e

I his ecosystem is a protected area and is home to many
animals, birds, and plants. The Ramble is also one of the
top bird-watching locations in the United States.

Rambling Away from Decision Focused Learning
A circuitous investigatation of what DFL can do
& if you keep pushing at its limits




What I'll present is the result of joint work!

Many thanks to: Senne Berden, Victor Bucarey, Allegra De Filippo, Michelangelo
Diligentl, Tias Guns, Jayanta Mandi, [rfan Mahmutogullari, Michela Milano,
Maxime Mulamba, Mattia Silvestri
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Getting Started

As stated, our starting point is Decision Focused Learning
Specifically the SPO formulation, where we focus on problems in the form:

z*(y) = argmin_{y' z | z € F})

m Zistheset of decisions (numeric or discrete)
m [isthefeasible space

m yisacostvector,whichisnot directly measureable

Rather than to y, we have access to an observable x

m Based on x, we can attempt to train a parametric estimator h(x, @)

m .Using training examples {(x;, ¥i) 12
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A Possible Example

For example, we may have to deal with routing problem
We need to select the best path to reach our destination

L

m \We don't know the current state of the traffic

m But we can guess! E.g. based on the time, weather, etc.




Inference l

This setup involves using the estimator and the optimizer in sequence

ML | Y =Nhz,0) | "
T —4 odel s| Optimizer > 2" (7))

At inference time:

m \We observe x
m \We evaluate our estimator h(x, @) toobtainy

m We solve the problem to obtain z*(y)

Overall, the process consists in evaluating:

z"(h(x, 0))
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A Two-phase Approach

We can use supervised learning for the estimator

Formally, we obtain an optimal parameter vector by solving:

0* — argminH{E(X,y)NP(X,Y) [L(.)l;a y)] | .)/; — h(x9 9)}

m Where L is asuitable loss function (e.g. a squred error)

m We'll refer to this as a prediction-focused approach

However, using supervised learning is suboptimal

m Asmall mistake interms of L

m ..May lead the optimizer to choosing a poor solution

-

The root of the issue is a misalignment between the cost
metric at training and inference time
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Spotting Trouble

Let's see this in action on a toy problem
Consider this two-variable optimization problem:

argmin_{yozo + y121 | zo +z1 = 1}
Let's assume that the true relation between x (a scalar) and y is:

vo = 2.5x7
y; = 0.3 +0.8x

..But that we can only learn this model with a scalar weight 6:

)/;O — 92x

Z20u#'model cannot represent the true relation exactly



Spotting Trouble l

This is what we get from supervised learning with uniformly distribute data:

In [15]: util.draw(w=None, figsize=figsize, model=1)

Optimized theta: 1.375

2.5

2.0 1

1.5 A

1.0

0.5

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m [ hecrossing point of the grey lines is where we should pick item O instead of 1

m [heorange lines (trained model) miss it by a wide margin
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Not All is Lost

However, we cas sidestep the issue by disergarding accuracy

In [1l6]:

m If we focus on choosing @ to match the crossing point

m ..We lead the optimizer to consistently making the correct choice

a s

util.draw(w=0.91, figsize=figsize,
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1.0 +

0.5 1

0.0
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The Main DFL ldea l
DFL attempts to achieve this by using a task-based loss at training time
There's some consensus on this "holy grail" training problem:

0* — argminH{E(X,y)NP(X,Y) [regret(j;a y)] | )/; — h(xa 9)}
Where in our setting we have:
A I _x/n T _
regret(y, y) =y 2z (¥) =y z ()

m 2" () is the best solution with the estimated costs
m 27 () is the best solution with the true costs

Intuitively, we want to loose as little as possible w.r.t. the best we could do

[ One of the main challenges in DFL is dealing with this loss ]
4




Knowing Regret

To see this, let's push our example a little further

In [17]: x = util.normal sample (mean=0.54, std=0.2, size=1000)
util.plot histogram(x, figsize=figsize, label='x")

