ML4CP Leuven 2023

Deep Learning & Combinatorial Optimization

Wouter Kool

Wouter

2015 Master of Business Analytics & V 2015 Master of Econometrics & OR

π

ORTEC

2022 PhD in Machine Learning

9 years at ORTEC OR engineer

Research intern @ Google DeepMind

Travelling Scientist Problem (TSP)

π

(k!)4

Kool et al., 2019

UNIVERSITY OF AMSTERDAM

2√2 9801

ex

What does it mean?

Finding *optimal* solutions for *all* problem instances

Finding *acceptable* solutions for *relevant* problem instances

'next location should be nearby'

(k!)4

MISSION: HMPOSSIBLE

MISSION:

IMPOSSIBLE

* unless P = NP

ex

Designing of heuristics is like feature engineering

Computer Vision Features (SIFT, etc.)

(k!)4

Feature engineering

- Needs expert knowledge
- Time consuming hand-tuning

So what do we do?

ex

Designing of heuristics is like feature engineering

(k!)4

Traditional approach Feature engineering

Deep Learning No feature engineering

ex

'Translate' problem into solution

Meire Fortunato*

Department of Mathematics, UC Berkeley

Navdeep Jaitly

Google Brain

Oriol Vinyals

Google Brain

.

.

π

(k!)4

.

<u>2√2</u> 9801

e*

2

π

•

How does that work?

Sample $\pi_1 \sim p_{\theta}(\pi_1|s)$

Sample $\pi_2 \sim p_{\theta}(\pi_2 | s, \pi_1)$

(k!)4

Sample $\pi_t \sim p_{\theta}(\pi_t | s, \pi_{< t})$

Randomized algorithm with expected cost:

$$E_{p_{\boldsymbol{\theta}}(\boldsymbol{\pi}|s)}[L(\boldsymbol{\pi})]$$

- How to optimize θ ?

NEURAL COMBINATORIAL OPTIMIZATION WITH REINFORCEMENT LEARNING

Irwan Bello^{*}, Hieu Pham^{*}, Quoc V. Le, Mohammad Norouzi, Samy Bengio Google Brain {ibello, hyhieu, qvl, mnorouzi, bengio}@google.com

UNIVERSITY OF AMSTERDAM

What's the model architecture?

 $p_{\theta}(\pi_t | s, \pi_{< t})$

Read the paper...

(k!)4

ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!

Wouter Kool University of Amsterdam w.w.m.kool@uva.nl Herke van Hoof University of Amsterdam h.c.vanhoof@uva.nl Max Welling University of Amsterdam m.welling@uva.nl

2√2 9801

ex

π

Graph convolutions

А	ttention Is A	ll You Need	
Ashish Vaswani * Google Brain wani@google.com	Noam Shazeer* Google Brain noam@google.com	Niki Parmar * Google Research nikip@google.com	Jakob Uszkoreit Google Research usz@google.com
Llion Jones*	Aidan N. Gomez	z ^{+†} Łuk	asz Kaiser*

Llion Jones* Aidan N. Gomez*[†] Łukasz Kaiser* Google Research University of Toronto Google Brain llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

> Illia Polosukhin* [‡] illia.polosukhin@gmail.com

avas

Experiments

Travelling Salesman Problem (TSP)

Minimize length Visit all nodes

Maximize total prize Max length constraint Minimize length + penalties

Collect minimum total prize

(Stochastic) Prize

Collecting TSP

((s)PCTSP)

(k!)4

Vehicle Routing " Problem (VRP)

6,

Minimize length Visit all nodes Total route demand must fit vehicle capacity

Train for each problem, *same hyperparameters*!

π

P

Results Attention Model + Rollout Baseline

- Improves over classical heuristics!
- Improves over prior learned heuristics!
 - Attention Model improves
 - Rollout helps significantly
- Gets close to single-purpose SOTA (20 to 100 nodes)!
 - TSP 0.34% to 4.53% (greedy)
 - TSP 0.08% to 2.26% (best of 1280 samples)

ex

π

(k!)4

Let's analyze this method...

ORTEC

'Predicting' translations

Neural Machine Translation

ex

π

(k!)4

Sentence

Translation

'Predicting' solutions

Neural Combinatorial " Optimization

Problem

Solution

(k!)4

Machine Translation

π

(k!)4

Combinatorial Optimization

2√2 9801

e*

It's not the same!

 \neq

π

(k!)4

Combinatorial Optimization

Maximize quality

Machine Translation

Minimize cost

(computation is 2nd)

with minimum computation

2√2 9801

ex

If we have infinite computation...

Combinatorial Optimization

(k!)4

2√2 9801

ex

How?

Using neural networks...

