e

I his ecosystem is a protected area and is home to many
animals, birds, and plants. The Ramble is also one of the
top bird-watching locations in the United States.

Rambling Away from Decision Focused Learning
A circuitous investigatation of what DFL can do
& if you keep pushing at its limits

What I'll present is the result of joint work!

Many thanks to: Senne Berden, Victor Bucarey, Allegra De Filippo, Michelangelo
Diligentl, Tias Guns, Jayanta Mandi, [rfan Mahmutogullari, Michela Milano,
Maxime Mulamba, Mattia Silvestri

llllll

01. Getting Started

Getting Started

As stated, our starting point is Decision Focused Learning
Specifically the SPO formulation, where we focus on problems in the form:

z*(y) = argmin_{y' z | z € F})

m Zistheset of decisions (numeric or discrete)
m [isthefeasible space

m yisacostvector,whichisnot directly measureable

Rather than to y, we have access to an observable x

m Based on x, we can attempt to train a parametric estimator h(x, @)

m .Using training examples {(x;, ¥i) 12

a s

A Possible Example

For example, we may have to deal with routing problem
We need to select the best path to reach our destination

L

m \We don't know the current state of the traffic

m But we can guess! E.g. based on the time, weather, etc.

Inference l

This setup involves using the estimator and the optimizer in sequence

ML | Y =Nhz,0) | "
T —4 odel s| Optimizer > 2" (7))

At inference time:

m \We observe x
m \We evaluate our estimator h(x, @) toobtainy

m We solve the problem to obtain z*(y)

Overall, the process consists in evaluating:

z"(h(x, 0))

a s

A Two-phase Approach

We can use supervised learning for the estimator

Formally, we obtain an optimal parameter vector by solving:

0* — argminH{E(X,y)NP(X,Y) [L(.)l;a y)] | .)/; — h(x9 9)}

m Where L is asuitable loss function (e.g. a squred error)

m We'll refer to this as a prediction-focused approach

However, using supervised learning is suboptimal

m Asmall mistake interms of L

m ..May lead the optimizer to choosing a poor solution

-

The root of the issue is a misalignment between the cost
metric at training and inference time

a s

Spotting Trouble

Let's see this in action on a toy problem
Consider this two-variable optimization problem:

argmin_{yozo + y121 | zo +z1 = 1}
Let's assume that the true relation between x (a scalar) and y is:

vo = 2.5x7
y; = 0.3 +0.8x

..But that we can only learn this model with a scalar weight 6:

)/;O — 92x

Z20u#'model cannot represent the true relation exactly

Spotting Trouble l

This is what we get from supervised learning with uniformly distribute data:

In [15]: util.draw(w=None, figsize=figsize, model=1)

Optimized theta: 1.375

2.5

2.0 1

1.5 A

1.0

0.5

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m [hecrossing point of the grey lines is where we should pick item O instead of 1

m [heorange lines (trained model) miss it by a wide margin

a s

Not All is Lost

However, we cas sidestep the issue by disergarding accuracy

In [1l6]:

m If we focus on choosing @ to match the crossing point

m ..We lead the optimizer to consistently making the correct choice

a s

util.draw(w=0.91, figsize=figsize,

2.5

2.0 1

1.5 A

1.0 +

0.5 1

0.0

model=1)

- Yo
..... y1
Yo
1
................................ s .Jﬂrﬂﬂ##ﬂ
0.0 0.2 0.4 0.6 0.8 7

The Main DFL ldea l
DFL attempts to achieve this by using a task-based loss at training time
There's some consensus on this "holy grail" training problem:

0* — argminH{E(X,y)NP(X,Y) [regret(j;a y)] |)/; — h(xa 9)}
Where in our setting we have:
A I _x/n T _
regret(y, y) =y 2z (¥) =y z ()

m 2" () is the best solution with the estimated costs
m 27 () is the best solution with the true costs

Intuitively, we want to loose as little as possible w.r.t. the best we could do

[One of the main challenges in DFL is dealing with this loss]
4

Knowing Regret

To see this, let's push our example a little further

In [17]: x = util.normal sample (mean=0.54, std=0.2, size=1000)
util.plot histogram(x, figsize=figsize, label='x")

0.14 [=

0.12

0.10 +

0.08

0.06

0.04

0.00

0.02
| N R —

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m Say we have access to a normally distributed collection of x values

m ..And to the corresponding true values y

a s

Knowing Regret l

This is how the regret looks like for a single example

In [18]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=1l, figsize=fic

number of examples: 1

0.20 — regret
0.15 A
0.10 A
0.05 1
0.00
—{]:25 O.E)D CI.I25 Cl.l':-D CI.IT"S l.lII]CI l.l25 l._l.':-Cl

m If f(x,0)leadstothe correct decision, the regretisO

m Otherwise we have some non-null value

a s

Knowing Regret l

...And this is the same for a larger sample

In [19]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=64, figsize=f:

number of examples: 64

| — regret

0.12

0.10

0.08 ~

0.06

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m Forlinear problems and finite samples the regret function is piecewise constant

m ..Which makes a direct use of gradient descent impossible

a s

SPO+ Loss

A lot of research in the DFL field is about addressing this problem
We will just recap the SPO+ loss from [1], whichis (roughly) defined as:

A AT AT A . A A
Sp0+(y9 y) — ysp()Z*(y) _ ySPOZ*(ySPO) Wlth ySpO — 2y T y
There are two main ideas here:

The first it to see what happens with the predicted (not the true) costs

m We know z*(¥,,) is the optimal solution for y,,
m But we wish for z*(y) to be optimal instead
m Therefore if)?STPOZ* (y) >)7STpOZ* ()751,0) we give a penalty

With this trick, a differentiable term (i.e.)?Spo) appears in the loss

[1] ElImachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”" Management Science 68.1 (2022): 9-26.

a s

SPO+ Loss l
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [1], whichis (roughly) defined as:
A AT AT A . A A
Sp0+(y9 y) — ysp()Z*(y) _ ySPOZ*(ySPO) Wlth ySpO — 2y T y

There are two main ideas here:
The second is to avoid using the estimates y directly

m Werely instead on an altered cost vector, i.e.)?Spo
m Using y, directly would resultinalocal minimum for y = 0

m With)?Spo, the local minimum isin a location _that depends on y

We'll try to visualize this phenomenon

[1] ElImachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”" Management Science 68.1 (2022): 9-26.

a s

SPO+ Loss l

This is the SPO+ loss for a single example on our toy problem

In [20]: util.draw loss landscape (losses=[util.SPOPlusLoss ()], model=1l, seed=42, batch size=1, figsize=f:

number of examples: 1

0.40 —— SPO+
0.35
0.30 ~
0.25
0.20
0.15 ~
0.10
0.05 ~

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m As expected, there are two local minima

a s

SPO+ Loss

This is the SPO+ loss for a two examples

In [21]:

m [he"good" local minima for both examples are roughly in the same place

m [he "spurious" local minima fall in different position

a s

util.draw loss landscape (losses=[util.SPOPlusLoss ()], model=1l, seed=42, batch size=2,

0.4 1

0.3 1

0.2 1

0.1

0.0 -

number of examples: 2

figsize=f:

—— SPO+

!
=0.25

!
0.00

!
0.25

!
0.50

I
0.75

!
1.00

!
1.25

!
1.50

SPO+ Loss l

Over many example, the spurious local minima tend to cancel out

In [22]: util.draw loss landscape (losses=[util.SPOPluslLoss ()], model=1l, seed=42, batch size=64, figsize=1

number of examples: 64

0.35

— SPO+

0.30 ~

0.25

0.20

0.15 ~

0.10 ~

0.05 ~

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [hiseffectisinvaluable when training with gradient descent

a s

A (Sligthly) More Complex Example l

Let's see the approach in action on a second example
We will consider this simple optimization problem:

z5(y) = argmin{yTz | vz >r,z€{0,1}")

m Ve need to decide which of a set of jobs to accept
m Acceptingajob (z; = 1) providesimmediate value v;
m [hecost y; of the job is not known

m .. Butitcanbeestimated based on available data

In [23]: nitems, rel reqg, seed = 20, 0.5, 42
prb = util.generate problem(nitems=nitems, rel reg=rel req, seed=seed)

display (prb)

