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01. Getting Started
 



Getting Started
As stated, our starting point is Decision Focused Learning

Specifically the SPO formulation, where we focus on problems in the form:

■  is the set of decisions (numeric or discrete)

■  is the feasible space

■  is a cost vector, which is not directly measureable

(𝑦) = { 𝑧 ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧 𝑦
𝑇

𝑧

𝐹

𝑦

Rather than to , we have access to an observable 

■ Based on , we can attempt to train a parametric estimator 

■ ...Using training examples 

𝑦 𝑥

𝑥 ℎ(𝑥, 𝜃)

{( , )𝑥𝑖 𝑦𝑖 }
𝑚
𝑖=1

 



A Possible Example
For example, we may have to deal with routing problem

We need to select the best path to reach our destination

■ We don't know the current state of the traffic

■ But we can guess! E.g. based on the time, weather, etc.

 



Inference
This setup involves using the estimator and the optimizer in sequence

At inference time:

■ We observe 

■ We evaluate our estimator  to obtain 

■ We solve the problem to obtain 

Overall, the process consists in evaluating:

𝑥

ℎ(𝑥, 𝜃) 𝑦

(𝑦)𝑧∗

(ℎ(𝑥, 𝜃))𝑧∗

 



A Two-phase Approach
We can use supervised learning for the estimator

Formally, we obtain an optimal parameter vector by solving:

■ Where  is a suitable loss function (e.g. a squred error)

■ We'll refer to this as a prediction-focused approach

However, using supervised learning is suboptimal

■ A small mistake in terms of 

■ ...May lead the optimizer to choosing a poor solution

= { [𝐿( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

𝐿

𝐿

The root of the issue is a misalignment between the cost
metric at training and inference time

 



Spotting Trouble
Let's see this in action on a toy problem

Consider this two-variable optimization problem:

Let's assume that the true relation between  (a scalar) and  is:

...But that we can only learn this model with a scalar weight :

Our model cannot represent the true relation exactly

{ + ∣ + = 1}argmin𝑧 𝑦0𝑧0 𝑦1𝑧1 𝑧0 𝑧1

𝑥 𝑦

𝑦0

𝑦1

= 2.5𝑥2

= 0.3 + 0.8𝑥

𝜃

𝑦 ̂ 0

𝑦 ̂ 1

= 𝑥𝜃
2

= 0.5𝜃

 



Spotting Trouble
This is what we get from supervised learning with uniformly distribute data:

In [15]:

■ The crossing point of the grey lines is where we should pick item 0 instead of 1

■ The orange lines (trained model) miss it by a wide margin

Optimized theta: 1.375

util.draw(w=None, figsize=figsize, model=1)

 



Not All is Lost
However, we cas sidestep the issue by disergarding accuracy

In [16]:

■ If we focus on choosing  to match the crossing point

■ ...We lead the optimizer to consistently making the correct choice

𝜃

util.draw(w=0.91, figsize=figsize, model=1)

 



The Main DFL Idea
DFL attempts to achieve this by using a task-based loss at training time

There's some consensus on this "holy grail" training problem:

Where in our setting we have:

■  is the best solution with the estimated costs

■  is the best solution with the true costs

Intuitively, we want to loose as little as possible w.r.t. the best we could do

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

( )𝑧∗ 𝑦 ̂ 

(𝑦)𝑧∗

One of the main challenges in DFL is dealing with this loss

 



Knowing Regret
To see this, let's push our example a little further

In [17]:

■ Say we have access to a normally distributed collection of  values

■ ...And to the corresponding true values 

𝑥

𝑦

x = util.normal_sample_(mean=0.54, std=0.2, size=1000)
util.plot_histogram(x, figsize=figsize, label='x')

 



Knowing Regret
This is how the regret looks like for a single example

In [18]:

■ If  leads to the correct decision, the regret is 0

■ Otherwise we have some non-null value

𝑓(𝑥, 𝜃)

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=1, figsize=fig

 



Knowing Regret
...And this is the same for a larger sample

In [19]:

■ For linear problems and finite samples the regret function is piecewise constant

■ ...Which makes a direct use of gradient descent impossible

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=64, figsize=fi

 



SPO+ Loss
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [1], which is (roughly) defined as:

There are two main ideas here:

The first it to see what happens with the predicted (not the true) costs

■ We know  is the optimal solution for 

■ But we wish for  to be optimal instead

■ Therefore if  we give a penalty

With this trick, a differentiable term (i.e. ) appears in the loss

( , 𝑦) = (𝑦) − ( )  with:  = 2 − 𝑦spo+ 𝑦 ̂  𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

( )𝑧∗ 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜

(𝑦)𝑧∗

(𝑦) > ( )𝑦 ̂ 
𝑇
𝑠𝑝𝑜𝑧

∗ 𝑦 ̂ 
𝑇
𝑠𝑝𝑜𝑧

∗ 𝑦 ̂ 𝑠𝑝𝑜

𝑦 ̂ 𝑠𝑝𝑜

[1] Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.

 



SPO+ Loss
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [1], which is (roughly) defined as:

There are two main ideas here:

The second is to avoid using the estimates  directly

■ We rely instead on an altered cost vector, i.e. 

■ Using  directly would result in a local minimum for 

■ With , the local minimum is in a location _that depends on 

We'll try to visualize this phenomenon

( , 𝑦) = (𝑦) − ( )  with:  = 2 − 𝑦spo+ 𝑦 ̂  𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

𝑦

𝑦 ̂ 𝑠𝑝𝑜

𝑦 ̂ 𝑠𝑝𝑜 = 0𝑦 ̂ 

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

[1] Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.

 



SPO+ Loss
This is the SPO+ loss for a single example on our toy problem

In [20]:

■ As expected, there are two local minima

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=1, figsize=fi

 



SPO+ Loss
This is the SPO+ loss for a two examples

In [21]:

■ The "good" local minima for both examples are roughly in the same place

■ The "spurious" local minima fall in different position

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=2, figsize=fi

 



SPO+ Loss
Over many example, the spurious local minima tend to cancel out

In [22]:

■ This effect is invaluable when training with gradient descent

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=64, figsize=f

 



A (Sligthly) More Complex Example
Let's see the approach in action on a second example

We will consider this simple optimization problem:

■ We need to decide which of a set of jobs to accept

■ Accepting a job ( ) provides immediate value 

■ The cost  of the job is not known

■ ...But it can be estimated based on available data

(𝑦) = argmin{ 𝑧 ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ {0, 1 }𝑧∗ 𝑦
𝑇
𝑣
𝑇 }𝑛

= 1𝑧𝑗 𝑣𝑗

𝑦𝑗

In [23]:

ProductionProblem(values=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.06239781
1.02323344 1.34647046 1.240446   1.28322903 1.0082338  1.38796394
1.33297706 1.08493564 1.07272999 1.0733618  1.1216969  1.20990257
1.17277801 1.11649166], requirement=11.830809153591138)

nitems, rel_req, seed = 20, 0.5, 42
prb = util.generate_problem(nitems=nitems, rel_req=rel_req, seed=seed)
display(prb)

