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Travelling Scientist Problem (TSP)
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Kool et al., 2019

TSP* is (NP-)hard!
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What does it mean?
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‘next location should be nearby’We use HEURISTICS
Can be seen as ‘rules of thumb’

Finding optimal solutions for all problem instances
* unless P = NP

Finding acceptable solutions for relevant problem instances
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Designing of heuristics is
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So what do we do?

HARD 
WORK Feature engineering

• Needs expert knowledge
• Time consuming hand-tuning

Computer Vision Features
(SIFT, etc.)

like feature engineering
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Two eyes?

Nose?

Mouth?

It’s a face! It’s a face!

Traditional approach
Feature engineering

Deep Learning
No feature engineering

Designing of heuristics is like feature engineering
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‘Translate’ problem into solution
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Je suis une personneI am a person

(𝑥1, 𝑦1) (𝑥2, 𝑦2) (𝑥3, 𝑦3) (𝑥4, 𝑦4) (𝑥1, 𝑦1) (𝑥2, 𝑦2)(𝑥3, 𝑦3) (𝑥4, 𝑦4)
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How does that work?
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Sample 𝜋1~𝑝𝜽 𝜋1 𝑠) Sample 𝜋2~𝑝𝜽 𝜋2 𝑠, 𝜋1)

Instance 𝑠 =
( 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 )

Solution 𝝅 = 𝜋1, 𝜋2, …
with length 𝐿 𝝅

Model 𝑝𝜽 𝜋𝑡 𝑠, 𝜋<𝑡)=
𝑝𝜽(next node | partial tour)

𝐸𝑝𝜽(𝝅|𝑠) 𝐿 𝝅
How to optimize 𝜽?

Randomized algorithm
with expected cost:

Sample 𝜋𝑡~𝑝𝜽 𝜋𝑡 𝑠, 𝜋<𝑡)
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REINFORCE (for dummies)
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Do something

Result = ?

Do more often! Do less often!

Sample 𝝅 ∼ 𝑝𝜽(∙ |𝑠)

𝐿 𝝅 = 7.43

Good! Bad!

Increase 𝑝𝜽(𝝅|𝑠) Decrease 𝑝𝜽(𝝅|𝑠)

We need a baseline to 
compare against: 
rollout earlier model

Repeat

𝝅𝑏𝑙 ∼ 𝑝𝜽𝑏𝑙(∙ |𝑠) (greedy!)

𝐿 𝝅𝑏𝑙 = 6.89
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What’s the model architecture?
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𝑝𝜽 𝜋𝑡 𝑠, 𝜋<𝑡)

Graph convolutions

+

Read the paper…
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Experiments
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Train for each problem, same hyperparameters!

Travelling Salesman 
Problem (TSP)

(Stochastic) Prize 
Collecting TSP 
((S)PCTSP)

Vehicle Routing 
Problem (VRP)

Orienteering 
Problem (OP)

Minimize length
Visit all nodes

Maximize total prize
Max length constraint

Minimize length + penalties 

of unvisited nodes

Collect minimum total prize

Minimize length
Visit all nodes

Total route demand must fit 
vehicle capacity
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Results
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Results Attention Model + Rollout Baseline
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• Improves over classical heuristics!

• Improves over prior learned heuristics!
• Attention Model improves
• Rollout helps significantly

• Gets close to single-purpose SOTA (20 to 100 nodes)!
• TSP 0.34% to 4.53% (greedy)
• TSP 0.08% to 2.26% (best of 1280 samples)
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Let’s analyze this 
method…
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‘Predicting’ translations
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Sentence Translation

Neural
Machine

Translation



TEXT LEFT + PHOTO (S)

‘Predicting’ solutions
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Problem Solution

Neural
Combinatorial
Optimization
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It’s not the same!
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Combinatorial
Optimization

Machine
Translation ≠
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It’s not the same!
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Combinatorial OptimizationMachine Translation ≠

Stahlberg & Byrne, 2019

Scoring translations (learning a model)

Finding a good translation (inference)

Scoring solution (objective function)

Finding a good solution (optimization)

Learning problem

Computational problem

No problem
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It’s not the same!
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Combinatorial OptimizationMachine Translation ≠

Maximize quality

(computation is 2nd)

Minimize cost

with minimum computation
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It’s not the same!
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Combinatorial OptimizationMachine Translation ≠

(computation is 2nd)

M
in

im
iz

e 
co

st

with minimum computation
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If we have infinite computation…
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Combinatorial Optimization

M
in

im
iz

e 
co

st

with minimum computation ∞ computation

Exhaustive search With infinite computation,
the task is trivial!(Artificially)

intelligent algorithm

optimal
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The goal
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To find better solutions

M
in

im
iz

e 
co

st

with minimum computation ∞ computation

…with less computation!

optimal
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How?
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Using neural networks… …to make better (heuristic) decisions!