ProductionProblem(values=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.06239781
1.02323344 1.346470460 1.240446 1.28322903 1.0082338 1.38796394
1.33297706 1.08493564 1.07272999 1.0733618 1.1216969 1.20990257

f 1.17277801 1.11649166], requirement=11.830809153591138)

A (Sligthly) More Complex Example l

Next, we generate some training (and test) data

In [24]: data tr = util.generate costs (nsamples=350, nitems=nitems, seed=seed, noise scale=0, noise types
data ts = util.generate costs (nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, nois
util.plot df cols(data tr, figsize=figsize, title='Training Set')

Training Set
1.0 -
0.8 \ e _ __?_.__-==_.-—__.._=—_—-_
0.6 /"’74""‘*‘%'—*"' — — ————
=
0.2 4 —_— ___,;::::"-':""'rf - ____\
y| ———— —— ———

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m Ve assume that costs can be estimated based on an scalar observable x

m [he set of least expensive jobs changes considerably with x

a s

Prediction Focused Approach

As a baseline, we'll consider a basic prediction-focused approach

In [25]: pfl = util.build nn model (input shape=1, output shape=nitems, hidden=[], name='pfl det', output
$time history = util.train nn model (pfl, data tr.index.values, data tr.values, epochs=1000, loss
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl, data ts.index.values, data ts.values, label='test')

CPU times: user 8.94 s, sys: 330 ms, total: 9.27 s
Wall time: 7.36 s

0.25 - —— loss

0.20
0.15
0.10 +
0.05

0.00 -

T T T T T
0 200 400 600 800 1000
epochs

R2: 0.86, MAE: 0.086, RMSE: 0.10 (training)
R2: 0.86, MAE: 0.087, RMSE: 0.10 (test)

e [pte ML model is just a linear regressor, but it is decently accurate

Prediction Focused Approach

...But our true evaluation should be in terms of regret

In [26]: r tr = util.compute regret (prb, pfl, data tr.index.values, data tr.values)

r ts = util.compute regret (prb, pfl, data ts.index.values, data ts.values)

util.plot histogram(r tr, figsize=figsize, label='training', data2=r ts, label2='test',K print me

0.35 4] —— training
test
0.30

0.25
0.20
0.15

0.10 +

0.05 t I

0.00

0.00 0.05 0.10 0.15 0.20

Mean: 0.052 (training), 0.053 (test)

m Inthiscase, the average relative regretis ~5%

a s

A Decision Focused Learning Approach

In [27]: spo = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name='sy
$time history = util.train dfl model (spo, data tr.index.values, data tr.values, epochs=200, verk

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(spo, data tr.index.values, data tr.values, label='training')

util.print ml metrics(spo, data ts.index.values, data ts.values, label='test')

CPU times: user 4min 31s, sys: 20.3 s, total: 4min 51s
Wall time: 4min 51s

—— loss

epochs

R2: -0.14, MAE: 0.22, RMSE: 0.27 (training)
R2: -0.14, MAE: 0.22, RMSE: 0.27 (test)

In terms of accuracy, this is considerably worse

a s

Comparing Regrets

But the regret is so much better!

In [28]: r ts spo = util.compute regret (prb, spo, data ts.index.values, data ts.values)
util.plot histogram(r ts spo, figsize=figsize, label='spo',6K dataZ=r ts, label2='pfl', print mear

0.8 — — spo
fl
0.7 1 P
0.6 1

0.5

0.4
0.3
0.2 1

0.1

e e

T T T T T
0.00 0.05 0.10 0.15 0.20

0.0 4

Mean: 0.008 (spo), 0.053 (pfl)

This is the kind of result that attracted so much attention since [2]

[2] Donti, Priya, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." Advances in neural
information processing systems 30 (2017).

a s

llllll

02. Picking a Direction

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet
Infact, it's easy to see that:

E[regret(J,)] - 0
E[L(y,y)]—0

Intuitively::
m [he more accurate we can be, the lower the regret

m Eventually, perfect predictions will result in O regret

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet
Infact, it's easy to see that:

E[regret(J,)] - 0
E[L(y,y)]—0

Intuitively::
m [he more accurate we can be, the lower the regret

m Eventually, perfect predictions will result in O regret

But then... What if we make our model bigger?

m \We could get good predictions and good regret

m ..And training would be much faster

a s

Our Baseline

Let's check again the results for our PFL linear regressor

In [2]: pfl = util.build nn model (input shape=1l, output shape=nitems, hidden=[], name='pfl det', output
history = util.train nn model (pfl, data tr.index.values, data tr.values, epochs=1000, loss='mse!'
r tr = util.compute regret (prb, pfl, data tr.index.values, data tr.values)
r ts = util.compute regret (prb, pfl, data ts.index.values, data ts.values)
util.plot histogram(r tr, figsize=figsize, label='training',6 data2Z=r ts, label2='test', print me

| —— ftraining

test

0.35

0.30

0.25

0.20

0.15 +

0.10 +

0.05 + L]

0.00 ~

0.00 0.05 0.10 0.15 0.20

Mean: 0.052 (training), 0.053 (test)

Th2W|II be our main baseline

PFL Strikes Back

Let's try to use a non-linear model

In [3]: pfl acc = util.build nn model (input shape=1, output shape=nitems, hidden=[8], name='pfl det acc

$time history = util.train nn model (pfl acc, data tr.index.values, data tr.values, epochs=1000,

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl acc, data tr.index.values, data tr.values,
util.print ml metrics(pfl acc, data ts.index.values, data ts.values,

CPU times: user 10.3 s, sys: 367 ms, total: 10.7 s
Wall time: 7.95 s

label="'training"')
label="test')

0.3 1

0.2 7

0.1

— loss

0.0 1

T T
0 200 400
epochs

R2: 0.99, MAE: 0.019, RMSE: 0.03 (training)
R2: 0.99, MAE: 0.019, RMSE: 0.03 (test)

Vigge accurate, it is!

T
600

T
800

T
1000

PFL Strikes Back l

...And the improvement in terms of regret is remarkable

In [4]: r ts acc = util.compute regret (prb, pfl acc, data ts.index.values, data ts.values)
util.plot histogram(r ts acc, figsize=figsize, label='pfl -- hidden layer', dataZ2=r ts, label2=
0.8] —— pfl - hidden layer
pfl - linear
0.6
0.4 1
0.2
0.0
O.KI)D 0.&)5 O.IILO O.Il5 0.I20
Mean: 0.005 (pfl -- hidden layer), 0.053 (pfl -- linear)

DFL might do better with the same model complexity, but we the return would be
diminished

a s

Evening the Field

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster

Evening the Field

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster

For example:
m You canuse a problem relaxation,asin|1]
m You can limit recomputation by caching past solutions, as in [2]

m Youcanwarm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

Evening the Field l

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster

For example:

m You canuse a problem relaxation,asin|1]
m You can limit recomputation by caching past solutions, as in [2]

m Youcanwarm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

[1] Mandi, Jayanta, and Tias Guns. "Interior point solving for Ip-based prediction+ optimisation." Advances in Neural Information Processing

Systems 33 (2020): 7272-7282.
[2] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns: Contrastive Losses and Solution

Caching for Predict-and-Optimize. [JCAlI 2021: 2833-2840

a s

Solution Cache and Warm Start

Solution caching is applicable if the feasible space is fixed

|.e. to problems in the form:

z*(y) = argmin_{ f(z) | z € F}

m During training, we maintain a solution cache .S

m [nitially, we

m Before com
m With proba
m With proba

populate .S with the true optimal solutions z*(y;) for all examples
buting z* () we flip a coin

vility p, we run the computation (and store any new solution in .y’)

hility 1 — p, we solve instead 2~ (y) = argmin,{ f(z) | z € §}

Warm starting simple consists in using the PFL weights to initialize 0

Since accuracy is correlated with regret, this might accelerate convergence

a s

Speeding Up DFL

Let's use DFL with linear regression, a warm start, and a solution cache

In [5]: spo = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name='sy
$time history = util.train dfl model (spo, data tr.index.values, data tr.values, epochs=200, verk

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(spo, data tr.index.values, data tr.values, label='training')
util.print ml metrics(spo, data ts.index.values, data ts.values, label='test')

CPU times: user 50.8 s, sys: 4.91 s, total: 55.7 s
Wall time: 55.4 s

—— loss

0.3

0.2 1

0.1 A

T T T T T
0 25 50 75 100 125 150 175 200
epochs

R2: 0.65, MAE: 0.12, RMSE: 0.16 (training)
R2: 0.65, MAE: 0.12, RMSE: 0.16 (test)

T hgitraining time is still large, but much lower than our earlier DFL attempt

Speeding Up DFL l

And the regret is even better!