 



A (Sligthly) More Complex Example
Next, we generate some training (and test) data

In [24]:

■ We assume that costs can be estimated based on an scalar observable 

■ The set of least expensive jobs changes considerably with 

𝑥

𝑥

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=0, noise_type=
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set')

 



Prediction Focused Approach
As a baseline, we'll consider a basic prediction-focused approach

In [25]:

■ The ML model is just a linear regressor, but it is decently accurate

CPU times: user 8.94 s, sys: 330 ms, total: 9.27 s
Wall time: 7.36 s

R2: 0.86, MAE: 0.086, RMSE: 0.10 (training)
R2: 0.86, MAE: 0.087, RMSE: 0.10 (test)

pfl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_det', output_
%time history = util.train_nn_model(pfl, data_tr.index.values, data_tr.values, epochs=1000, loss
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl, data_ts.index.values, data_ts.values, label='test')

 



Prediction Focused Approach
...But our true evaluation should be in terms of regret

In [26]:

■ In this case, the average relative regret is ~5%

Mean: 0.052 (training), 0.053 (test)

r_tr = util.compute_regret(prb, pfl, data_tr.index.values, data_tr.values)
r_ts = util.compute_regret(prb, pfl, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr, figsize=figsize, label='training', data2=r_ts, label2='test', print_me

 



A Decision Focused Learning Approach

In [27]:

In terms of accuracy, this is considerably worse

CPU times: user 4min 31s, sys: 20.3 s, total: 4min 51s
Wall time: 4min 51s

R2: -0.14, MAE: 0.22, RMSE: 0.27 (training)
R2: -0.14, MAE: 0.22, RMSE: 0.27 (test)

spo = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name='sp
%time history = util.train_dfl_model(spo, data_tr.index.values, data_tr.values, epochs=200, verb
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo, data_ts.index.values, data_ts.values, label='test')

 



Comparing Regrets
But the regret is so much better!

In [28]:

This is the kind of result that attracted so much attention since [2]
[2] Donti, Priya, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." Advances in neural
information processing systems 30 (2017).

Mean: 0.008 (spo), 0.053 (pfl)

r_ts_spo = util.compute_regret(prb, spo, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo, figsize=figsize, label='spo', data2=r_ts, label2='pfl', print_mean

 



02. Picking a Direction
 



Let's Second-Guess Ourselvers
However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

Intuitively:;

■ The more accurate we can be, the lower the regret

■ Eventually, perfect predictions will result in 0 regret

𝔼[regret( , 𝑦)] 0𝑦 ̂  − →−−−−−−−

𝔼[𝐿( ,𝑦)]→0𝑦 ̂ 

 



Let's Second-Guess Ourselvers
However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

Intuitively:;

■ The more accurate we can be, the lower the regret

■ Eventually, perfect predictions will result in 0 regret

𝔼[regret( , 𝑦)] 0𝑦 ̂  − →−−−−−−−

𝔼[𝐿( ,𝑦)]→0𝑦 ̂ 

But then... What if we make our model bigger?

■ We could get good predictions and good regret

■ ...And training would be much faster

 



Our Baseline
Let's check again the results for our PFL linear regressor

In [2]:

This will be our main baseline

Mean: 0.052 (training), 0.053 (test)

pfl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_det', output_
history = util.train_nn_model(pfl, data_tr.index.values, data_tr.values, epochs=1000, loss='mse'
r_tr = util.compute_regret(prb, pfl, data_tr.index.values, data_tr.values)
r_ts = util.compute_regret(prb, pfl, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr, figsize=figsize, label='training', data2=r_ts, label2='test', print_me

 



PFL Strikes Back
Let's try to use a non-linear model

In [3]:

More accurate, it is!

CPU times: user 10.3 s, sys: 367 ms, total: 10.7 s
Wall time: 7.95 s

R2: 0.99, MAE: 0.019, RMSE: 0.03 (training)
R2: 0.99, MAE: 0.019, RMSE: 0.03 (test)

pfl_acc = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[8], name='pfl_det_acc'
%time history = util.train_nn_model(pfl_acc, data_tr.index.values, data_tr.values, epochs=1000, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_acc, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_acc, data_ts.index.values, data_ts.values, label='test')

 



PFL Strikes Back
...And the improvement in terms of regret is remarkable

In [4]:

DFL might do better with the same model complexity, but we the return would be
diminished

Mean: 0.005 (pfl -- hidden layer), 0.053 (pfl -- linear)

r_ts_acc = util.compute_regret(prb, pfl_acc, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_acc, figsize=figsize, label='pfl -- hidden layer', data2=r_ts, label2='

 



Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

 



Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

For example:

■ You can use a problem relaxation, as in [1]

■ You can limit recomputation by caching past solutions, as in [2]

■ You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

 



Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

For example:

■ You can use a problem relaxation, as in [1]

■ You can limit recomputation by caching past solutions, as in [2]

■ You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

[1] Mandi, Jayanta, and Tias Guns. "Interior point solving for lp-based prediction+ optimisation." Advances in Neural Information Processing
Systems 33 (2020): 7272-7282.
[2] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns: Contrastive Losses and Solution
Caching for Predict-and-Optimize. IJCAI 2021: 2833-2840

 



Solution Cache and Warm Start
Solution caching is applicable if the feasible space is fixed

I.e. to problems in the form:

■ During training, we maintain a solution cache 

■ Initially, we populate  with the true optimal solutions  for all examples

■ Before computing  we flip a coin

■ With probability , we run the computation (and store any new solution in )

■ With probability , we solve instead 

(𝑦) = {𝑓(𝑧) ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧

𝑆

𝑆 ( )𝑧∗ 𝑦𝑖

( )𝑧∗ 𝑦 ̂ 

𝑝 𝑆

1 − 𝑝 (𝑦) = {𝑓(𝑧) ∣ 𝑧 ∈ 𝑆}𝑧 ̂ 
∗

argmin𝑧

Warm starting simple consists in using the PFL weights to initialize 

Since accuracy is correlated with regret, this might accelerate convergence

𝜃

 



Speeding Up DFL
Let's use DFL with linear regression, a warm start, and a solution cache

In [5]:

The training time is still large, but much lower than our earlier DFL attempt

CPU times: user 50.8 s, sys: 4.91 s, total: 55.7 s
Wall time: 55.4 s

R2: 0.65, MAE: 0.12, RMSE: 0.16 (training)
R2: 0.65, MAE: 0.12, RMSE: 0.16 (test)

spo = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name='sp
%time history = util.train_dfl_model(spo, data_tr.index.values, data_tr.values, epochs=200, verb
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo, data_ts.index.values, data_ts.values, label='test')

 



Speeding Up DFL
And the regret is even better!