Adding computation... …to reduce computation!

Investment Pay-off
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Impact vs. computation (of your neural network)
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‘Neural
branching’

Learning to
(local) search

?

Computation

Low High

Im
p

ac
t

Low

High

and make them count!

Count your flops…

Predicting 
solution

Sample 
solutions
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Example: AlphaGo

25

Uses (Deep) Neural Network to predict 
which part of the search tree to expand
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Learning to Branch (& Bound?)

• Success depends on branch 
selection

•Often done with very simple 
heuristics

• Learn to predict best branch!

• Example of powerful exact method 
that can be improved by ML

26
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Idea: learn to select 
parents

• In a Hybrid Genetic 
Search algorithm

•More on that later…

…as this will be the lab!

28
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Combining the 
best of both 
worlds

Using what we 
know…

…without being 
limited by what 
we know.

29
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There is more out there!

•So far, we considered using ML for learning HOW to optimize

•We can also use ML for learning WHAT to optimize

• E.g.

- learning driving durations for use in route optimization

- learning constraints/objectives/preferences for scheduling

• Sometimes referred to as ‘predict, then optimize’ framework

•We saw this yesterday, so not for today!

30



CHAPTER SLIDE

Learning to solve routing 
problems

31

2.
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Travelling Scientist Problem (TSP)
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Kool et al., 2019

TSP* is (NP-)hard!
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Results
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Results Attention Model + Rollout Baseline
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• Improves over classical heuristics!

• Improves over prior learned heuristics!
• Attention Model improves
• Rollout helps significantly

• Gets close to single-purpose SOTA (20 to 100 nodes)!
• TSP 0.34% to 4.53% (greedy)
• TSP 0.08% to 2.26% (best of 1280 samples)
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Impact vs. computation (of your neural network)
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?

Computation

Low High

Im
p

ac
t

Low

High

and make them count!

Count your flops…

‘Neural
branching’

Learning to
(local) search

Predicting 
solution

Sample 
solutions
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Let’s try a different approach
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- Chaitanya K. Joshi
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https://www.chaitjo.com/post/deep-learning-for-routing-problems/

https://www.chaitjo.com/post/deep-learning-for-routing-problems/
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Non-autoregressive approach (Joshi et al., 2019)
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Picture by Joshi et al., 2019

We can do better!
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Bringing us to DPDP

39



QUOTE

TL;DR
DPDP is a flexible framework for vehicle routing 

problems…

…that restricts a dynamic program to promising parts of 
the state space…

…using a heatmap of promising edges predicted by a 
neural network!

40
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)
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Dominate

𝐶 𝑆, 𝑖 = min
𝑗∈𝑆∖{𝑖}

𝐶 𝑆 ∖ 𝑖 , 𝑗 + 𝑐𝑗𝑖

Set of 
visited 
nodes

Current 
node

DP state

Minimum 
cost to go 
from 0 to 𝑖
visiting all 
nodes in 𝑆

Cost/distance 
from 𝑗 to 𝑖

Find best solution 
for each DP state
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)
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Artwork by Vaidehi Joshi, https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd

DP (top-down or backward view)Brute-force (forward view)

https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b76d7552e8dd
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)
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DP

Brute-force

D
o
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m
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ate

Forward view

Still impractical!
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Held-Karp DP for TSP (Held & Karp, 1962; Bellman, 1962)
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Restricted DP

Beam search

Forward view

𝑂 𝐵𝑛 or linear

𝑂 𝐵𝑛 or linear

We need a 
good policy

to restrict the 
search space!

Malandraki & Dial, 1996
Gromicho et al., 2012



TEXT LEFT + PHOTO (S)

Deep Policy Dynamic Programming (DPDP)
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DPDP

Forward view

𝑂 𝐵𝑛 or linear

For each iteration
• Expand solutions
• Remove dominated solutions
• Select top 𝐵 according to policy
• Repeat

Policy: select top 𝐵 solutions that maximize the score.