In [6]: r ts spo = util.compute regret (prb, spo, data ts.index.values, data ts.values)
util.plot histogram(r ts spo, figsize=figsize, label='spo',6K dataZ=r ts, label2='pfl', print mear

— spo
0.8 1 pfl

0.6 1

0.4 4

0.2

0.0 4

T T T T T
0.00 0.05 0.10 0.15 0.20

Mean: 0.004 (spo), 0.053 (pfl)

We are matching the more complex PFL model with a simple linear regressor

a s

Reflecting on What we Have l

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

m As the models become more complex we have diminishing returns
m ..But for some applications every little bit counts

Second, it may allow using simpler ML models

m Simple models are faster to evaluate

m ..But more importantly they are easier to explain

m E.g.we caneasily perform feature importance analysis

Reflecting on What we Have l

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

m As the models become more complex we have diminishing returns
m ..But for some applications every little bit counts

Second, it may allow using simpler ML models

m Simple models are faster to evaluate

m ..But more importantly they are easier to explain

m E.g.we caneasily perform feature importance analysis

Intuitively, DFL works best where PFL has estimation issues
Can we exploit this fact to maximize our advantage?

Maximizing Results

There's a simple case where PFL cannot make perfect predictions

You just need need to target a stochastic problem!

m E.g.youcanusually tell the traffic situation based on (e.g.) time and weather

T .‘.}ut there still a lot of variability

Maximizing Results l

Formally, we need a stochastic process, i.e. a stochastic function

We can generate for a stochastic variant of our problme

In [8]: data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, noise scale=.15, noise tyr
util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set
1.0
0.8 F 300 - . ; . he e so 3 b, gt come e sake 3 ge
’ * ' L% 5 . & -~ :. L il % & " : "*' L - B
s Ol 20k ¢ S tiea i3 :'?ﬁ l,jv:iw;ﬂ 'éﬁ ~i' --_.1“:" dl.
0.6 'H": 3 ‘* - T 'i.: ° ::"' . ;'_ 219 #; i_;lgg‘!" : gl =¥ % T
g . AOSIRTENIES: T
£.‘ al
0.4 1 i g ;"t
- 1 & ¥ .
""n’i!:.‘ '.J.i.:—;i . e 5-‘. : £ s g
0.2 v 1 3 oF i = ;] £ o= ag b
{. . . Th ' a
0.0 1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

We treat boh X and Y as random variables, with distribution P(X, Y)

a s

Adjusting Goals

But with a stochastic process, what is our real objective?
For a given x, we can formalize it like this:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }

m Given a value for the observable x
m We want to find a single decision vector z

m Suchthat zisfeasible
m ..And Z minimized the expected cost over the distribution P(Y | X = x)

[This is called a one-stage stochastic optimization problem]

a s

...And Keeping the Setup

Let's look again at the DFL training problem
0" = argmin,{E y)~px.v) [regret(y,) | y = h(x, 6)}
With:
A _ I _*x/n T _
regret(y, y) =y z (¥) =y z°(y)
Since y! z*(y) is independent on 0, this is equivalent to:
0% = argming {Ecx yy~rx.n [V 251 | ¥ = h(x, 0)}

Which can be rewritten as:

0" = argming {E,pox)~pix) V' 271 | ¥ = h(x, 6)}
4

...And Keeping the Setup

Now, let's restrict to the case where Xx is fixed
0" = argming { £, pry|x=x) [)’TZ* W]y =h(x,0))
Finally, by definition of z*(-) we have:
0% = argming {Ey~ pyix=x) [y 2" D] | ¥ = h(x, 0), z*(p) € F}

N other words:

m We are choosing 0

m So that z*(p) minimizes E . pry1x=x) [¥' 2*(D)]

[This is almost identical to one-stage stochastic optimization!]

a s

DFL For One-Stage Stochastic Optimization l

This means that DFL can address these problems, with one restriction and
two "superpowers":

The restrictionis that we control z only through €

m [herefore, depending on the chosen ML model architecture
m ..Obtaining some solutions might be impossible

m [hisissue can be sidestepped with a careful model choice

The first superpower is that we are not restricted to a single x value
m Given a new value for x, we just need to evaluate h(x, 0)
m ..And then solve the usual optimization problem

m Many approaches do not deal with the estimation of the y distribution

For the second superpower, we need to investigate a bit more

a s

Classical Solution Approach

What would be the classical solution approach?
Starting from:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }
We can use linearity to obtain:
argmin, {[Epr(y|X:x) y]'z | z € F}

m 50, we would first need to estimate the expected costs

m ...[henwe could solve a deterministic problem

Classical Solution Approach

What would be the classical solution approach?
Starting from:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }
We can use linearity to obtain:
argmin, {[Epr(y|X:x) y]'z | z € F}

m 50, we would first need to estimate the expected costs

m ...[henwe could solve a deterministic problem

L But isn't this what PFL is doing?
&

Regression and Expectation

(Stochastic) Regression is often presented as learning an expectation
.But it's trickier than that

m Using an MSE loss is equivalent to trying to learn E .~ pry| x=x) [V]
m ..Butonly assumingthat P(Y | X = x) is Normally distributed

m ..And that it has the same variance everywhere

It is possible to do the same under more general conditions

..But it is much more complex

m | we know the distribution type, we can use a neuro-probabilistic model

m Otherwise, we need a fully fledged contextual generative model

In DFL, we can address this problem with O added effort!

a s

A Simple Stress Test
We can test this idea by generating a stochastic dataset

In [34]: data tr = util.generate costs (nsamples=350, nitems=nitems, seed=seed, noise scale=.2, nolse type

data ts = util.generate costs(nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noic

util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set
1.0
0.8 1
. 1% % o =
-] ""1 o # e o
0.6 > LT L, ‘ - A £a i= L e e s 5.8 .,
o a 35 %% Rt ok e s s :5 -} t‘_;f..“ }- L jn.ﬁ“-’r" %w:".'.‘, 4
wd . B 11000 SEIANER' ity BB 3B A 431
0.4 M T BN ot Bk i oo s SR AL I T o Rl et kR
rs B To gt Tl B d o7 B AEEs kR
i "-N-I (-*':—.‘" ‘s:i '.! i e o # ‘.': - f
0.2 - NS e T ST L v 4 R S 3
ﬁ‘.mi ¢!"1§§§ & ﬂ;—fazi I. f;‘_ e O el g & : iy 0 - g &
~& L1l L e 95 : e 9 s B A #oigs V2 pan daiivey SlEL v LW
0.0 1 uiﬁmi Tl _ 1 LB 1 1 " e = g SRS e 505 SEEC S S G0 SIS Gt GRSl § cpuic g LUIBEEE SE NS 68 pese Se
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

../And scaling the variance with y (a very common seeting in practice)

a s

Training a PFL Approach

We will train again a non-linear prediction focused approach

In [36]: pfl 1s = util.build nn model (input shape=1, output shape=nitems, hidden=[8], name='pfl 1s', outg
time history = util.train nn model (pfl 1s, data tr.index.values, data tr.values, epochs=1000,
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl 1s, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl 1s, data ts.index.values, data ts.values, label='test')