In [6]:

We are matching the more complex PFL model with a simple linear regressor

Mean: 0.004 (spo), 0.053 (pfl)

r_ts_spo = util.compute_regret(prb, spo, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo, figsize=figsize, label='spo', data2=r_ts, label2='pfl', print_mean

 



Reflecting on What we Have
Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

■ As the models become more complex we have diminishing returns

■ ...But for some applications every little bit counts

Second, it may allow using simpler ML models

■ Simple models are faster to evaluate

■ ...But more importantly they are easier to explain

■ E.g. we can easily perform feature importance analysis

 



Reflecting on What we Have
Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

■ As the models become more complex we have diminishing returns

■ ...But for some applications every little bit counts

Second, it may allow using simpler ML models

■ Simple models are faster to evaluate

■ ...But more importantly they are easier to explain

■ E.g. we can easily perform feature importance analysis

Intuitively, DFL works best where PFL has estimation issues
Can we exploit this fact to maximize our advantage?

 



Maximizing Results
There's a simple case where PFL cannot make perfect predictions

You just need need to target a stochastic problem!

■ E.g. you can usually tell the traffic situation based on (e.g.) time and weather

■ ...But there still a lot of variability 



Maximizing Results
Formally, we need a stochastic process, i.e. a stochastic function

We can generate for a stochastic variant of our problme

In [8]:

We treat boh  and  as random variables, with distribution 𝑋 𝑌 𝑃 (𝑋, 𝑌 )

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.15, noise_typ
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Adjusting Goals
But with a stochastic process, what is our real objective?

For a given , we can formalize it like this:𝑥

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

■ Given a value for the observable 

■ We want to find a single decision vector 

■ Such that  is feasible

■ ...And  minimized the expected cost over the distribution 

𝑥

𝑧

𝑧

𝑧 𝑃 (𝑌 ∣ 𝑋 = 𝑥)

This is called a one-stage stochastic optimization problem

 



...And Keeping the Setup
Let's look again at the DFL training problem

With:

Since  is independent on , this is equivalent to:

Which can be rewritten as:

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

(𝑦)𝑦𝑇 𝑧∗ 𝜃

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼𝑥∼𝑃(𝑋),𝑦∼𝑃(𝑌 ∣𝑋) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 

 



...And Keeping the Setup
Now, let's restrict to the case where  is fixed

Finally, by definition of  we have:

In other words:

■ We are choosing 

■ So that  minimizes 

𝑥

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 

(⋅)𝑧∗

= { [ ( )] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

𝜃

( )𝑧∗ 𝑦 ̂  [ ( )]𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂ 

This is almost identical to one-stage stochastic optimization!

 



DFL For One-Stage Stochastic Optimization
This means that DFL can address these problems, with one restriction and
two "superpowers":

The restriction is that we control  only through 

■ Therefore, depending on the chosen ML model architecture

■ ...Obtaining some solutions might be impossible

■ This issue can be sidestepped with a careful model choice

𝑧 𝜃

The first superpower is that we are not restricted to a single  value

■ Given a new value for , we just need to evaluate 

■ ...And then solve the usual optimization problem

■ Many approaches do not deal with the estimation of the  distribution

For the second superpower, we need to investigate a bit more

𝑥

𝑥 ℎ(𝑥, )𝜃∗

𝑦

 



Classical Solution Approach
What would be the classical solution approach?

Starting from:

We can use linearity to obtain:

■ So, we would first need to estimate the expected costs

■ ...Then we could solve a deterministic problem

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

{ [𝑦 𝑧 ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ]
𝑇

 



Classical Solution Approach
What would be the classical solution approach?

Starting from:

We can use linearity to obtain:

■ So, we would first need to estimate the expected costs

■ ...Then we could solve a deterministic problem

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

{ [𝑦 𝑧 ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ]
𝑇

But isn't this what PFL is doing?

 



Regression and Expectation
(Stochastic) Regression is often presented as learning an expectation

...But it's trickier than that

■ Using an MSE loss is equivalent to trying to learn 

■ ...But only assuming that  is Normally distributed

■ ...And that it has the same variance everywhere

[𝑦]𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥)

𝑃 (𝑌 ∣ 𝑋 = 𝑥)

It is possible to do the same under more general conditions

...But it is much more complex

■ If we know the distribution type, we can use a neuro-probabilistic model

■ Otherwise, we need a fully fledged contextual generative model

In DFL, we can address this problem with 0 added effort!

 



A Simple Stress Test
We can test this idea by generating a stochastic dataset

In [34]:

...And scaling the variance with  (a very common seeting in practice)𝑦

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.2, noise_type
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Training a PFL Approach
We will train again a non-linear prediction focused approach

In [36]:

The accuracy is (inevitably) worse, but still pretty good

CPU times: user 9.74 s, sys: 330 ms, total: 10.1 s
Wall time: 7.53 s

R2: 0.81, MAE: 0.068, RMSE: 0.09 (training)
R2: 0.82, MAE: 0.068, RMSE: 0.08 (test)

pfl_1s = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[8], name='pfl_1s', outp
%time history = util.train_nn_model(pfl_1s, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_1s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_1s, data_ts.index.values, data_ts.values, label='test')

 



PFL Regret
Let's evaluate the regret of the PFL approach

In [37]:

The regret is has worsened, due to the effect of uncertainty

Mean: 0.059 (training), 0.057 (test)

r_tr_1s = util.compute_regret(prb, pfl_1s, data_tr.index.values, data_tr.values)
r_ts_1s = util.compute_regret(prb, pfl_1s, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr_1s, figsize=figsize, label='training', data2=r_ts_1s, label2='test', pr

 



Training a DFL Approach
We also a DFL approach with the same non-linear model

In [39]:

CPU times: user 2min 51s, sys: 11min 19s, total: 14min 11s
Wall time: 1min 23s

R2: 0.27, MAE: 0.12, RMSE: 0.19 (training)
R2: 0.27, MAE: 0.12, RMSE: 0.19 (test)

spo_1s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[8], name
%time history = util.train_dfl_model(spo_1s, data_tr.index.values, data_tr.values, epochs=200, v
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo_1s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo_1s, data_ts.index.values, data_ts.values, label='test')

 



DFL Regret
Now we can compare the regret for both approaches

In [40]:

There is a significant gap again, since the PFL approach is operating on an
incorrect semantic

Mean: 0.020 (spo -- one stage), 0.057 (pfl -- one stage)

r_ts_spo_1s = util.compute_regret(prb, spo_1s, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo_1s, figsize=figsize, label='spo -- one stage', data2=r_ts_1s, label

 



Considerations
DFL can be thought of as a one-stage stochastic optimization approach

In this setting:

■ In particular, using a more accurate PFL model might still have poor regret

■ ...Unless we know a lot about the distribution

■ ...or we use a very complex estimator

■ Conversely, DFL has not such issues

The gap becomes wider in case of non-linear cost functions:

■ In this case the expected cost would not be equivalent to a sum of expectations

■ But a DFL approach would have no such issues

■ ...Provided it could deal with with non-linear functions

 



03. Breakng Off
 



Two-Stage Stochastic Optimization
If DFL targets one-stage stochastic optimization, could we do two-stage?

■ For example, in first stage we decide what to pack in our suitcase

■ ...During the trip, we may realize we have forgotten something

■ ...And we need to spend money to buy the missing stuff

 



Two-Stage Stochastic Optimization
If DFL targets one-stage stochastic optimization, could we do two-stage?