Adding computation...

...to make better (heuristic) decisions!

...to reduce computation!

Pay-off

23

Impact vs. computation (of your neural network)

(k!)4

e*

Example: AlphaGo

Uses (Deep) Neural Network to predict which part of the search tree to expand

ORTEC

Learning to Branch (& Bound?)

- Success depends on branch selection
- Often done with very simple heuristics
- Learn to predict best branch!
- Example of powerful **exact** method that can be improved by ML

ORTEC

Idea: learn to select parents

In a Hybrid Genetic
 Search algorithm

• More on that later... ...as this will be the lab!

e

Combining the best of both worlds

π

Using what we know...

...without being limited by what we know.

(k!)4

π

-P

There is more out there!

- So far, we considered using ML for learning HOW to optimize
- We can also use ML for learning WHAT to optimize

• E.g.

- learning driving durations for use in route optimization
- learning constraints/objectives/preferences for scheduling
- Sometimes referred to as 'predict, then optimize' framework

ORTEC

π

• We saw this yesterday, so not for today!

Learning to solve routing problems

ORTEC

Travelling Scientist Problem (TSP)

π

(k!)4

Kool et al., 2019

UNIVERSITY OF AMSTERDAM

2√2 9801

ex

π

P

Results Attention Model + Rollout Baseline

- Improves over classical heuristics!
- Improves over prior learned heuristics!
 - Attention Model improves
 - Rollout helps significantly
- Gets close to single-purpose SOTA (20 to 100 nodes)!
 - TSP 0.34% to 4.53% (greedy)
 - TSP 0.08% to 2.26% (best of 1280 samples)

ex

π

(k!)4

Impact vs. computation (of your neural network)

(k!)4

2√2 9801

e*

Let's try a different approach

ORTEC

(k!)

- Chaitanya K. Joshi

P

.

π

2 x"

-P

ORTEC

2√2 9801

Recent Advances in Deep Learning for Routing Problems

Developing neural network-driven solvers for combinatorial optimization problems such as the Travelling Salesperson Problem have seen a surge of academic interest recently. This blogpost presents a **Neural Combinatorial Optimization** pipeline that unifies several recently proposed model architectures and learning paradigms into one single framework. Through the lens of the pipeline, we analyze recent advances in deep learning for routing problems and provide new directions to stimulate future research towards practical impact.

Chaitanya K. Joshi, Rishabh Anand Jan 12, 2022 · 20 min read

https://www.chaitjo.com/post/deep-learning-for-routing-problems/

37

...that restricts a dynamic program to promising parts of the state space...

...using a heatmap of promising edges predicted by a neural network!

ORTEC

.

UNIVERSITY OF AMSTERDAM Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Brute-force (forward view)

O(n) or factorial

DP (top-down or backward view)

(k!)4

ex

π

Artwork by Vaidehi Joshi, https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)

Beam search O(Bn) or linear

We need a good policy to restrict the search space!

(k!)4

Forward view

Restricted DP *O(Bn)* or *linear*

Malandraki & Dial, 1996 Gromicho et al., 2012

UNIVERSITY OF AMSTERDAM

ex

O(Bn) or linear

For each iteration

- Expand solutions ٠
- Remove dominated solutions •
- Select top *B* according to *policy* ٠
- Repeat ۲

Experiments

(a) Travelling Salesman Problem

(b) Vehicle Routing Problem

(c) TSP with Time Windows

π

-P

π

ORTEC

Results (TSP/VRP)

Table 1: Mean cost, gap and *total time* to solve 10000 TSP/VRP test instances.

π

(k!)4

Problem		TSP100)		VRP10	0
Method	Cost	Gap	TIME	Cost	Gap	TIME
Concorde [2]	7.765	0.000~%	6м			
Hybrid Genetic Search [63, 62]				15.563	0.000~%	6н11м
Gurobi [24]	7.776	0.151~%	31M			
LKH [27]	7.765	0.000~%	$42 \mathrm{M}$	15.647	0.536~%	12 H 57 M
GNN HEATMAP + BEAM SEARCH [32]	7.87	1.39~%	40м			
Learning 2-opt heuristics [11]	7.83	0.87~%	$41 \mathrm{M}$			
Merged GNN Heatmap + MCTS [19]	$ 7.764^* $	0.04~%	4м + 11м			
Attention Model + Sampling [36]	7.94	2.26~%	1H	16.23	4.28~%	2H
Step-wise Attention Model [67]	8.01	3.20~%	29s	16.49	5.96~%	39s
ATTN. MODEL + COLL. POLICIES $[34]$	7.81	0.54~%	12H	15.98	2.68~%	$5 \mathrm{H}$
Learning improv. heuristics [66]	7.87	1.42~%	2H	16.03	3.00~%	$5 \mathrm{H}$
Dual-Aspect Coll. Transformer [45]	7.77	0.09~%	$5 \mathrm{H}$	15.71	0.94~%	$9 \mathrm{H}$
Attention Model $+$ POMO [37]	7.77	0.14~%	$1\mathrm{M}$	15.76	1.26~%	2M
NeuRewriter [9]				16.10	3.45~%	1н
Dynamic Attn. Model $+$ 2-opt [54]				16.27	4.54~%	6н
Neur. Lrg. Neighb. Search [30]				15.99	2.74~%	$1 \mathrm{H}$
Learn to improve $[43]$				$ 15.57^* $	-	4000н
DPDP 10K	7.765	0.009 %	10м + 16м	15.830	1.713~%	10м + 50м
DPDP 100K	7.765	0.004~%	10м + 2н35м	15.694	0.843~%	10M + 5H48M
DPDP 1M				15.627	0.409~%	10м + 48н27м