CPU times: user 9.74 s, sys: 330 ms, total: 10.1 s
Wall time: 7.53 s

0.125 — loss
0.100
0.075
0.050 ~

0.025

T T T T T
0 200 400 600 800 1000
epochs

R2: 0.81, MAE: 0.068, RMSE: 0.09 (training)
R2: 0.82, MAE: 0.068, RMSE: 0.08 (test)

Al hggaccuracy is (inevitably) worse, but still pretty good

PFL Regret l
Let's evaluate the regret of the PFL approach

In [37]: r tr 1s = util.compute regret (prb, pfl 1ls, data tr.index.values, data tr.values)
r ts 1s = util.compute regret (prb, pfl 1ls, data ts.index.values, data ts.values)

util.plot histogram(r tr 1s, figsize=figsize, label='training', data2=r ts 1ls, labelZ2='test',K p1

—— fraining

0.30 ~ test

0.25
0.20
0.15

0.10 + } | I

0.05 +]

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mean: 0.059 (training), 0.057 (test)

Theregret is has worsened, due to the effect of uncertainty

a s

Training a DFL Approach

We also a DFL approach with the same non-linear model

[39]: spo 1s =
$time history =
util.plot training history(history,
util.print ml metrics(spo 1ls, data tr.index.values, data tr.values,

util.print ml metrics(spo 1ls, data ts.index.values, data ts.values,

util.build dfl ml model (input size=1l, output size=nitems, problem=prb, hidden=[8], name
util.train dfl model (spo 1ls, data tr.index.values, data tr.values, epochs=200, x

figsize=figsize narrow, print final scores=False)

label='training')
label="test'")

CPU times: user 2min 51s, sys: 1llmin 19s, total: 14min 11s
Wall time: 1min 23s
— loss

0.30 +

0.25 -

0.20 -

(I) 2I5 5I[} 7I5 l[I)U lé 5 15I[] l_.‘I'S 2 [IIO
epochs
R2: 0.27, MAE: 0.12, RMSE: 0.19 (training)
R2: 0.27, MAE: 0.12, RMSE: 0.19 (test)

DFL Regret l

Now we can compare the regret for both approaches

In [40]: r ts spo 1s = util.compute regret (prb, spo 1ls, data ts.index.values, data ts.values)
util.plot histogram(r ts spo 1s, figsize=figsize, label='spo -- one stage', dataZ=r ts 1ls, label
] —— 5p0 -- one stage
0.5 1 pfl -- one stage
0.4 1
0.3 1
0.2 1
0.1 4 —I_'
0.0 1 l—'—l—'
0.&)0 O.l:I)S O.IlO O.Il5 0.:20
Mean: 0.020 (spo -- one stage), 0.057 (pfl -- one stage)

Thereis a significant gap again, since the PFL approach is operating on an
Incorrect semantic

a s

Considerations l

DFL can be thought of as a one-stage stochastic optimization approach

In this setting:

m [nparticular, using a more accurate PFL model might still have poor regret
m ..Unless we know a lot about the distribution

B ..Or we use avery complex estimator

m Conversely, DFL has not suchissues

The gap becomes wider in case of non-linear cost functions:

m In this case the expected cost would not be equivalent to a sum of expectations
m But a DFL approach would have no such issues

m ..Provided it could deal with with non-linear functions

a s

llllll

03. Breakng Off

Two-Stage Stochastic Optimization l

If DFL targets one-stage stochastic optimization, could we do two-stage?

m Forexample, in first stage we decide what to pack in our suitcase
m ..During the trip, we may realize we have forgotten something

m ..And we need to spend money to buy the missing stuff

a s

Two-Stage Stochastic Optimization l
If DFL targets one-stage stochastic optimization, could we do two-stage?
Two-stage problems are among the most interesting in stochastic optimization

m [heyinvolve making a set of decisions now
m [henobserving how uncertainty unfolds
m ..And making a second set of decisions

The former are called first-stage decisions, the latter recourse actions

Here's an example we will use for this topic
Say we need to secure a supply of resources
m First, we make contracts with primary suppliers to minimize costs

m [f there are unexpected setbacks (e.g. insufficient yields)

m ..[henwe can buy what we lack from another source, but at a higher cost

a s

Two-Stage Stochastic Optimization l
Let's define two-stage stochastic optimization problems (2s-SOP) formally:

argmin, {f(z) + Eypvix=x) [minr(z",z,y)| |z € F,z" € F'(z, y)}
Z

m Y represents the uncertaininformation

m Zisthevector of first stage decisions

m I isthefeasible space for the first stage

m z” isthe vector of recourse actions

m z” is not fixed: it can change for every sampled y

m The set of feasible recourse actions F” (z, y) also changes for every y

m [istheimmediate cost function, 7 is the cost of the recourse actions

a s

A Simple Example

We will consider this simple problem
~Which is based on our previous supply planning example:

T " _n

Z + [EyNP(Y|X=x) minc’ z

le

argmin, ¢

subject to: y' z + 2" > v
z € {0,1}", 2" e Ny

m z; = 1 iff we choose then h-th supply contract

m C; isthe cost of the j-th contract

m), istheyield of the j-th contract, whichis uncertaint
B Vi IS the minimum total yield, which is known

m z” isthe number of units we buy at cost ¢” to satisfy the vield requirement

a s

Scenario Based Approach

Classical solution approaches for 2s-SOP are scenario based
We start by sampling a finite set of N values from P(Y | X = x)

T 1 " _ny

argmin, min,» ¢ z + ~ &

subject to: y' z + 21 2 Ymin Vk=1..N
z e {0,1}"
Z;c’ e Ny Vk=1..N

Then we build different recourse action variables for each scenario
m .\We define the feasible sets via constraints
m ..And we use the Sample Average Approximation to estimate the expectation

The method is effective, but also computationally expensive

a s

DFL for 2s-SOP

Could we do something similar with DFL?
As a recap, our DFL training problem is:

0" = argming { Exy~pox.v) [regret(y, y)] | ¥ = h(x, 6) |
With:

regret(y, y) = y' z°(P) — y' 2" (y)

And:

z"(y) = argmin_{y' z | z € F)

DFL for 2s-SOP l

With the same transformations used in the one-stage case, we get:

0" = argming { Eypiyjx=x) [y 2] | ¥ = h(x,0),z"(») € F}

Now, say we had a DLF approch that could deal with any function g(z, y)

m Inthiscase y would be a vector of uncertain parameters (not necessarily costs)

m The function should compute the equivalent of y! z*(9)
m ..|.e.the true cost of the solution computed for the estimate costs

Under this conditions, at training time we could solve:

0" = argming { Ey.pry)x=x) [8Z* (D), W] | ¥ = h(x,0), 2" (p) € F}

[t would still be DFL, just a bit more general

a s

DFL for 2s-SOP

At this point, let's choose:

8(z.y) = min {f(2) +r(z". 2,y | 2" € F'(z)}

m Foragivensolution z, g(z, y) computes the best possible objective

m ..Assuming that the value of the parametersis y

By substituting in the training formulation we get:

Z

argming f(z"(y)) + Ey~pr|x=x) |minr 2", 2" (), y)
subject to: y = h(x,0),z*(y) € F,z" € F"(z,y)

WHRich can definitely be used for 2s-SOP problems!
¢ ' :

Grouding the Approach l

We can ground the approach by relying on the scenario-based formulation

In our example problem, we compute z*(y) by solving:

L c"zZ

z*(y) = argmin_minc
subject to: vz + 21 2 Ymin Vk=1..N
z e {0,1}"

ZZ e Ng Vk=1..N

And we define g(z, y) as:

. /!
g(z,y) = minyg ¢l z + ¢ z)

subject to: vyl z + 21 2 Ymin Vk=1..N
ZZ e Ny Vk=1..N

Overview and Properties

Intuitively, the approach works as follows

m We observe x and we compute y
m We compute z*(3) by solving a scenario problem
m We compute g(z*(9), y) by solving a scenario problem with fixed z values

