? RS?? RT?? MS?? MT?? B?L? B?W? R?L? R?W? M?L? M?W? ??L1 ??L2 ??W1 ??W2…

⊥

BSL1 BSL2 BSW1 BSW2 . . . . . . . . . BTL1 BTL2 BTW1 BTW2 MTL2 MTW1 MTW2

BSL? BSW? BTL? BTW? ?TW1 ?TW2?TL2. . . . . . . . . 



Candidate Elimination
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<?,?,?,?>

B??? R??? M??? ?S?? ?T?? ??L? ??W? ???1 ???2

BS?? BT?? RS?? RT?? MS?? MT?? B?L? B?W? R?L? R?W? M?L? M?W? ??L1 ??L2 ??W1 ??W2…

⊥

BSL1 BSL2 BSW1 BSW2 . . . . . . . . . BTL1 BTL2 BTW1 BTW2 MTL2 MTW1 MTW2

BSL? BSW? BTL? BTW? ?TW1 ?TW2?TL2. . . . . 

!
Observation 1:
Misbehaves

?SW2B?W2 BS?2. . . . . . . . .



Candidate Elimination
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<?,?,?,?>

B??? R??? M??? ?S?? ?T?? ??L? ??W? ???1 ???2

BS?? BT?? RS?? RT?? MS?? MT?? B?L? B?W? R?L? R?W? M?L? M?W? ??L1 ??L2 ??W1 ??W2…

⊥

BSL1 BSL2 BSW1 BSW2 . . . . . . . . . BTL1 BTL2 BTW1 BTW2 MTL2 MTW1 MTW2

BSL? BSW? BTL? BTW? ?TW1 ?TW2?TL2. . . . . 

Observation 2:
Does not misbehave

?SW2B?W2 BS?2. . . . . . . . .



Candidate Elimination
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++



Candidate Elimination
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++

-
The most/least general solutions 
define the whole version space



Candidate Elimination
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• The candidate elimination algorithm illustrates

• Search in a discrete hypothesis space (with lattice structure)

• Search for all solutions, rather than just one, in an efficient 

manner

• Importance of generality ordering


• Some obvious disadvantages:

• Not robust to noise: result = set of hypotheses consistent with 

all data; 1 erroneous data point → set may be empty!

• Only conjunctive concepts : strong limitation



1 solution vs. set of solutions
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• Predictive learning usually finds 1 model

• Candidate Elimination is an example of a method that returns a 

set of solutions

• Other examples of this setting:


• Find all patterns (in some given pattern space) that satisfy 
some given criteria

• association rules

• constraints formulated in first order logic 



• Prototypical example from “market basket analysis”: “people who buy A,B,C also buy D,E”


• General format: 


• Rule “If <this> then <that>” is characterized by


• Support: % of all clients that buy <this>


• Low support means: of marginal importance


• Confidence: % of buyers of <this> that also buy <that>


• Confidence need not be close to 100%


• Any increase over normal level indicates an association


• Task: find the set of all association rules with support & confidence above a chosen threshold

 if a1, a2, …, an then an+1, an+2, …, an+m

Association rules
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Client cheese bread butter wine jam ham
1 yes yes yes yes no yes
2 yes no yes no no no
3 no yes yes no no yes
... ... ... ... ... ... ...

IF bread & butter THEN cheese
confidence: 50%
support: 5%



Illustration: Learning constraints in first 
order logic
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male(homer).

male(bart).


female(marge).

female(lisa).


father(homer,lisa).

father(homer,bart).

mother(marge,lisa).

mother(marge,bart).

parent(homer,lisa).


...

Prolog dataset / knowledge base:

false :- male(X), female(X).

female(X) :- mother(X,Y).


male(X) :- father(X,Y).

parent(X,Y) :- father(X,Y).


parent(X,Y) :- mother(X,Y).

...

Knowledge discovered:



Imposing semantic constraints on 
learned models
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• Consider AI systems that make use of learned models

• We may want to impose (symbolic) constraints on their behavior (fairness, safety, …)


o E.g. autonomous driving: observe speed limits

o E.g. bank loans: monotonicity constraints


• Different ways of doing this:

o Fix model predictions when they violate a constraint

o Use a model for which you can verify the constraints (model verification)

o Use a learner that cannot return a model that violates the constraints - model certification

(x, f(x)) ⊧ C

∀x : (x, f(x)) ⊧ C

f ⊧ C ∀D : f = Learner(D) ⟹ f ⊧ C



Formulation as a MaxSMT(NRA) 
problem
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• Given a parametrized class of functions  , a set of hard semantic constraints , 

and a set of soft “goodness of fit” constraints , find a  such that  

(1)  for all  and  

(2)  for a maximal number of 


• Typically, one  is, e.g., of the form  : “universal constraint” (quantified 
over domain)


• “Goodness of fit” constraints depend on the type of learning problem, e..g,. For regression: 
  for all  with  given and  the training set


• Note: soft constraints express goodness of fit on , hard constraints express domain constraints 
over 


• MaxSMT(NRA) reasons about the real-valued parameters to ensure  meets all hard constraints


• Practically feasible?  Not without changes — but some approaches developed for linear models 
and ReLU-based neural networks

fθ 𝒞 = {C1, …Ck}
ℱ = {F1, …Fn} θ

fθ ⊧ Ci i
fθ ⊧ Fi i

Ci ∀x ∈ 𝒳 : (x, fθ(x)) ⊧ …

| | f (xi) − yi | |2 < εj (xi, yi) ∈ T ε1 < ε2 < … < εk T

T
𝒳

fθ



End of this introduction
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• Questions? Feel free to come talk to me when I’m around