Two-stage problems are among the most interesting in stochastic optimization

■ They involve making a set of decisions now

■ Then observing how uncertainty unfolds

■ ...And making a second set of decisions

The former are called first-stage decisions, the latter recourse actions

Here's an example we will use for this topic

Say we need to secure a supply of resources

■ First, we make contracts with primary suppliers to minimize costs

■ If there are unexpected setbacks (e.g. insufficient yields)

■ ...Then we can buy what we lack from another source, but at a higher cost
 



Two-Stage Stochastic Optimization
Let's define two-stage stochastic optimization problems (2s-SOP) formally:

■  represents the uncertain information

■  is the vector of first stage decisions

■  is the feasible space for the first stage

■  is the vector of recourse actions

■  is not fixed: it can change for every sampled 

■ The set of feasible recourse actions  also changes for every 

■  is the immediate cost function,  is the cost of the recourse actions

{𝑓(𝑧) + [ 𝑟( , 𝑧, 𝑦)] ∣ 𝑧 ∈ 𝐹 , ∈ (𝑧, 𝑦)}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″

𝑧″ 𝑧″ 𝐹
″

𝑌

𝑧

𝐹

𝑧″

𝑧″ 𝑦

(𝑧, 𝑦)𝐹 ″ 𝑦

𝑓 𝑟

 



A Simple Example
We will consider this simple problem

...Which is based on our previous supply planning example:

■  iff we choose then -th supply contract

■  is the cost of the -th contract

■  is the yield of the -th contract, which is uncertaint

■  is the minimum total yield, which is known

■  is the number of units we buy at cost  to satisfy the yield requirement

 argmin𝑧

subject to: 

𝑧 + [ ]𝑐
𝑇

𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″
𝑐″𝑧″

𝑧 + ≥𝑦𝑇 𝑧″ 𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1 , ∈}𝑛 𝑧″ ℕ0

= 1𝑧𝑗 ℎ

𝑐𝑗 𝑗

𝑦𝑗 𝑗

𝑦𝑚𝑖𝑛

𝑧″ 𝑐″

 



Scenario Based Approach
Classical solution approaches for 2s-SOP are scenario based

We start by sampling a finite set of  values from 

Then we build different recourse action variables for each scenario

■ ...We define the feasible sets via constraints

■ ...And we use the Sample Average Approximation to estimate the expectation

The method is effective, but also computationally expensive

𝑁 𝑃 (𝑌 ∣ 𝑋 = 𝑥)

 argmin𝑧min𝑧″

subject to: 

𝑧 +𝑐𝑇
1

𝑁
𝑐″𝑧″

𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1}𝑛

∈𝑧″
𝑘

ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

 



DFL for 2s-SOP
Could we do something similar with DFL?

As a recap, our DFL training problem is:

With:

And:

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

(𝑦) = { 𝑧 ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧 𝑦
𝑇

 



DFL for 2s-SOP
With the same transformations used in the one-stage case, we get:

Now, say we had a DLF approch that could deal with any function 

■ In this case  would be a vector of uncertain parameters (not necessarily costs)

■ The function should compute the equivalent of 

■ ...I.e. the true cost of the solution computed for the estimate costs

Under this conditions, at training time we could solve:

It would still be DFL, just a bit more general

= { [ ( )] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

𝑔(𝑧, 𝑦)

𝑦

( )𝑦𝑇 𝑧∗ 𝑦 ̂ 

= { [𝑔( ( ), 𝑦)] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

 



DFL for 2s-SOP
At this point, let's choose:

■ For a given solution ,  computes the best possible objective

■ ...Assuming that the value of the parameters is 

𝑔(𝑧, 𝑦) = {𝑓(𝑧) + 𝑟( , 𝑧, 𝑦) ∣ ∈ (𝑧, 𝑦)}min
𝑧″

𝑧″ 𝑧″ 𝐹 ″

𝑧 𝑔(𝑧, 𝑦)

𝑦

By substituting in the training formulation we get:

...Which can definitely be used for 2s-SOP problems!

 𝑓( ( )) + [ 𝑟( , ( ), 𝑦)]argmin𝜃 𝑧∗ 𝑦 ̂  𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″

𝑧″ 𝑧∗ 𝑦 ̂ 

subject to:  = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹 , ∈ (𝑧, 𝑦)𝑦 ̂  𝑧∗ 𝑦 ̂  𝑧″ 𝐹 ″

 



Grouding the Approach
We can ground the approach by relying on the scenario-based formulation

In our example problem, we compute  by solving:

And we define  as:

(𝑦)𝑧∗

(𝑦) =𝑧∗ argmin𝑧min𝑧″

subject to: 

𝑧 +𝑐𝑇 𝑐″𝑧″
𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1}𝑛

∈𝑧″𝑘 ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

𝑔(𝑧, 𝑦)

𝑔(𝑧, 𝑦) =  min𝑧″

subject to: 

𝑧 +𝑐𝑇 𝑐″𝑧″
𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

∈𝑧″
𝑘

ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

 



Overview and Properties
Intuitively, the approach works as follows

■ We observe  and we compute 

■ We compute  by solving a scenario problem

■ We compute  by solving a scenario problem with fixed  values

...And we end up minimizing the expected cost of the 2s-SOP

𝑥 𝑦 ̂ 

( )𝑧∗ 𝑦 ̂ 

𝑔( ( ), 𝑦)𝑧∗ 𝑦 ̂  𝑧

Compared to the classical approach, we have 1 restriction and 3
"superpowers"

■ The restriction: we control  only through 

■ Superpower 1: we are not restricted to a single 

■ Superpower 2: works with any distribution

■ Superpower 3: at inference time, we always consider a single scenario

𝑧∗ 𝜃

𝑥

 



Scalable Two-stage Stochastic Optimization
The last advantage is massive

The weakest point of classical 2s-SOP approach is scalability

■ Multiple scenarios are required to obtain good results

■ ...But they also add more variables

With NP-hard problem, that solution time may grow exponentially

With this approach, the computational cost is all at training time

■ It can even be lower, since you always deal with single scenarios

■ There are alternatives, such as [1], where ML is used to estimate the recourse

■ ...These have their own pros and cons

[1] Dumouchelle, Justin, et al. "Neur2sp: Neural two-stage stochastic programming." arXiv preprint arXiv:2205.12006 (2022).

 



The Elephant in the Room
So far, so good, but how to we make  differentiable?

There are a few alternatives, all with limitations:

■ The approach from [1] handles parameters in the problem constraints

■ It is based on the idea of differencing the recourse action

■ ...But it is (mostly) restricted to 1D packing problems

■ The approach from [2] can be used for 2s-SOP with a stretch

■ It based on idea of embedding a MILP solver in ML

■ ...But it's semantic does not fully align with 2s-SOP

Here, we will see different technique

𝑔(𝑧, 𝑦)

[1] Hu, X., Lee, J. C. H., and Lee, J. H. M. Predict+optimize for packing and covering lps with unknown parameters in constraints. CoRR,
abs/2209.03668, 2022. doi: 10. 48550/arXiv.2209.03668.
[2] Paulus, Anselm, et al. "Comboptnet: Fit the right np-hard problem by learning integer programming constraints." International Conference on
Machine Learning. PMLR, 2021.