JAnd we end up minimizing the expected cost of the 25-SOP

Compared to the classical approach, we have 1 restriction and 3
"superpowers"”

m Therestriction: we control z* only through 0
m Superpower 1: we are not restricted to a single x

m Superpower 2: works with any distribution

m Superpower 3: at inference time, we always consider a single scenario

a s

Scalable Two-stage Stochastic Optimization

The last advantage is massive
The weakest point of classical 2s-SOP approach is scalability

m Multiple scenarios are required to obtain good results

m ..But they also add more variables

With NP-hard problem, that solution time may grow exponentially

With this approach, the computational cost is all at training time

m |t caneven be lower, since you always deal with single scenarios
m [here are alternatives, such as 1], where ML is used to estimate the recourse

m ...[hese have their own pros and cons

[1] Dumouchelle, Justin, et al. "Neur2sp: Neural two-stage stochastic programming." arXiv preprint arXiv:2205.12006 (2022).

a s

The Elephant in the Room l

So far, so good, but how to we make g(z, y) differentiable?
There are a few alternatives, all with limitations:

m [he approachfrom [1] handles parameters in the problem constraints
't is based on the idea of differencing the recourse action
..Butitis (mostly) restricted to 1D packing problems

m [he approachfrom [2] can be used for 2s-SOP with a stretch
't based on idea of embedding a MILP solver in ML
..But it's semantic does not fully align with 2s-SOP

Here, we will see different technique

[1]Hu, X, Lee, J. C. H.,and Lee, J. H. M. Predict+optimize for packing and covering Ips with unknown parameters in constraints. CoRR,

abs/2209.03668, 2022. doi: 10.48550/arXiv.2209.03668.
[2] Paulus, Anselm, et al. "Comboptnet: Fit the right np-hard problem by learning integer programming constraints." International Conference on

Machine Learning. PMLR, 2021.

a s

Looking Back at SPO l

Let's look again at the regret loss for our original toy example

In [2]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=32, figsize=f:

number of examples: 32

0.16 -

—— regret
0.14 -

0.12
0.10 +
0.08

0.06 - !—r

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [t isnon-differentiable at places, and flat almost everywhere

m Canwe think of another way to address these issues?

a s

Looking Back at SPO l

If we could act on this function itself, a simple solution would be smoothing

In [3]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=32, figsize=f:

number of examples: 32

0.16 -

—— regret
0.14 -

0.12
0.10 +
0.08

0.06 - !—r

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m VWe could think of computing a convolution with a Gaussian kernel

m [t would be like applying a Gaussian filter to an image

a s

Stochastic Smoothing

But how can we do it through an optimization problem?
A viable approach is using stochastic smoothing

m Rather than learning a point estimator A(x, 0)
m We learnastochastic estimator s.t. y ~ N (h(x, 0), o)

Intuitively:

m We still use a point estimator, but to predict a vector of means

m Then we sample y from a normal distribution having the specified mean
m ..And a fixed standard deviation

We end up smoothing over y rather than over 0
But it's very close to what we wanted to do!

a s

Stochastic Smoothing l

Let's see how it works on our toy example

In [4]: util. draw loss landscape (losses=[util.RegretlLoss (), util.RegretlLoss (smoothing samples=32, smootl

number of examples: 32

— regret
regret (ns=32, std=0.1)
— regret (ns=1024, std=0.1)

0.16
0.12

0.10 +

0.08

0.06 -

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [t's astochastic approach, some some noise is to be expected

m Using more samples leads to better smoothing

a s

Stochastic Smoothing l

We can control the smoothing level by adjusting ¢

In [5]: util. draw loss landscape (losses=[util.Regretloss (), util.RegretLoss (smoothing samples=1024, smoc

number of examples: 32

0.16 4
— regret

0.14 A /_/_,—-' regret (ns=1024, std=0.05)
0.12 4 |- — regret (ns=1024, std=0.1)
0.10

0.08

0.06

0.04

1
0.02 1
0.00 1
T T T T T T T T
—0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
2]

m Larger o value remove flat sections better

m ..But also cause a shift in the position of the optimum

a s

Score Function Gradient Estimation

How does that help us?
Normally, the DFL loss looks like this:

Lprr(0) = Ex.y)~px.v) [regret(y, y)]
When we apply stochastic smoothing, it turns into:
Lprr(0) = [E(x,y)NP(X,Y),)?NN(h(x,H)) [regret(y, y)]

The expectation is now computed on x, y, and y

m WWe can use a sample average to handle the expectationon x and y

m ..Butif wedoiton ywe are left with nothing differentiable

a s

Score Function Gradient Estimation

So we expand the last expectation on):

Lprr(0) = B y~pix.y) / regret(y, y)p(y, 6)dy
| J Y _

m regret(y, y) cannot be differentiated, since y is a fixed sample in this setup
m However, the probability p(y,) can! It's just a Normal PDF

Now, we just need a way to handle the integral
We do it by focusing on the gradient

Due to linearity of expectation and integration, this is given by:

VLprr(0) = Expy~prx.yy / regret(y, y)Vop(y, 0)dy
| J Y J

Score Function Gradient Estimation l

Let's consider again the expression we have obtained

VLprr(0) = Eqx pypixyy / regret(y, y)Vop(y, 6)dy
 J Y _

By taking advantage of the fact that log’ (f(x)) = 1/xf'(x),we canrewrite it
as:

VLprr(0) = Expy~prx.yy / regret(y, y)p(y, @)Vo log p(y, 6)dy
 J Y _

Now, the integral is again an expectation, so we have:

ViDFL (0) = [E(x,y)NP(X,Y),§~N(h(x,9),0) [regret()?, ¥)Vg log p(y, 9)]
4

Score Function Gradient Estimation

Finally, we can use a sample averate to approximate both expectations:
|
VL 0) ~ — regret(y, y)Vy lo , 0
prr(6) mz Z gret(y, y)Vo log p(y, 0)

m For every training example we sample y from the stochastic estimator

m We compute regret(y, y) as usual
m ..And we obtain a gradient since p(y, 0) is easily differentiable in 6

We can trick a tensor engine into doing the calculation by using this loss:

|
L 9 =~ — t s 1 99
prL(O) = Z Zregre (3, y) log p(3, 0)
¢

Score Function Gradient Estimation

This approach is also know as Score Function Gradient Estimation (SFGE)
m Itisaknown approach (see e.g.[3]), but it has seen limited use in DFL
m We applied it to 2s-SOP in [4] (accepted, not yet published)

It works with any function, not just regret

JAnd in practice it can be improved by standardizing the gradient terms:

_ Il & 1 < g9, y) — mean(g(¥, y))
VLprr(0) ~ — — ’ A "2 Vlog p(y, 0)
n AN ey

m Standardization helps in particular with small numbers of samples

[3] Berthet, Quentin, et al. "Learning with differentiable pertubed optimizers." Advances in neural information processing systems 33 (2020):
9508-9519.
[4] Silvestri, Mattia et al. "Score Function Gradient Estimation to Widen the Applicability ofDecision-focused Learning". Differetiable Almost

gverWere workshop at ICML 2023

A Practical Example l

We test this on our supply planning problem
We start by generaring a dataset of contract values (the costs are fixed)

In [21]: seed, nitems = 42, 20
data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, nolise scale=.2, nolse type
util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set

1.0 4
0.8 1
& e ’ {8 # o &
06 R Gl T DR B L N ¢ 2 , 3.af o % b ¢ B 0GR K ki gt RBs SREES o
N 8,2 : t . § [A " .u:” $ Bt e YA “",'f' | _;3.=’i¢: ?lfn '\!‘. !_;:P 3, A g el P :
: - i ¥ &he £ s . gy =4 o - ¢ gy] s & B
. . - 2 ¢ @ E_.'I 'i i%a _.1' [Ly .) " & g“{ i ei!.. ’ i' ECF :‘ﬁ : :R' o ¢ >, 3 “-r
0.4 1 - S ’-.'r: -r'!-‘; ’ ¢ g ~ ol Tl = ‘ :] —-: T*_i' 9-_- . 2 - " - L
g IR bo gt s ® o *>="§ T H st 1o 1
B & 1 P n'.! o T :-'r , " . . 8 \0 Bw -
0.2 - TR AP L . LT L IR P 4 3OO s Bha, Sael'l8 : :
Sl ¢f;i§rg_ . ,Efoﬂ: v R e Bl T r Lirve o, W ed% o A
4 T - '."}'.-_Z"' 3 I il : i o 9 Ty a o® g 4 - ¥ Fanbh™e * . 6gin g L 8 & @ e
0.0 1 uiﬁmi Tl 1. L. 1 A - V. - . X’ £ 05 | oie SESGE Se 555 SEcE S SO S Pt e s § saunicd LOBEE S5 S 88 e e
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