0.14 [ =

0.12

0.10 +

0.08

0.06

0.04

0.00

0.02
| N R —

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m Say we have access to a normally distributed collection of x values

m ..And to the corresponding true values y
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Knowing Regret l

This is how the regret looks like for a single example

In [18]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=1l, figsize=fic

number of examples: 1

0.20 — regret
0.15 A
0.10 A
0.05 1
0.00
—{]:25 O.E)D CI.I25 Cl.l':-D CI.IT"S l.lII]CI l.l25 l._l.':-Cl

m If f(x,0)leadstothe correct decision, the regretisO

m Otherwise we have some non-null value
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Knowing Regret l

...And this is the same for a larger sample

In [19]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=64, figsize=f:

number of examples: 64

| — regret

0.12

0.10

0.08 ~

0.06

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m Forlinear problems and finite samples the regret function is piecewise constant

m ..Which makes a direct use of gradient descent impossible
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SPO+ Loss

A lot of research in the DFL field is about addressing this problem
We will just recap the SPO+ loss from [ 1], whichis (roughly) defined as:

A AT AT A . A A
Sp0+(y9 y) — ysp()Z*(y) _ ySPOZ*(ySPO) Wlth ySpO — 2y T y
There are two main ideas here:

The first it to see what happens with the predicted (not the true) costs

m We know z*(¥,,) is the optimal solution for y,,
m But we wish for z*(y) to be optimal instead
m Therefore if )?STPOZ* (y) > )7STpOZ* ()751,0) we give a penalty

With this trick, a differentiable term (i.e. )?Spo) appears in the loss

[1] ElImachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”" Management Science 68.1 (2022): 9-26.
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SPO+ Loss l
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [ 1], whichis (roughly) defined as:
A AT AT A . A A
Sp0+(y9 y) — ysp()Z*(y) _ ySPOZ*(ySPO) Wlth ySpO — 2y T y

There are two main ideas here:
The second is to avoid using the estimates y directly

m Werely instead on an altered cost vector, i.e. )?Spo
m Using y, directly would resultinalocal minimum for y = 0

m With )?Spo, the local minimum isin a location _that depends on y

We'll try to visualize this phenomenon

[1] ElImachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”" Management Science 68.1 (2022): 9-26.
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SPO+ Loss l

This is the SPO+ loss for a single example on our toy problem

In [20]: util.draw loss landscape (losses=[util.SPOPlusLoss ()], model=1l, seed=42, batch size=1, figsize=f:

number of examples: 1

0.40 —— SPO+
0.35
0.30 ~
0.25
0.20
0.15 ~
0.10
0.05 ~

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m As expected, there are two local minima
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SPO+ Loss

This is the SPO+ loss for a two examples

In [21]:

m [he"good" local minima for both examples are roughly in the same place

m [ he "spurious" local minima fall in different position

a s

util.draw loss landscape (losses=[util.SPOPlusLoss ()], model=1l, seed=42, batch size=2,
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SPO+ Loss l

Over many example, the spurious local minima tend to cancel out

In [22]: util.draw loss landscape (losses=[util.SPOPluslLoss ()], model=1l, seed=42, batch size=64, figsize=1

number of examples: 64

0.35

— SPO+

0.30 ~

0.25

0.20

0.15 ~

0.10 ~

0.05 ~

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [hiseffectisinvaluable when training with gradient descent
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A (Sligthly) More Complex Example l

Let's see the approach in action on a second example
We will consider this simple optimization problem:

z5(y) = argmin{yTz | vz >r,z€{0,1}")

m Ve need to decide which of a set of jobs to accept
m Acceptingajob (z; = 1) providesimmediate value v;
m [hecost y; of the job is not known

m .. Butitcanbeestimated based on available data

In [23]: nitems, rel reqg, seed = 20, 0.5, 42
prb = util.generate problem(nitems=nitems, rel reg=rel req, seed=seed)

display (prb)