.

2√2 9801

e*

π

•

49

Results (TSP with time windows)

Table 3: Mean cost, gap and *total time* to solve TSPTW100 instances.

π

(k!)4

Problem	SMALL 7	TIME WINI	DOWS [8]	(100 inst.)	LARGE TI	ME WINDO	ws $[12]$	2] (10K inst.)
Method	Cost	Gap	FAIL	Time	Cost	Gap	FAIL	TIME
GVNS 30x [12]	5129.58	0.000~%		7s	2432.112	0.000~%		$37 \mathrm{M} 15 \mathrm{S}$
GVNS $1x [12]$	5129.58	0.000~%		< 1s	2457.974	1.063~%		1 M4s
LKH $1x [27]$	5130.32	0.014~%	1.00~%	5 M 48 s	2431.404	-0.029 $\%$		34 H 58 M
BAB-DQN $*$ [8]	5130.51	0.018~%		25H				
ILDS-DQN $*$ [8]	5130.45	0.017~%		$25 \mathrm{H}$				
DPDP 10K	5129.58	0.000~%		6s + 1s	2431.143	-0.040 %		10M + 8M7s
DPDP 100K	5129.58	0.000~%		6s + 1s	2430.880	- 0.051 %)	10м + 1н16м

2√2 9801

ex

Quality vs. computation

π

(k!)4

2

π

2√2 9801

e*

Ablations

π

(k!)4

UNIVERSITY OF AMSTERDAM

2√2 9801

e*

Deep Policy Dynamic Programming (DPDP)

https://arxiv.org/abs/2102.11756

6,

- DP is flexible framework for many VRP variants e.g. time windows
- Suitable for GPU implementation
- Natural trade-off compute vs. performance -> asymptotically optimal
- Supervised training based on example solutions
- Test time: only evaluate NN once!

Hybrid Genetic Search

for the DIMACS VRPTW Challenge

Wouter Kool & co(lleagues). -- original HGS by Thibaut Vidal Joep Olde Juninck Ernst Roos Kamiel Cornelissen Pim Agterberg Jelke van Hoorn Thomas Visser

Public

In the DIMACS challenge

- Vehicle routing problem with capacities
- Every customer must be served within a time window
- DIMACS variant: Minimize distance only (not vehicles)

Fig. 1. Illustration of waiting times and time warps. **Proposition 1** (Concatenation of two sequences). Let $\sigma = (\sigma_i, \ldots, \sigma_j)$ and $\sigma' = (\sigma'_{i'}, \ldots, \sigma'_{j'})$ be two subsequences of visits. The concatenated subsequence $\sigma \oplus \sigma'$ is characterized by the following data:

$D(\sigma \oplus \sigma') = D(\sigma) + D(\sigma') + \delta_{\sigma_j \sigma'_i} + \Delta_{WT}$	(5)
$TW(\sigma \oplus \sigma') = TW(\sigma) + TW(\sigma') + \Delta_{TW}$	(6)
$E(\sigma \oplus \sigma') = \max\{E(\sigma') - \varDelta, E(\sigma)\} - \varDelta_{WT}$	(7)
$L(\sigma \oplus \sigma') = \min\{L(\sigma') - \varDelta, L(\sigma)\} + \varDelta_{TW}$	(8)
$C(\sigma \oplus \sigma') = C(\sigma) + C(\sigma') + c_{\sigma_j \sigma'_{i'}}$	(9)
$Q(\sigma \oplus \sigma') = Q(\sigma) + Q(\sigma')$	(10)
where $\Delta = D(\sigma) - TW(\sigma) + \delta_{\sigma_j \sigma'_{i'}}, \Delta_{WT} = \max\{E(\sigma') - \Delta - L(\sigma), 0\}$ $\Delta_{TW} = \max\{E(\sigma) + \Delta - L(\sigma'), 0\}.$	and