The distribution is the same we used for the one-stage problem

a s

A Practical Example l

Then we generate the remaining problem parameters

In [22]: |# Generate the problem
rel req = 0.6
rel buffer cost = 10
prb = util.generate 2s problem(nitems, requirement=rel req * data tr.mean().sum(), rel buffer cc

prb

Out[22]: ProductionProblem2Stage (costs=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.062397

81
1.02323344 1.34647046 1.24044¢0 1.28322903 1.0082338 1.38796394

1.33297706 1.08493564 1.07272999 1.0733618 1.1216969 1.20990257
1.17277801 1.11649166], requirement=3.8862101169088654, buffer cost=11.830809153591137)

m [he minimum value if 60% of the sum of average values on the training data

m Buying in the second stage is 10 times more expensive then the average cost

A Practical Example l

For testing, we generate multiple samples per instance

In [23]: data ts = util.generate costs (nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noic
util.plot df cols(data ts, figsize=figsize, title='Training Set', scatter=True)

Training Set

1.0

0.8

- L] L] -
g s 2 it H . W T 197 ¥ 5 e =
& [] o . []
ace ® 8 og_. '_'I 24 B ,,'i : " “ X - in fi8 . @ :. | i ok 0 gl .4
TR HIE EIHEID olg2 TEE IR THE o Bl
¥ 1 2 g - ; . | |
0.6 < 1 s K I | t |
| | ¥
| | 1 1 |
! | | | . "
| | b | o
) | "
|

0.4

0.2

0.0

By doing this, we get a more reliable evaluation of uncertainty

a s

A PFL Approach

We start by training a prediction focused approach

In [24]: pfl 2s = util.build nn model (input_ shape=1,
$time history = util.train nn model (pfl Zs,

util.plot training history(history, figsize=
util.print ml metrics(pfl 2s, data tr.index.
util.print ml metrics(pfl 2s, data ts.index.

CPU times: user 8.21 s, sys: 352 ms, total:
Wall time: 6.83 s

output shape=nitems, hidden=[], name='pfl 2s', outpt
data tr.index.values, data tr.values, epochs=1000,
figsize narrow, print final scores=False)

values, data tr.values, label='training')

values, data ts.values, label='training')

8.56 s

0.15 ~

0.10 ~

0.05 ~

— loss

T T
0 200 400

R2: 0.80, MAE: 0.071, RMSE: 0.09 (training)
R2: 0.75, MAE: 0.072, RMSE: 0.09 (training)

T T T
600 800 1000
epochs

AT highs as fast as the DFL approach, and can be used for warm-starting

Evaluating Two-Stage Approaches

Two-state stochastic approaches can be evaluated in two ways
We can compare then with the best we could do

m [hecostdifferent is the proper regret

m [ts computation requires solving a 2s-SOP with high accuracy

m ..Making it a very computationally expensive metric

We can compare them with the expected cost of a clairvoyant approach

m [he cost difference is called Expected Value of Perfect Information
m ..Or sometimes Post-hoc regret
m [ts computation requires solving a 2s-SOP with just a single scenario

m .50 it's much faster, but only provide an upper bound on true regret

a s

Evaluating the PFL Approach

Let's check the EVPF/Post-hoc regret for the PFL Approach

In [25]: pfl 2s evpf = util.compute evpf 2s(prb, pfl 2s, data ts, tlim=10)
util.plot histogram(pfl 2s evpf, figsize=figsize, label='pfl -- two stage', print mean=True)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

—— pfl -- two stage

4I—I—I7

T T
0.2 0.4

Mean: 0.634 (pfl -- two stage)

This will be our baseline

a s

0.6
pfl -- two stage

T
0.8

1.0

T
1.2

T
1.4

Training a DFL Approach

We traing a DFL with warm starting, but no solution cache

..Since the feasible space for the recourse actions is not fixed

In [30]: sfge 2s = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name
$time history = util.train dfl model (sfge 2s, data tr.index.values, data tr.values, epochs=100,
util.plot training history(history, figsize=figsize narrow, print final scores=False, excluded r
util.print ml metrics(sfge 2s, data tr.index.values, data tr.values, label='training')

util.print ml metrics(sfge 2s, data ts.index.values, data ts.values, label='test')

CPU times: user 4min 41s, sys: 34.8 s, total: 5min 16s
Wall time: 5min 16s

—— sample cost
18 1 ple_

17 4
16

15

14 1

epochs

R2: 0.61, MAE: 0.095, RMSE: 0.12 (training)
R2: 0.66, MAE: 0.081, RMSE: 0.10 (test)

a s

Evaluating the DFL Approach l
We can now inspect the EVPF/Post-hoc regret for the DLF approach, as well

In [31]: sfge 2s evpf = util.compute evpf 2s(prb, sfge 2s, data ts, tlim=10)
util.plot histogram(sfge 2s evpf, figsize=figsize, label='dfl -- two-stage', print mean=True)

— dfl -- two-stage
0.25 ~

0.20

0.15

0.10 +

o —I—I—I—I\|‘4
| —]

0.00

T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2
dfl -- two-stage

Mean: 0.382 (dfl -- two-stage)

A More In-depth Comparison

A more extensive experimentation will be found in [4]
The method has been tested on:

m Some "normal" DFL benchmarks

m Several two-stage stochastic problems

The baselines are represented by:

m Specialize methods (e.g. SPO, the one from [1]), when applicable

m A neuro-probabilistic model + a scenario based approach

Specialized method tend to work better

m .. But SFGE is much more versatile

m [he bestresults are obtained on 2s-SOPs

a s

A More In-depth Comparison

This is how the approach fares again the scenario based method

..Onaproblem somewhat similar to our supply planning one
p=1 p =05 p =10

Relative post-hoc regret Relative post-hoc regret Relative post-hoc regret
07 --- SFGE --- SFGE T --- SFGE
-®- PFL+SAA -®- PFL+SAA - -®- PFL+SAA
0.6
Q\
0.5 .\
0.4 E AN
Y
A N
03 {{} ‘5..‘% ——————————— I
0.2 _____i::::l:::::::::::_{ """"""""""""
B §-------c 3
0] mmmmmm e ———
Normalized runtime Normalized runtime Normalized runtime
100 --- SFGE --- SFGE --- SFGE
-®- PFL+SAA -~ PFL+SAA -®- PFL+SAA
80 —

-
-
-
-
60 P
- s
- ’/
____ ’
— - 7’
- -
-
’4 ”

40 } }’
- /
S I » 4
- =~ '
20 /I' ”
7

0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

f Num. scenarios Num. scenarios Num. scenarios

llllll

03. Off-beat Path

Two-Stage Stochastic Optimization l

Let's consider this variant of our example problem

- - N
n

z"(u) = argmin < E,.pyix=x) Z sin(2ru;z;)| | vlz>r zel0,1]"
| Jj=1 J

't's similar to the one-stage variant, except that:

m [hedecisionvariables are continuous
m [he cost functionis non-linear

m VWe using u to denote the uncertain parameters

(

't's just another one-stage stochastic optimization problem,
but the use of sin terms makes it much more challenging

a s

SFGE Enables Objective Decoupling

We will see that it can also be addressed via DFL
The point is that the SFGE approach has a nice property:

m The function g(3, ¥) used as a loss term

m ..And the cost we use to compute z*(y)