ProductionProblem(values=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.06239781
1.02323344 1.346470460 1.240446 1.28322903 1.0082338 1.38796394
1.33297706 1.08493564 1.07272999 1.0733618 1.1216969 1.20990257

f 1.17277801 1.11649166], requirement=11.830809153591138)



A (Sligthly) More Complex Example l

Next, we generate some training (and test) data

In [24]: data tr = util.generate costs (nsamples=350, nitems=nitems, seed=seed, noise scale=0, noise types
data ts = util.generate costs (nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, nois
util.plot df cols(data tr, figsize=figsize, title='Training Set')

Training Set
1.0 -
0.8 \ e _ __?_.__-==_.-—__.._=—_—-_
0.6 /"’74""‘*‘%'—*"' — — ————
=
0.2 4 —_— ___,;::::"-':""'rf - \\___\_\
y| ———— —— ———

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

m Ve assume that costs can be estimated based on an scalar observable x

m [he set of least expensive jobs changes considerably with x
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Prediction Focused Approach

As a baseline, we'll consider a basic prediction-focused approach

In [25]: pfl = util.build nn model (input shape=1, output shape=nitems, hidden=[], name='pfl det', output
$time history = util.train nn model (pfl, data tr.index.values, data tr.values, epochs=1000, loss
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl, data ts.index.values, data ts.values, label='test')

CPU times: user 8.94 s, sys: 330 ms, total: 9.27 s
Wall time: 7.36 s

0.25 - —— loss

0.20
0.15
0.10 +
0.05

0.00 -

T T T T T
0 200 400 600 800 1000
epochs

R2: 0.86, MAE: 0.086, RMSE: 0.10 (training)
R2: 0.86, MAE: 0.087, RMSE: 0.10 (test)

e [pte ML model is just a linear regressor, but it is decently accurate



Prediction Focused Approach

...But our true evaluation should be in terms of regret

In [26]: r tr = util.compute regret (prb, pfl, data tr.index.values, data tr.values)

r ts = util.compute regret (prb, pfl, data ts.index.values, data ts.values)

util.plot histogram(r tr, figsize=figsize, label='training', data2=r ts, label2='test',K print me

0.35 4 ] —— training
test
0.30

0.25
0.20
0.15

0.10 +

0.05 t I

0.00

0.00 0.05 0.10 0.15 0.20

Mean: 0.052 (training), 0.053 (test)

m Inthiscase, the average relative regretis ~5%
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A Decision Focused Learning Approach

In [27]: spo = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name='sy
$time history = util.train dfl model (spo, data tr.index.values, data tr.values, epochs=200, verk

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(spo, data tr.index.values, data tr.values, label='training')

util.print ml metrics(spo, data ts.index.values, data ts.values, label='test')

CPU times: user 4min 31s, sys: 20.3 s, total: 4min 51s
Wall time: 4min 51s

—— loss

epochs

R2: -0.14, MAE: 0.22, RMSE: 0.27 (training)
R2: -0.14, MAE: 0.22, RMSE: 0.27 (test)

In terms of accuracy, this is considerably worse
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Comparing Regrets

But the regret is so much better!

In [28]: r ts spo = util.compute regret (prb, spo, data ts.index.values, data ts.values)
util.plot histogram(r ts spo, figsize=figsize, label='spo',6K dataZ=r ts, label2='pfl', print mear

0.8 — — spo
fl
0.7 1 P
0.6 1

0.5

0.4
0.3
0.2 1

0.1

e e

T T T T T
0.00 0.05 0.10 0.15 0.20

0.0 4

Mean: 0.008 (spo), 0.053 (pfl)

This is the kind of result that attracted so much attention since [2]

[2] Donti, Priya, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." Advances in neural
information processing systems 30 (2017).
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02. Picking a Direction




Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet
Infact, it's easy to see that:

E[regret(J, )] - 0
E[L(y,y)]—0

Intuitively::
m [he more accurate we can be, the lower the regret

m Eventually, perfect predictions will result in O regret




Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet
Infact, it's easy to see that:

E[regret(J, )] - 0
E[L(y,y)]—0

Intuitively::
m [he more accurate we can be, the lower the regret

m Eventually, perfect predictions will result in O regret

But then... What if we make our model bigger?

m \We could get good predictions and good regret

m ..And training would be much faster
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Our Baseline

Let's check again the results for our PFL linear regressor

In [2]: pfl = util.build nn model (input shape=1l, output shape=nitems, hidden=[], name='pfl det', output
history = util.train nn model (pfl, data tr.index.values, data tr.values, epochs=1000, loss='mse!'
r tr = util.compute regret (prb, pfl, data tr.index.values, data tr.values)
r ts = util.compute regret (prb, pfl, data ts.index.values, data ts.values)
util.plot histogram(r tr, figsize=figsize, label='training',6 data2Z=r ts, label2='test', print me

| —— ftraining

test

0.35

0.30

0.25

0.20

0.15 +

0.10 +

0.05 + L ]

0.00 ~

0.00 0.05 0.10 0.15 0.20

Mean: 0.052 (training), 0.053 (test)

Th2W|II be our main baseline



PFL Strikes Back

Let's try to use a non-linear model

In [3]: pfl acc = util.build nn model (input shape=1, output shape=nitems, hidden=[8], name='pfl det acc

$time history = util.train nn model (pfl acc, data tr.index.values, data tr.values, epochs=1000,

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl acc, data tr.index.values, data tr.values,
util.print ml metrics(pfl acc, data ts.index.values, data ts.values,

CPU times: user 10.3 s, sys: 367 ms, total: 10.7 s
Wall time: 7.95 s

label="'training"')
label="test')

0.3 1

0.2 7

0.1

— loss

0.0 1

T T
0 200 400
epochs

R2: 0.99, MAE: 0.019, RMSE: 0.03 (training)
R2: 0.99, MAE: 0.019, RMSE: 0.03 (test)

Vigge accurate, it is!

T
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T
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PFL Strikes Back l

...And the improvement in terms of regret is remarkable

In [4]: r ts acc = util.compute regret (prb, pfl acc, data ts.index.values, data ts.values)
util.plot histogram(r ts acc, figsize=figsize, label='pfl -- hidden layer', dataZ2=r ts, label2=
0.8 ] —— pfl - hidden layer
pfl - linear
0.6
0.4 1
0.2
0.0
O.KI)D 0.&)5 O.IILO O.Il5 0.I20
Mean: 0.005 (pfl -- hidden layer), 0.053 (pfl -- linear)

DFL might do better with the same model complexity, but we the return would be
diminished
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Evening the Field

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster




Evening the Field

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster

For example:
m You canuse a problem relaxation,asin|1]
m You can limit recomputation by caching past solutions, as in [ 2]

m Youcanwarm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail




Evening the Field l

Can't we do anything about it?

m DFL predictions will always be off (more or less)

m ..But there are ways to make the approach faster

For example:

m You canuse a problem relaxation,asin|1]
m You can limit recomputation by caching past solutions, as in [ 2]

m Youcanwarm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

[1] Mandi, Jayanta, and Tias Guns. "Interior point solving for Ip-based prediction+ optimisation." Advances in Neural Information Processing

Systems 33 (2020): 7272-7282.
[2] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns: Contrastive Losses and Solution

Caching for Predict-and-Optimize. [JCAlI 2021: 2833-2840
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Solution Cache and Warm Start

Solution caching is applicable if the feasible space is fixed

|.e. to problems in the form:

z*(y) = argmin_{ f(z) | z € F}

m During training, we maintain a solution cache .S

m [nitially, we

m Before com
m With proba
m With proba

populate .S with the true optimal solutions z*(y;) for all examples
buting z* () we flip a coin

vility p, we run the computation (and store any new solution in .y’)

hility 1 — p, we solve instead 2~ (y) = argmin,{ f(z) | z € §}

Warm starting simple consists in using the PFL weights to initialize 0

Since accuracy is correlated with regret, this might accelerate convergence
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Speeding Up DFL