 



Looking Back at SPO
Let's look again at the regret loss for our original toy example

In [2]:

■ It is non-differentiable at places, and flat almost everywhere

■ Can we think of another way to address these issues?

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=32, figsize=fi

 



Looking Back at SPO
If we could act on this function itself, a simple solution would be smoothing

In [3]:

■ We could think of computing a convolution with a Gaussian kernel

■ It would be like applying a Gaussian filter to an image

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=32, figsize=fi

 



Stochastic Smoothing
But how can we do it through an optimization problem?

A viable approach is using stochastic smoothing

■ Rather than learning a point estimator 

■ We learn a stochastic estimator s.t. 

ℎ(𝑥, 𝜃)

∼  (ℎ(𝑥, 𝜃), 𝜎)𝑦 ̂ 

Intuitively:

■ We still use a point estimator, but to predict a vector of means

■ Then we sample  from a normal distribution having the specified mean

■ ...And a fixed standard deviation

We end up smoothing over  rather than over 

But it's very close to what we wanted to do!

𝑦 ̂ 

𝑦 ̂  𝜃

 



Stochastic Smoothing
Let's see how it works on our toy example

In [4]:

■ It's a stochastic approach, some some noise is to be expected

■ Using more samples leads to better smoothing

util.draw_loss_landscape(losses=[util.RegretLoss(), util.RegretLoss(smoothing_samples=32, smooth

 



Stochastic Smoothing
We can control the smoothing level by adjusting 𝜎

In [5]:

■ Larger  value remove flat sections better

■ ...But also cause a shift in the position of the optimum

𝜎

util.draw_loss_landscape(losses=[util.RegretLoss(), util.RegretLoss(smoothing_samples=1024, smoo

 



Score Function Gradient Estimation
How does that help us?

Normally, the DFL loss looks like this:

When we apply stochastic smoothing, it turns into:

The expectation is now computed on , , and 

■ We can use a sample average to handle the expectation on  and 

■ ...But if we do it on  we are left with nothing differentiable

(𝜃) = [regret( , 𝑦)]𝐿𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂ 

(𝜃) = [regret( , 𝑦)]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ), ∼(ℎ(𝑥,𝜃))𝑦 ̂  𝑦 ̂ 

𝑥 𝑦 𝑦 ̂ 

𝑥 𝑦

𝑦 ̂ 

 



Score Function Gradient Estimation
So we expand the last expectation on :

■  cannot be differentiated, since  is a fixed sample in this setup

■ However, the probability  can! It's just a Normal PDF

Now, we just need a way to handle the integral

We do it by focusing on the gradient

Due to linearity of expectation and integration, this is given by:

𝑦 ̂ 

(𝜃) = [ regret( , 𝑦)𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  𝑦 ̂  𝑦 ̂ 

regret( , 𝑦)𝑦 ̂  𝑦 ̂ 

𝑝( , 𝜃)𝑦 ̂ 

∇ (𝜃) = [ regret( , 𝑦) 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 

 



Score Function Gradient Estimation
Let's consider again the expression we have obtained

By taking advantage of the fact that , we can rewrite it
as:

Now, the integral is again an expectation, so we have:

∇ (𝜃) = [ regret( , 𝑦) 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 

(𝑓(𝑥)) = 1/𝑥 (𝑥)log′ 𝑓 ′

∇ (𝜃) = [ regret( , 𝑦)𝑝( , 𝜃) log 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 

∇ (𝜃) = [regret( , 𝑦) log 𝑝( , 𝜃)]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ), ∼(ℎ(𝑥,𝜃),𝜎)𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂ 

 



Score Function Gradient Estimation
Finally, we can use a sample averate to approximate both expectations:

■ For every training example we sample  from the stochastic estimator

■ We compute  as usual

■ ...And we obtain a gradient since  is easily differentiable in 

∇ (𝜃) ≃ regret( , 𝑦) log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁

𝑦 ̂  ∇𝜃 𝑦 ̂ 

𝑦 ̂ 

regret( , 𝑦)𝑦 ̂ 

𝑝( , 𝜃)𝑦 ̂  𝜃

We can trick a tensor engine into doing the calculation by using this loss:

(𝜃) ≃ regret( , 𝑦) log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁

𝑦 ̂  𝑦 ̂ 

 



Score Function Gradient Estimation
This approach is also know as Score Function Gradient Estimation (SFGE)

■ It is a known approach (see e.g. [3]), but it has seen limited use in DFL

■ We applied it to 2s-SOP in [4] (accepted, not yet published)

It works with any function, not just regret

...And in practice it can be improved by standardizing the gradient terms:

■ Standardization helps in particular with small numbers of samples

∇ (𝜃) ≃ ∇ log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁
𝑔( , 𝑦) − mean(𝑔( , 𝐲))𝑦 ̂  �̂� 

std(𝑔( , 𝐲))�̂� 
𝑦 ̂ 

[3] Berthet, Quentin, et al. "Learning with differentiable pertubed optimizers." Advances in neural information processing systems 33 (2020):
9508-9519.
[4] Silvestri, Mattia et al. "Score Function Gradient Estimation to Widen the Applicability ofDecision-focused Learning", Differetiable Almost
Everywhere workshop at ICML 2023 



A Practical Example
We test this on our supply planning problem

We start by generaring a dataset of contract values (the costs are fixed)

In [21]:

The distribution is the same we used for the one-stage problem

seed, nitems = 42, 20
data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.2, noise_type
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



A Practical Example
Then we generate the remaining problem parameters

In [22]:

■ The minimum value if 60% of the sum of average values on the training data

■ Buying in the second stage is 10 times more expensive then the average cost

Out[22]: ProductionProblem2Stage(costs=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.062397
81
1.02323344 1.34647046 1.240446   1.28322903 1.0082338  1.38796394
1.33297706 1.08493564 1.07272999 1.0733618  1.1216969  1.20990257
1.17277801 1.11649166], requirement=3.8862101169088654, buffer_cost=11.830809153591137)

# Generate the problem
rel_req = 0.6
rel_buffer_cost = 10
prb = util.generate_2s_problem(nitems, requirement=rel_req * data_tr.mean().sum(), rel_buffer_co
prb

 



A Practical Example
For testing, we generate multiple samples per instance

In [23]:

By doing this, we get a more reliable evaluation of uncertainty

data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_ts, figsize=figsize, title='Training Set', scatter=True)

 



A PFL Approach
We start by training a prediction focused approach

In [24]:

This is as fast as the DFL approach, and can be used for warm-starting

CPU times: user 8.21 s, sys: 352 ms, total: 8.56 s
Wall time: 6.83 s

R2: 0.80, MAE: 0.071, RMSE: 0.09 (training)
R2: 0.75, MAE: 0.072, RMSE: 0.09 (training)

pfl_2s = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_2s', outpu
%time history = util.train_nn_model(pfl_2s, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_2s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_2s, data_ts.index.values, data_ts.values, label='training')