..Can be completely distinct

We can put this to our advantage

m [nparticular, we can use an ML model
m ..To guide a low-complexity problem

m .50 that we get a solution for tougher one

.JAnd since we are using DFL we also get a contextual approach (we react to x)

a s

Target Problem

Let's try to come up with a formalization
Say we want to target an optimization problem in the form:

argmin, {E,pyix=x) [f(z,u,x)] | z € F(x)}

Where:

m X isanobservable, zis avector of decisions

B U IS avector of parameters

m f(z,u, x)isthe cost function (which can depend on the observable)

m F(x) isthe feasible space (which can depend on the observable)

m Atraining sample {(x;, u;) }i~, from the distribution P(X, U)

This is a (slightly) generalized version of the problem class targeted by DFL

a s

A DFL Approach l

In principle we can apply "normal” DFL to this problem

First, we define:
z"(u, x) = argmin_{ f(z,u,x) | z € F(x)}
Then, at training time we solve:

0% = argming {Ecu~pox,v) | f(Z* W,), u,x) = f(2* W, x), u,x)| | p = h

In practice, if f(z, u, x) is not linear like in our current example
..Then doing it would not be easy at all

m \\e'd need to use a non-linear solver

m ..And the computational cost would be much higher

a s

Another DFL Approach

But we can cheat! Since SFGE enables distinct costs
~We can compute z* through a surrogate problem:

z5(y, x) = argminz{f(z, v.x) | z € F(y,x))

m Zisthe same decision vector as before
m ..But yisasetof created ad-hoc for the surrogate
m We'll call them virtual parameters, because they may have real counterpart

Then:

m f(z, y, X) is a surrogate cost function

o F(y, X) is a surrogate feasible space

For the solution to be valid we need to have z € F(y, x) > z € F(x)

a s

Another DFL Approach

At training time, we solve:

6" = argmin, {[E(x,u)NP(X,U) [f(z*(y, X), U, x)] | vy = h(x, 9)}

Intuitively:

m \We observe x and we estimate a virtual parameter vector y
m \We obtain a decision vector z*(y, x) through the surrogate problem

m Thenwe evaluate the cost via the true cost function f(z, u)

There is a distinction between the virtual parameter y for z*(y, x)
.And the parametersu for f(z, u, x) are distinct

m For thisreason, thereisno ground truth for y

m ..\Which prevents us from using a regret |oss

a s

Motivation

The appeal here is that the surrogate problem can be easier to solve
In our example, instead of using:

z"(u, x) = argmin Z sinQru;z;) | v'z>r,z €10,1]"
j=1

We could use instead the following surrogate:
z"(y, x) = argmin {yTz vz >r z €]0, 1]"}

The surrogate is an LP, so it's very fast to solve

m [ogether with the ML estimator, it can still lead to high-quality solutions

m Aslong as the surrogate is sufficiently well aligned with the true problem

a s

Benchmark Data l

Let's try a proof-of-concept experiment

In [3]: seed, nitems = 42, 20
data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, noise scale=.1, nolse type

util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set

1.0
0.8 1 - - - - = % gﬂ“-"" P oot el 4 =
| 4 FEat & F % | 0 .1 Rt iR
- . SET IR, Rodw e fdt: e Rigte ats Al P Lo 155! i SRR
| C &5 @ - ! Lol 5 . ® ", s i § &% .
0.6 1 - ok . fa e, al 2 !:?_ T) 31 _R_‘.?*l. : _}f . L L bR A ;u‘;——;— s T e e
85 88 i gidr e ocd Feiyagiy sl P IREE Gidtes 451
a a :.I By Hey b ._" L ‘ :‘ - - & ._t o o _ 8
o4 gy, i { g b L4 !ti 3 | e F -y Rl AR
r ® il » N 4 ol T @ r b
;@ES‘,-‘, 'g‘+§n' - 8 3 " ¢ BNg®EE | }
0.2 4 St & . £y, == § P -W " et 8 L r 1 o i
] .b’ 3 *; q,‘ ! - L] ¥ ; s | ? ¥ s
in.‘g "Iq & % oy
0.0 4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

m e generate data for the u parameter as in all previous variants

m VWe keep the distribution simple, since we want to stress non-linearity

a s

Benchmark Data
Then we generate the remaining problem data and a test set

In [4]: rel req = 0.6
prb = util.generate problem(nitems=nitems, rel reg=rel req, seed=seed, surrogate=True)
data ts = util.generate costs(nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noi:
util.plot df cols(data ts, figsize=figsize, title='Training Set', scatter=True)

Training Set

1.0

0.8

o
i
I

0.6
0.4 - — TR FE
. -]
¥ . & .
0.2 4 .+ = i ..f =8 Y

0.0 +

0.0 0.2 0.4 0.6 0.8 1.0

A Baseline
We'll use again a PFL approach as a baseline

Note thisis not a particularly good choice, but it's difficult to find an alternative

In [5]: pfl nl = util.build nn model (input shape=1, output shape=nitems, hidden=[], name='pfl nl', outpt
$time history = util.train nn model (pfl nl, data tr.index.values, data tr.values, epochs=1000,
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl nl, data tr.index.values, data tr.values, label='training')

util.print ml metrics(pfl nl, data ts.index.values, data ts.values, label='training')

CPU times: user 8.61 s, sys: 256 ms, total: 8.87 s
Wall time: 7.16 s

0.25 — loss
0.20
0.15
0.10 1

0.05 +

0.00 -

T
0 200 400 600 800 1000
epochs

R2: 0.84, MAE: 0.076, RMSE: 0.09 (training)
R2: 0.84, MAE: 0.079, RMSE: 0.09 (training)

a s

PFL Approach Evaluation l

We'll also evaluate the results in terms of cost, not relative regret

Again, the reason is that this problem is not so easy to solve

In [6]: tc tr nl
tc ts nl
util.plot histogram(tc tr nl, figsize=figsize, label='trailining',6 dataZ=tc ts nl, label2='test',

util.compute regret surrogate (prb, pfl nl, data tr, tlim=10, cost only=True)

util.compute regret surrogate(prb, pfl nl, data ts, tlim=10, cost only=True)

0.16
— ftraining
0.14 test

0.12

0.10 - | |

0.08
0.06 Ii

0.04 ‘

0.02 - J EE— R

0.00 |

Mean: 5.691 (training), 5.497 (test)

a s

Alternative DFL Approach

We can now try out alternative DFL approach
In this case, warm starting may not be a good idea

In [7]: sfge sg = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name
$time history = util.train dfl model (sfge sg, data tr.index.values, data tr.values, epochs=300,

util.plot training history(history, figsize=figsize narrow, print final scores=False, excluded r
util.print ml metrics(sfge sg, data tr.index.values, data tr.values, label='training')

util.print ml metrics(sfge sg, data ts.index.values, data ts.values, label='test')

CPU times: user 3min 35s, sys: 3.43 s, total: 3min 38s
Wall time: 3min 38s

—— sample_cost

T T T T T
0 50 100 150 200 250 300
epochs

.5, RMSE: 0.61 (training)
5, RMSE: 0.61 (test)

DFL Approach Evaluation l

...And we can compare the two cost distributions on the training data

In [8]: tc tr sg
tc ts sg

util.compute regret surrogate (prb, sfge sg, data tr, tlim=10, cost only=True)

util.compute regret surrogate (prb, sfge sg, data ts, tlim=10, cost only=True)

util.plot histogram(tc ts sg, figsize=figsize, label='dfl', data2=tc ts nl, label2='pfl', print

____1 — dfl
0.20 - pfl

0.15 ‘

0.10

0.05

=7.5 =5.0 —-2.5 0.0 2.5 5.0 7.5 10.0

Mean: -3.178 (dfl), 5.497 (pfl)

The difference is very noticeable

a s

Considerations l

By using DFL + a surrogate we can "partition"” the problem complexity

m VWe cansimplify some elements that the solver has trouble addressing

m ..And dump them partially on the ML model
m ..Or we can dothe opposite (e.g. hard constraints in ML based decision making)

m |t canwork without an observable (no x)

m |t could be used for black-box optimization

Some caveats:
m Thisisnot awell investigate approach: treat is as a proof-of-concept
m Banning special case, the method works as a heuristic

m ..And finding a good surrogate can be quite difficult

a s

Multi-Stage Stochastic Optimization

What if we have a sequence of decision stages?
Consider for example and Energy Management System:

\

i i
= FLA!