Let's use DFL with linear regression, a warm start, and a solution cache

In [5]: spo = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name='sy
$time history = util.train dfl model (spo, data tr.index.values, data tr.values, epochs=200, verk

util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(spo, data tr.index.values, data tr.values, label='training')
util.print ml metrics(spo, data ts.index.values, data ts.values, label='test')

CPU times: user 50.8 s, sys: 4.91 s, total: 55.7 s
Wall time: 55.4 s

—— loss

0.3

0.2 1

0.1 A

T T T T T
0 25 50 75 100 125 150 175 200
epochs

R2: 0.65, MAE: 0.12, RMSE: 0.16 (training)
R2: 0.65, MAE: 0.12, RMSE: 0.16 (test)

T hgitraining time is still large, but much lower than our earlier DFL attempt



Speeding Up DFL l

And the regret is even better!

In [6]: r ts spo = util.compute regret (prb, spo, data ts.index.values, data ts.values)
util.plot histogram(r ts spo, figsize=figsize, label='spo',6K dataZ=r ts, label2='pfl', print mear

— spo
0.8 1 pfl

0.6 1

0.4 4

0.2

0.0 4

T T T T T
0.00 0.05 0.10 0.15 0.20

Mean: 0.004 (spo), 0.053 (pfl)

We are matching the more complex PFL model with a simple linear regressor
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Reflecting on What we Have l

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

m As the models become more complex we have diminishing returns
m ..But for some applications every little bit counts

Second, it may allow using simpler ML models

m Simple models are faster to evaluate

m ..But more importantly they are easier to explain

m E.g.we caneasily perform feature importance analysis




Reflecting on What we Have l

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

m As the models become more complex we have diminishing returns
m ..But for some applications every little bit counts

Second, it may allow using simpler ML models

m Simple models are faster to evaluate

m ..But more importantly they are easier to explain

m E.g.we caneasily perform feature importance analysis

Intuitively, DFL works best where PFL has estimation issues
Can we exploit this fact to maximize our advantage?




Maximizing Results

There's a simple case where PFL cannot make perfect predictions

You just need need to target a stochastic problem!

m E.g.youcanusually tell the traffic situation based on (e.g.) time and weather

T .‘.}ut there still a lot of variability



Maximizing Results l

Formally, we need a stochastic process, i.e. a stochastic function

We can generate for a stochastic variant of our problme

In [8]: data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, noise scale=.15, noise tyr
util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set
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0.2 v 1 3 oF i = ;] £ o= ag b
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We treat boh X and Y as random variables, with distribution P(X, Y)
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Adjusting Goals

But with a stochastic process, what is our real objective?
For a given x, we can formalize it like this:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }

m Given a value for the observable x
m We want to find a single decision vector z

m Suchthat zisfeasible
m ..And Z minimized the expected cost over the distribution P(Y | X = x)

[ This is called a one-stage stochastic optimization problem ]
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...And Keeping the Setup

Let's look again at the DFL training problem
0" = argmin,{E y)~px.v) [regret(y, ) | y = h(x, 6)}
With:
A _ I _*x/n T _
regret(y, y) =y z (¥) =y z°(y)
Since y! z*(y) is independent on 0, this is equivalent to:
0% = argming {Ecx yy~rx.n [V 251 | ¥ = h(x, 0)}

Which can be rewritten as:

0" = argming {E,pox)~pix) V' 271 | ¥ = h(x, 6)}
4



...And Keeping the Setup

Now, let's restrict to the case where Xx is fixed
0" = argming { £, pry|x=x) [)’TZ* W]y =h(x,0))
Finally, by definition of z*(-) we have:
0% = argming {Ey~ pyix=x) [y 2" D] | ¥ = h(x, 0), z*(p) € F}