 



Evaluating Two-Stage Approaches
Two-state stochastic approaches can be evaluated in two ways

We can compare then with the best we could do

■ The cost different is the proper regret

■ Its computation requires solving a 2s-SOP with high accuracy

■ ...Making it a very computationally expensive metric

We can compare them with the expected cost of a clairvoyant approach

■ The cost difference is called Expected Value of Perfect Information

■ ...Or sometimes Post-hoc regret

■ Its computation requires solving a 2s-SOP with just a single scenario

■ ...So it's much faster, but only provide an upper bound on true regret

 



Evaluating the PFL Approach
Let's check the EVPF/Post-hoc regret for the PFL Approach

In [25]:

This will be our baseline

Mean: 0.634 (pfl -- two stage)

pfl_2s_evpf = util.compute_evpf_2s(prb, pfl_2s, data_ts, tlim=10)
util.plot_histogram(pfl_2s_evpf, figsize=figsize, label='pfl -- two stage', print_mean=True)

 



Training a DFL Approach
We traing a DFL with warm starting, but no solution cache

...Since the feasible space for the recourse actions is not fixed

In [30]:

CPU times: user 4min 41s, sys: 34.8 s, total: 5min 16s
Wall time: 5min 16s

R2: 0.61, MAE: 0.095, RMSE: 0.12 (training)
R2: 0.66, MAE: 0.081, RMSE: 0.10 (test)

sfge_2s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name
%time history = util.train_dfl_model(sfge_2s, data_tr.index.values, data_tr.values, epochs=100, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False, excluded_m
util.print_ml_metrics(sfge_2s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(sfge_2s, data_ts.index.values, data_ts.values, label='test')

 



Evaluating the DFL Approach
We can now inspect the EVPF/Post-hoc regret for the DLF approach, as well

In [31]:

Mean: 0.382 (dfl -- two-stage)

sfge_2s_evpf = util.compute_evpf_2s(prb, sfge_2s, data_ts, tlim=10)
util.plot_histogram(sfge_2s_evpf, figsize=figsize, label='dfl -- two-stage', print_mean=True)

 



A More In-depth Comparison
A more extensive experimentation will be found in [4]

The method has been tested on:

■ Some "normal" DFL benchmarks

■ Several two-stage stochastic problems

The baselines are represented by:

■ Specialize methods (e.g. SPO, the one from [1]), when applicable

■ A neuro-probabilistic model + a scenario based approach

Specialized method tend to work better

■ ...But SFGE is much more versatile

■ The best results are obtained on 2s-SOPs

 



A More In-depth Comparison
This is how the approach fares again the scenario based method

...On a problem somewhat similar to our supply planning one

 



03. Off-beat Path
 



Two-Stage Stochastic Optimization
Let's consider this variant of our example problem

It's similar to the one-stage variant, except that:

■ The decision variables are continuous

■ The cost function is non-linear

■ We using  to denote the uncertain parameters

(𝑢) = argmin{ [ sin(2𝜋 )] ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ∑
𝑗=1

𝑛

𝑢𝑗𝑧𝑗 𝑣𝑇 ]𝑛

𝑢

It's just another one-stage stochastic optimization problem,
but the use of  terms makes it much more challengingsin

 



SFGE Enables Objective Decoupling
We will see that it can also be addressed via DFL

The point is that the SFGE approach has a nice property:

■ The function  used as a loss term

■ ...And the cost we use to compute 

...Can be completely distinct

𝑔( , 𝑦)𝑦 ̂ 

(𝑦)𝑧
∗

We can put this to our advantage

■ In particular, we can use an ML model

■ ...To guide a low-complexity problem

■ ...So that we get a solution for tougher one

...And since we are using DFL we also get a contextual approach (we react to )𝑥

 



Target Problem
Let's try to come up with a formalization

Say we want to target an optimization problem in the form:

Where:

■  is an observable,  is a vector of decisions

■  is a vector of parameters

■  is the cost function (which can depend on the observable)

■  is the feasible space (which can depend on the observable)

■ A training sample  from the distribution 

This is a (slightly) generalized version of the problem class targeted by DFL

  { [𝑓(𝑧, 𝑢, 𝑥)] ∣ 𝑧 ∈ 𝐹 (𝑥)}argmin𝑧 𝔼𝑢∼𝑃(𝑌 ∣𝑋=𝑥)

𝑥 𝑧

𝑢

𝑓(𝑧, 𝑢, 𝑥)

𝐹 (𝑥)

{( , )𝑥𝑖 𝑢𝑖 }
𝑚
𝑖=1 𝑃 (𝑋,𝑈)

 



A DFL Approach
In principle we can apply "normal" DFL to this problem

First, we define:

Then, at training time we solve:

(𝑢, 𝑥) = {𝑓(𝑧, 𝑢, 𝑥) ∣ 𝑧 ∈ 𝐹 (𝑥)}𝑧∗ argmin𝑧

=   { [𝑓( ( , 𝑥), 𝑢, 𝑥) − 𝑓( (𝑢, 𝑥), 𝑢, 𝑥)] ∣ = ℎ𝜃∗ argmin𝜃 𝔼(𝑥,𝑢)∼𝑃(𝑋,𝑈) 𝑧∗ 𝑢 ̂  𝑧∗ 𝑦 ̂ 

In practice, if  is not linear like in our current example

...Then doing it would not be easy at all

■ We'd need to use a non-linear solver

■ ...And the computational cost would be much higher

𝑓(𝑧, 𝑢, 𝑥)

 



Another DFL Approach
But we can cheat! Since SFGE enables distinct costs

...We can compute  through a surrogate problem:

■  is the same decision vector as before

■ ...But  is a set of created ad-hoc for the surrogate

■ We'll call them virtual parameters, because they may have real counterpart

Then:

■  is a surrogate cost function

■  is a surrogate feasible space

For the solution to be valid we need to have 

𝑧∗

(𝑦, 𝑥) = { (𝑧, 𝑦, 𝑥) ∣ 𝑧 ∈ (𝑦, 𝑥)}𝑧∗ argmin𝑧 𝑓
̃  𝐹 ̃ 

𝑧

𝑦

(𝑧, 𝑦, 𝑥)𝑓 ̃ 

(𝑦, 𝑥)𝐹 ̃ 

𝑧 ∈ (𝑦, 𝑥) ⇒ 𝑧 ∈ 𝐹 (𝑥)𝐹 ̃ 

 



Another DFL Approach
At training time, we solve:

Intuitively:

■ We observe  and we estimate a virtual parameter vector 

■ We obtain a decision vector  through the surrogate problem

■ Then we evaluate the cost via the true cost function 

=   { [𝑓( (𝑦, 𝑥), 𝑢, 𝑥)] ∣ 𝑦 = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑢)∼𝑃(𝑋,𝑈) 𝑧∗

𝑥 𝑦

(𝑦, 𝑥)𝑧∗

𝑓(𝑧, 𝑢)