Solar Pannels Boost Converter

B P4

= Energy

Diesel Generator ~ Inverter Mana gme nt _V

el SySte m Inverter
aaaaaaaaaaaaa _ Residential Load
System

\ eeeeeeeeeeeeeeeeeeeeeee /

m \We need to make some decisions (using a generator, buyng from the grid...)

m ...[henobserve how uncertainty unfolds

m ..Based onthat, we make another round of decisions and so on

a s

Multi-Stage Stochastic Optimization

We will also assume that there are non-trivial constraints

m [hissetupis called multi-stage stochastic optimization
m ..Or alsoonline stochastic optimization, or sequential decision making

There are a few possible solution approaches

One approach consist in using scenarios, again

m ...Butsince there are many stages, the decisions variables branch out

m Asolutionis called a policy tree, which is very expensive to compute
A second approach consists in using anticipatory algorithms

m We iteratively solve an optimization problem with a bit of look-ahead

m Several examples can be found in|1]

[1] Hentenryck, Pascal Van, and Russell Bent. Online stochastic combinatorial optimization. The MIT Press, 2006.

a s

Formalization l

Formally, this setup is well captured by a constrained Markov Decision
Process (MDP)

In particular, we will consider a constrained (X, Z, P°, P, f, FYbe an MDP
with:

m A set of possible (observable) states X

m A set of possible decisions Z

m Adistribution PY(X) for the initial state

m Adistribution P(X | X, Z) for the possible state transitions
m A cost function f(z, x, x)

m Afeasible space F(x) which depends on the state

Some comments:

m [he next state depends on the current state and decisions

G #e cost depends on the current state and decisions, and on the next state

Formalization

Wi ithin this framework, we can formalize a multi-stage problem

Our goal is to define a solution policy £* from a set of candidates I1 s.t.:

* °
U = arginin . [EXONPO,xt+1~P(X|xf,z’)

subject to: z' = z(x")
7' € F(x")

Thisisvery complex problem:

[eoh

2 f(zt, xt, xt+1)
=1

m Ve are not searching for a fixed solution, but for a policy

m [hedecisions can be anything (including discrete and combinatorial)

m ...[hey affect the state at the next stage (endogenous uncertainty)

7 n .‘.}nd they should be feasible according to hard constraints

Solution Approach Wanted
Normally, with an MDP we may turn to Reinforcement Learning
..But in this case there are a couple of difficulties:

m Handling constraints (hard ones in particular) in RLis challenging

m Handling combinatorial decisions in RL is very challenging

Let's recap our situation

m Classical approaches from stochastic optimization have poor scalability

m RL approaches have poor support for constraints and combinatorial spaces

[Can we use DFL in this scenario?]

1] Garcia, Javier, and Fernando Ferndndez. 'A comprehensive survey on safe reinforcement learning." Journal of Machine Learning Research
6.14D15): 1437-1480.

DFL and RL (UNIFY)

Indeed we can, and at this point it's not even that difficult
The trick is simply to decompose the policy 7, leading to:

[eoh

2 - Y S £
9 — argmlng [EXONPO,XH_INP(Xlxt,Zt) 2 f(Z s X o X)
| i=1

subject to: z' = z*(y', x')
Y = h(x', 0)

Intuitively:

m We use a ML model to output a set of virtual parameters y

m ..[henwe compute zk by solving a constrained optimization problem
m [he ML model take care of uncertianty

7 n T}e optimization problem take care of the constraints

DFL and RL (UNIFY)

We use the generalized, surrogate-based approach to compute z*
In particular, we have:

z5(y, x) = argminz{f(z, v.x) | z € F(y,x))

m Depending on our choice for the virtual parameters

m We will need to craft the surrogate cost f and feasible space F

m Theoriginal constraints are satisfied aslongas z € F(y,x) = z € F(x)
The surrogate terms can usually be designed by tweaking a bit f and F

4)

The overall idea is that the ML model guides the optimizer,
exactly asin normal DFL

DFL and RL (UNIFY)

For training, we can rely on a simple reformulation

In particular, we define a new unconstrained MDP (X, ®, PV, P, g)such that:

m [heset of statesis the same as before

m The set of statesis the set ® of possible training parameters

m [hestate transition distributions are the same as before

m [he cost function is defined as:

gy, x,x") = f(2*(y), x,x™)

Intuitively, we treat the solver as part of the environment

r

This new MDP can be addressed by any RL learning approach
so we can benfit from recent advances in such field

a s

DFL and RL (UNIFY)

This setup is the most general we have seen so far

't can be used to address a wide number of problem types

m Optimization with parameters that need to be estimated

m One-stage stochastic programming

m [wo-state stochastic programming

m Sequential decision making with constraints

m [nprinciple, also black-box optimization and parameter tuning

m ..[hough it probably would not a good fit for such cases
You can find it described in [1], under the name UNIFY

[2] Silvestri, Mattia, et al. "UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine
Learning." arXiv preprint arXiv:2210.14030 (2022).

a s

An Example

Let's consider the Energy Management System example in detail
Every 15 minutes, we need to adjust power flow to/from a set of nodes

m Nodes can be generators, demand points, or the grid

m One special node represents a storage system

The decisions z' at time 7 include:

t

nodes to/from the main nodes

m A vector of power flows z

t

storage to/from the storage system

m Apower flow Z

The state x’ at time ¢ is given by:

m [hepower xf,owe,, generated by some nodes (e.g. PV plants)

m [hedemand xgemand for some nodes (e.g. production sites or housing)

t
storage

m [hestorage charge level x

a s

An Example
The transition distribution P is defined by:

m Adistribution Ppyyer Of the yield of renewable energy generators
m Adistribution Pyemang of the demand

m [hedeterministic transition xgol,,age = xgmmge + NZstorage

The feasible space F(x'") is defined via:

m Flow capacity constraints: | < z! <t
m Flow balance constraints: 17 z + X power — Xdemand = 0

m Storage capacity constraints 0 < xgmmge + NZstorage < C

The cost f(Z', x', x'T1) is given by:
1 T
f(zta xt, x'T) = C Znodes

o T}ere IS No cost associate to demands, renewable generators, and the storage

The Optimization Problem

We can compute z*(y, x) by solvig the following LP

. T
Argmin, ¢ Zypdes + YZstorage

subjectto: [< 7' <t
T
1" z + Xpower — Xdemand = 0

O S xgtorage + nzstorage S C

The main alterationis that a virtual cost is associated to the storage system

m Ify > 0,the solve will tend to charge the storage
m If y < 0, the solve will tend to draw power from the storage

m ..Sothat the ML model can alter the decisions

Without the virtual cost, the storage system would never be charged

a s

Some Results

Here's a comparison with some constrained RL methods

Normalized cost

. . " i i e i S B
—
- —

1.0 S ' e
7
7 ——~- oracle
0.5 7 —= RL
. ,/ RL-safety-layer
J — unify-sequential
00 —~

Failed episodes ratio
1.0 — =~

. —.- RL
0.8 ““\
\
0.6 v\
\ ,

0.4 VA
0.2 N
OO \‘N-\‘\‘/'J\'/.\'A~__.’-v"\.—

0 50 100 150 200 250 300 350

Time (sec)

Some Results l

And here's a comparison with a specialized stochastic optimization approach

----- tuning

1.020 - == oracle
unify-sequential
— unify-single-step

1.015

1.010

1.005

0 50 100 150 200 250 300 350
Time (sec)

Some Final Thoughts l

If you retain one idea from our ramble, makes sure it is this:

[DFL can be used for way more than one purpose!]

You just need to stretch it a little bit ;-)

Where next?
m \We can reap what we haven't sowed! Let's test more RL algos (spoiler: started)
m Scalability is still a bigissue

m \We need more (and more realistic) applications

Thanks for your patience! Any question?