Supporting time windows

- Use time-warp principle
- Cache computation for prefix and postfix
 of routes

(k!)4

• Use two-level hierarchy for fast queries in middle of route

 Penalty booster: increase penalty by 100% if no feasible solution found

Source: Vidal et al. 2012

6,

Offspring generation

Selective Route Exchange (SREX)

540 Y. Nagata and S. Kobayashi

π

ORTEC

Fig. 1. Illustration of the SREX. σ_A^p and σ_B^p are parents. Routes S_A and S_B are represented as dotted lines, customer nodes $V_{A\setminus B}$ are represented by circles with x-mark, and the customer nodes in $V_{B\setminus A}$ are represented by double circles. σ_I^c and σ_{II}^c are intermediate offspring solutions obtained after Step 2.

Source: Nagata et al. 2010

Local search

•SWAP, RELOCATE, 2-OPT, 2-OPT* Moves between near neighbors Smart 'pre-checks' •SWAP*, see next slide

Exchange two nodes, insert at best position in other route

Cache top 3 insertion positions Exact for CVRP Approximate for VRPTW

Growing the neighborhood & population

Every 10K iterationsGrow neighborhood by 5Grow population size by 5

*Slightly different schedule for different instances

ORTEC

Results (in DIMACS)

Dataset	C1	C2	R1	R2	RC1	RC2	Mean
Solomon	0,000%	0,000%	-0,003%	0,000%	0,000%	0,000%	0,000%
GH200	0,000%	0,004%	0,001%	0,009%	0,016%	0,026%	0,009%
GH400	0,000%	0,000%	-0,009%	0,028%	-0,030%	-0,050%	-0,010%
GH600	-0,014%	0,022%	0,047%	-0,022%	-0,012%	-0,123%	-0,017%
GH800	0,030%	-0,018%	$0,\!147\%$	$0,\!090\%$	$0,\!112\%$	-0,222%	0,023%
GH1000	$0,\!123\%$	-0,013%	$0,\!174\%$	-0,090%	0,094%	-0,158%	0,022%
Mean	0,023%	-0,001%	0,060%	0,002%	0,030%	-0,088%	0,004%

(a) Gap to reference solution

The next challenge...

Goal: bring together

Operations Research and *Machine Learning*

to solve a *static* and *dynamic* VRP with time windows!

65

More info? https://euro-neurips-vrp-2022.challenges.ortec.com/

The next challenge...

- Real data!
- Static variant: DIMACS
 VRPTW
- Dynamic variant: new requests arrive during the day. Challenge: which orders to dispatch now or delay?

EURO Meets NeurIPS 2022 Vehicle Routing Competition

More info? https://euro-neurips-vrp-2022.challenges.ortec.com/

Why?

Operations Research (OR)

- OR researchers also start using ML
- but often 'simple' techniques
- leaving deep learning potential on the table!

Machine Learning (ML)

- ML research for VRP is hot...
- but unable to outperform SOTA OR techniques
- and fair/independent comparison is lacking!

To get the best results, we must bridge the gap between OR and ML

How?

- Starting the competition at EURO (OR) and end it at NeurIPS (ML) 2022
- Bringing together participants from OR and ML community
- Adding real data from US-based grocery delivery service
- Providing a SOTA VRPTW baseline (Hybrid Genetic Search)
- Encouraging ML approaches by GPU availability and dynamic variant

ORTEC

Code submission + real time leaderboard for engagement

Results

- 150 teams registered
- 50 teams submitted
- 800 submissions

- 1: Kleopatra (TU Munich)
- 2: OptiML (VU Amsterdam/ Groningen Univ.)
- 3: Team_sb (Samsung/Bielefeld univ.)

E README.md
PyVRP 5
pypi package 0.3.0 CI passing docs passing Codecov 94%
The pyvrp package is an open-source, state-of-the-art vehicle routing problem solver.
pyvrp may be installed in the usual way as
pip install pyvrp
This also resolves the few core dependencies pyvrp has. The documentation is available here.
If you are new to metaheuristics or vehicle routing, you might benefit from reading the introduction to HGS for VRP page.

Lab assignment: learning within HGS

https://colab.research.google.com/drive/1n4l0qiL0IGQBi_Scyptn72FNzzScCHHN?usp=sharing

Ideas for learning

Learn when/how to grow (/shrink?) neighborhood/population
Learn which parents to 'do the dance'
Learn which neighbors and/or moves to consider in local search

Etc.