There is a distinction between the virtual parameter  for 

...And the parameters  for  are distinct

■ For this reason, there is no ground truth for 

■ ...Which prevents us from using a regret loss

𝑦 (𝑦, 𝑥)𝑧∗

𝑢 𝑓(𝑧, 𝑢, 𝑥)

𝑦

 



Motivation
The appeal here is that the surrogate problem can be easier to solve

In our example, instead of using:

We could use instead the following surrogate:

The surrogate is an LP, so it's very fast to solve

■ Together with the ML estimator, it can still lead to high-quality solutions

■ As long as the surrogate is sufficiently well aligned with the true problem

(𝑢, 𝑥) = argmin{ sin(2𝜋 ) ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ ∑
𝑗=1

𝑛

𝑢𝑗𝑧𝑗 𝑣𝑇 ]𝑛

(𝑦, 𝑥) = argmin { 𝑧 ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ 𝑦𝑇 𝑣𝑇 ]𝑛

 



Benchmark Data
Let's try a proof-of-concept experiment

In [3]:

■ We generate data for the  parameter as in all previous variants

■ We keep the distribution simple, since we want to stress non-linearity

𝑢

seed, nitems = 42, 20
data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.1, noise_type
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Benchmark Data
Then we generate the remaining problem data and a test set

In [4]: rel_req = 0.6
prb = util.generate_problem(nitems=nitems, rel_req=rel_req, seed=seed, surrogate=True)
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_ts, figsize=figsize, title='Training Set', scatter=True)

 



A Baseline
We'll use again a PFL approach as a baseline

Note this is not a particularly good choice, but it's difficult to find an alternative

In [5]:

CPU times: user 8.61 s, sys: 256 ms, total: 8.87 s
Wall time: 7.16 s

R2: 0.84, MAE: 0.076, RMSE: 0.09 (training)
R2: 0.84, MAE: 0.079, RMSE: 0.09 (training)

pfl_nl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_nl', outpu
%time history = util.train_nn_model(pfl_nl, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_nl, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_nl, data_ts.index.values, data_ts.values, label='training')

 



PFL Approach Evaluation
We'll also evaluate the results in terms of cost, not relative regret

Again, the reason is that this problem is not so easy to solve

In [6]:

Mean: 5.691 (training), 5.497 (test)

tc_tr_nl = util.compute_regret_surrogate(prb, pfl_nl, data_tr, tlim=10, cost_only=True)
tc_ts_nl = util.compute_regret_surrogate(prb, pfl_nl, data_ts, tlim=10, cost_only=True)
util.plot_histogram(tc_tr_nl, figsize=figsize, label='training', data2=tc_ts_nl, label2='test', 

 



Alternative DFL Approach
We can now try out alternative DFL approach

In this case, warm starting may not be a good idea

In [7]:

CPU times: user 3min 35s, sys: 3.43 s, total: 3min 38s
Wall time: 3min 38s

R2: -6.83, MAE: 0.5, RMSE: 0.61 (training)
R2: -6.54, MAE: 0.5, RMSE: 0.61 (test)

sfge_sg = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name
%time history = util.train_dfl_model(sfge_sg, data_tr.index.values, data_tr.values, epochs=300, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False, excluded_m
util.print_ml_metrics(sfge_sg, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(sfge_sg, data_ts.index.values, data_ts.values, label='test')

 



DFL Approach Evaluation
...And we can compare the two cost distributions on the training data

In [8]:

The difference is very noticeable

Mean: -3.178 (dfl), 5.497 (pfl)

tc_tr_sg = util.compute_regret_surrogate(prb, sfge_sg, data_tr, tlim=10, cost_only=True)
tc_ts_sg = util.compute_regret_surrogate(prb, sfge_sg, data_ts, tlim=10, cost_only=True)
util.plot_histogram(tc_ts_sg, figsize=figsize, label='dfl', data2=tc_ts_nl, label2='pfl', print_

 



Considerations
By using DFL + a surrogate we can "partition" the problem complexity

■ We can simplify some elements that the solver has trouble addressing

■ ...And dump them partially on the ML model

■ ...Or we can do the opposite (e.g. hard constraints in ML based decision making)

■ It can work without an observable (no )

■ It could be used for black-box optimization

𝑥

Some caveats:

■ This is not a well investigate approach: treat is as a proof-of-concept

■ Banning special case, the method works as a heuristic

■ ...And finding a good surrogate can be quite difficult

 



05. Last Leg of the Journey
 



Multi-Stage Stochastic Optimization
What if we have a sequence of decision stages?

Consider for example and Energy Management System:

■ We need to make some decisions (using a generator, buyng from the grid...)

■ ...Then observe how uncertainty unfolds

■ ...Based on that, we make another round of decisions and so on

 



Multi-Stage Stochastic Optimization
We will also assume that there are non-trivial constraints

■ This setup is called multi-stage stochastic optimization

■ ...Or also online stochastic optimization, or sequential decision making

There are a few possible solution approaches

One approach consist in using scenarios, again

■ ...But since there are many stages, the decisions variables branch out

■ A solution is called a policy tree, which is very expensive to compute

A second approach consists in using anticipatory algorithms

■ We iteratively solve an optimization problem with a bit of look-ahead

■ Several examples can be found in [1]

[1] Hentenryck, Pascal Van, and Russell Bent. Online stochastic combinatorial optimization. The MIT Press, 2006.

 



Formalization
Formally, this setup is well captured by a constrained Markov Decision
Process (MDP)

In particular, we will consider a constrained  be an MDP
with:

■ A set of possible (observable) states 

■ A set of possible decisions 

■ A distribution  for the initial state

■ A distribution  for the possible state transitions

■ A cost function 

■ A feasible space  which depends on the state

Some comments:

■ The next state depends on the current state and decisions

■ The cost depends on the current state and decisions, and on the next state

Thi i t th l MDP d fi iti b t it ill b i t f

⟨𝑋,𝑍, , 𝑃 , 𝑓, 𝐹⟩𝑃 0

𝑋

𝑍

(𝑋)𝑃 0

𝑃 (𝑋 ∣ 𝑋,𝑍)

𝑓(𝑧, 𝑥, )𝑥+

𝐹 (𝑥)

 



Formalization
Within this framework, we can formalize a multi-stage problem

Our goal is to define a solution policy  from a set of candidates  s.t.:

This is very complex problem:

■ We are not searching for a fixed solution, but for a policy

■ The decisions can be anything (including discrete and combinatorial)

■ ...They affect the state at the next stage (endogenous uncertainty)

■ ...And they should be feasible according to hard constraints

𝜋∗ Π

=  𝜋∗ argmin𝜋∈Π

subject to: 

[ 𝑓( , , )]𝔼 ∼ , ∼𝑃(𝑋∣ , )𝑥0 𝑃 0 𝑥𝑡+1 𝑥𝑡 𝑧𝑡 ∑
𝑡=1

𝑒𝑜ℎ

𝑧𝑡 𝑥𝑡 𝑥𝑡+1

= 𝜋( )𝑧𝑡 𝑥𝑡

∈ 𝐹 ( )𝑧𝑡 𝑥𝑡

 



Solution Approach Wanted
Normally, with an MDP we may turn to Reinforcement Learning

...But in this case there are a couple of difficulties:

■ Handling constraints (hard ones in particular) in RL is challenging

■ Handling combinatorial decisions in RL is very challenging

Let's recap our situation

■ Classical approaches from stochastic optimization have poor scalability

■ RL approaches have poor support for constraints and combinatorial spaces

Can we use DFL in this scenario?