Picture by Joshi et al., 2019

SCORE = HEAT + POTENTIAL

Heat of edges 
in solution

Heat
ℎ𝑖𝑗 ∈ (0,1)

Estimate for 
unvisited nodes 

based on remaining edges

Potential 
avoids 

‘skipped 
nodes’

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756
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Deep Policy Dynamic Programming (DPDP)
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https://arxiv.org/abs/2102.11756

For each iteration
• Expand solutions
• Remove dominated solutions
• Select top 𝐵 according to policy
• Repeat

𝑂 𝐵𝑛 or linear

Fo
rw

ard
 view

https://arxiv.org/abs/2102.11756
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Experiments

48
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Results (TSP/VRP)
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Results (TSP with time windows)

50
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Quality vs. computation
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Ablations

52
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Deep Policy Dynamic Programming (DPDP)

53

•DP is flexible framework for many VRP variants e.g. time windows

• Suitable for GPU implementation

•Natural trade-off compute vs. performance -> asymptotically optimal

• Supervised training based on example solutions

• Test time: only evaluate NN once!

https://arxiv.org/abs/2102.11756

https://arxiv.org/abs/2102.11756
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Wouter Kool & co(lleagues). -- original HGS by Thibaut Vidal

for the DIMACS VRPTW Challenge

Hybrid Genetic Search

Joep Olde Juninck
Ernst Roos
Kamiel Cornelissen
Pim Agterberg
Jelke van Hoorn
Thomas Visser

Public
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•Vehicle routing problem with 
capacities

•Every customer must be served 
within a time window

•DIMACS variant: Minimize 
distance only (not vehicles)

55

In the DIMACS challenge
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Hybrid Genetic Search

feasible infeasible

“I’m better than you!”

“I’m more diverse!”

The pool

Offspring creation Local search

The binary
tournament

Initialization

56

€
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What did we do?
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feasible infeasible

The pool

Offspring creation Local search

The binary
tournament

Initialization

+ SREX

+ Time
windows

+ Heuristics

€

The BKS

- SWAP* for VRPTW
- Growing neighborhood
& population…  & make

it fast!
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Supporting time windows

•Use time-warp principle

•Cache computation for prefix and postfix 
of routes

•Use two-level hierarchy for fast queries 
in middle of route

•Penalty booster: increase penalty by 
100% if no feasible solution found

58
Source: Vidal et al. 2012



TEXT

Offspring generation
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Source: Nagata et al. 2010

Source: Vidal 2021

Selective Route Exchange (SREX)

Ordered Crossover (OX)
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Local search

•SWAP, RELOCATE, 2-OPT, 2-OPT*

•Moves between near neighbors

•Smart ‘pre-checks’

•SWAP*, see next slide
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SWAP*

Exchange two nodes,
insert at best position
in other route
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SWAP*

•Cache top 3 insertion positions

•Exact for CVRP

•Approximate for VRPTW
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Growing the neighborhood & population

•Every 10K iterations

•Grow neighborhood by 5

•Grow population size by 5

•*Slightly different schedule for different instances
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Results (in DIMACS)

64
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The next challenge…

Goal: bring together

Operations Research and
Machine Learning

to solve a static and
dynamic VRP with time 
windows!

EURO Meets NeurIPS 2022
Vehicle Routing Competition

More info? https://euro-neurips-vrp-2022.challenges.ortec.com/
65

https://euro-neurips-vrp-2022.challenges.ortec.com/
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The next challenge…

•Real data!

• Static variant: DIMACS 
VRPTW

•Dynamic variant: new 
requests arrive during 
the day. Challenge: 
which orders to 
dispatch now or delay?

EURO Meets NeurIPS 2022
Vehicle Routing Competition

More info? https://euro-neurips-vrp-2022.challenges.ortec.com/
66

https://euro-neurips-vrp-2022.challenges.ortec.com/
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Why?

Operations Research (OR)

• OR researchers also start using ML

• but often ‘simple’ techniques

• leaving deep learning potential on the table!

67

Machine Learning (ML)

• ML research for VRP is hot…

• but unable to outperform SOTA OR techniques

• and fair/independent comparison is lacking!

To get the best results, we must bridge the gap between OR and ML

2022

OR ML
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How?

• Starting the competition at EURO (OR) and end it at NeurIPS (ML) 2022

•Bringing together participants from OR and ML community

•Adding real data from US-based grocery delivery service

•Providing a SOTA VRPTW baseline (Hybrid Genetic Search)

• Encouraging ML approaches by GPU availability and dynamic variant

•Code submission + real time leaderboard for engagement
68
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Results

•150 teams registered

•50 teams submitted

•800 submissions

•1: Kleopatra (TU Munich)

•2: OptiML (VU Amsterdam/ Groningen Univ.)

•3: Team_sb (Samsung/Bielefeld univ.)

69
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Lab assignment: learning within HGS

https://colab.research.google.com/drive/1n4l0qiL0IGQBi_Scyptn72FNzzScCHHN?usp=sharing

https://colab.research.google.com/drive/1n4l0qiL0IGQBi_Scyptn72FNzzScCHHN?usp=sharing
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Ideas for learning

•Learn when/how to grow (/shrink?) 
neighborhood/population

•Learn which parents to ‘do the dance’

•Learn which neighbors and/or moves to consider 
in local search

•Etc.
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