[1] Garcıa, Javier, and Fernando Fernández. "A comprehensive survey on safe reinforcement learning." Journal of Machine Learning Research
16.1 (2015): 1437-1480. 



DFL and RL (UNIFY)
Indeed we can, and at this point it's not even that difficult

The trick is simply to decompose the policy , leading to:

Intuitively:

■ We use a ML model to output a set of virtual parameters 

■ ...Then we compute  by solving a constrained optimization problem

■ The ML model take care of uncertianty

■ The optimization problem take care of the constraints

𝜋

=  𝜃∗ argmin𝜃

subject to: 

[ 𝑓( , , )]𝔼 ∼ , ∼𝑃(𝑋∣ , )𝑥0 𝑃 0 𝑥𝑡+1 𝑥𝑡 𝑧𝑡 ∑
𝑡=1

𝑒𝑜ℎ

𝑧𝑡 𝑥𝑡 𝑥𝑡+1

= ( , )𝑧𝑡 𝑧∗ 𝑦𝑡 𝑥𝑡

= ℎ( , 𝜃)𝑦𝑡 𝑥𝑡

𝑦

𝑧𝑘

 



DFL and RL (UNIFY)
We use the generalized, surrogate-based approach to compute 

In particular, we have:

■ Depending on our choice for the virtual parameters

■ We will need to craft the surrogate cost  and feasible space 

■ The original constraints are satisfied as long as 

The surrogate terms can usually be designed by tweaking a bit  and 

𝑧∗

(𝑦, 𝑥) = { (𝑧, 𝑦, 𝑥) ∣ 𝑧 ∈ (𝑦, 𝑥)}𝑧∗ argmin𝑧 𝑓
̃  𝐹 ̃ 

𝑓 ̃  𝐹 ̃ 

𝑧 ∈ 𝐹 (𝑦, 𝑥) ⇒ 𝑧 ∈ 𝐹 (𝑥)

𝑓 𝐹

The overall idea is that the ML model guides the optimizer,
exactly as in normal DFL

 



DFL and RL (UNIFY)
For training, we can rely on a simple reformulation

In particular, we define a new unconstrained MDP  such that:

■ The set of states is the same as before

■ The set of states is the set  of possible training parameters

■ The state transition distributions are the same as before

■ The cost function is defined as:

Intuitively, we treat the solver as part of the environment

⟨𝑋, Θ, , 𝑃 , 𝑔⟩𝑃 0

Θ

𝑔(𝑦, 𝑥, ) = 𝑓( (𝑦), 𝑥, )𝑥+ 𝑧∗ 𝑥+

This new MDP can be addressed by any RL learning approach
so we can benfit from recent advances in such field

 



DFL and RL (UNIFY)
This setup is the most general we have seen so far

It can be used to address a wide number of problem types

■ Optimization with parameters that need to be estimated

■ One-stage stochastic programming

■ Two-state stochastic programming

■ Sequential decision making with constraints

■ In principle, also black-box optimization and parameter tuning

■ ...Though it probably would not a good fit for such cases

You can find it described in [1], under the name UNIFY

[2] Silvestri, Mattia, et al. "UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine
Learning." arXiv preprint arXiv:2210.14030 (2022).

 



An Example
Let's consider the Energy Management System example in detail

Every 15 minutes, we need to adjust power flow to/from a set of nodes

■ Nodes can be generators, demand points, or the grid

■ One special node represents a storage system

The decisions  at time  include:

■ A vector of power flows  to/from the main nodes

■ A power flow  to/from the storage system

The state  at time  is given by:

■ The power  generated by some nodes (e.g. PV plants)

■ The demand  for some nodes (e.g. production sites or housing)

■ The storage charge level 

𝑧𝑡 𝑡

𝑧𝑡𝑛𝑜𝑑𝑒𝑠
𝑧𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑥𝑡 𝑡

𝑥𝑡𝑝𝑜𝑤𝑒𝑟

𝑥𝑡
𝑑𝑒𝑚𝑎𝑛𝑑

𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒

 



An Example
The transition distribution  is defined by:

■ A distribution  of the yield of renewable energy generators

■ A distribution  of the demand

■ The deterministic transition 

The feasible space  is defined via:

■ Flow capacity constraints: 

■ Flow balance constraints: 

■ Storage capacity constraints 

The cost  is given by:

■ There is no cost associate to demands, renewable generators, and the storage

𝑃

𝑃𝑝𝑜𝑤𝑒𝑟

𝑃𝑑𝑒𝑚𝑎𝑛𝑑

= + 𝜂𝑥𝑡+1𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝐹 ( )𝑥𝑡

𝑙 ≤ ≤ 𝑡𝑧𝑡

𝑧 + − = 01𝑇 𝑥𝑝𝑜𝑤𝑒𝑟 𝑥𝑑𝑒𝑚𝑎𝑛𝑑

0 ≤ + 𝜂 ≤ 𝐶𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑓( , , )𝑧𝑡 𝑥𝑡 𝑥𝑡+1

𝑓( , , ) =𝑧𝑡 𝑥𝑡 𝑥
𝑡+1

𝑐
𝑇
𝑧𝑛𝑜𝑑𝑒𝑠

 



The Optimization Problem
We can compute  by solvig the following LP

The main alteration is that a virtual cost is associated to the storage system

■ If , the solve will tend to charge the storage

■ If , the solve will tend to draw power from the storage

■ ...So that the ML model can alter the decisions

Without the virtual cost, the storage system would never be charged

(𝑦, 𝑥)𝑧∗

 argmin𝑧

subject to: 

+ 𝑦𝑐𝑇 𝑧𝑛𝑜𝑑𝑒𝑠 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑙 ≤ ≤ 𝑡𝑧𝑡

𝑧 + − = 01𝑇 𝑥𝑝𝑜𝑤𝑒𝑟 𝑥𝑑𝑒𝑚𝑎𝑛𝑑

0 ≤ + 𝜂 ≤ 𝐶𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑦 > 0

𝑦 < 0

 



Some Results
Here's a comparison with some constrained RL methods

 



Some Results
And here's a comparison with a specialized stochastic optimization approach

 



Some Final Thoughts
If you retain one idea from our ramble, makes sure it is this:

You just need to stretch it a little bit ;-)

DFL can be used for way more than one purpose!

Where next?

■ We can reap what we haven't sowed! Let's test more RL algos (spoiler: started)

■ Scalability is still a big issue

■ We need more (and more realistic) applications

■ ...

 



Thanks for your patience! Any question?

 