N other words:

m We are choosing 0

m So that z*(p) minimizes E . pry1x=x) [¥' 2*(D)]

[ This is almost identical to one-stage stochastic optimization! ]
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DFL For One-Stage Stochastic Optimization l

This means that DFL can address these problems, with one restriction and
two "superpowers":

The restrictionis that we control z only through €

m [ herefore, depending on the chosen ML model architecture
m ..Obtaining some solutions might be impossible

m [hisissue can be sidestepped with a careful model choice

The first superpower is that we are not restricted to a single x value
m Given a new value for x, we just need to evaluate h(x, 0)
m ..And then solve the usual optimization problem

m Many approaches do not deal with the estimation of the y distribution

For the second superpower, we need to investigate a bit more
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Classical Solution Approach

What would be the classical solution approach?
Starting from:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }
We can use linearity to obtain:
argmin, {[Epr(y|X:x) y]'z | z € F}

m 50, we would first need to estimate the expected costs

m ...[henwe could solve a deterministic problem




Classical Solution Approach

What would be the classical solution approach?
Starting from:

argmin, {[EyN P(Y|X=x) [yTz] |z e F }
We can use linearity to obtain:
argmin, {[Epr(y|X:x) y]'z | z € F}

m 50, we would first need to estimate the expected costs

m ...[henwe could solve a deterministic problem

L But isn't this what PFL is doing?
&




Regression and Expectation

(Stochastic) Regression is often presented as learning an expectation
.But it's trickier than that

m Using an MSE loss is equivalent to trying to learn E .~ pry| x=x) [V]
m ..Butonly assumingthat P(Y | X = x) is Normally distributed

m ..And that it has the same variance everywhere

It is possible to do the same under more general conditions

..But it is much more complex

m | we know the distribution type, we can use a neuro-probabilistic model

m Otherwise, we need a fully fledged contextual generative model

In DFL, we can address this problem with O added effort!
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A Simple Stress Test
We can test this idea by generating a stochastic dataset

In [34]: data tr = util.generate costs (nsamples=350, nitems=nitems, seed=seed, noise scale=.2, nolse type

data ts = util.generate costs(nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noic

util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set
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0.4 M T BN ot Bk i oo s SR AL I T o Rl et kR
rs B To gt Tl B d o7 B AEEs kR
i "-N-I (-*':—.‘" ‘s:i '.! i e o # ‘.': - f
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ﬁ‘.mi ¢!"1§§§ & ﬂ;—fazi I. f;‘_ e O el g & : iy 0 - g &
~& L1l L e 95 : e 9 s B A #oigs V2 pan daiivey SlEL v LW
0.0 1 uiﬁmi Tl _ 1 LB 1 1 " e = g SRS e 505 SEEC S S G0 SIS Gt GRSl § cpuic g LUIBEEE SE NS 68 pese Se
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0.0 0.2 0.4 0.6 0.8 1.0
X

../And scaling the variance with y (a very common seeting in practice)
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Training a PFL Approach

We will train again a non-linear prediction focused approach

In [36]: pfl 1s = util.build nn model (input shape=1, output shape=nitems, hidden=[8], name='pfl 1s', outg
time history = util.train nn model (pfl 1s, data tr.index.values, data tr.values, epochs=1000,
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl 1s, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl 1s, data ts.index.values, data ts.values, label='test')

CPU times: user 9.74 s, sys: 330 ms, total: 10.1 s
Wall time: 7.53 s

0.125 — loss
0.100
0.075
0.050 ~

0.025

T T T T T
0 200 400 600 800 1000
epochs

R2: 0.81, MAE: 0.068, RMSE: 0.09 (training)
R2: 0.82, MAE: 0.068, RMSE: 0.08 (test)

Al hggaccuracy is (inevitably) worse, but still pretty good



PFL Regret l
Let's evaluate the regret of the PFL approach

In [37]: r tr 1s = util.compute regret (prb, pfl 1ls, data tr.index.values, data tr.values)
r ts 1s = util.compute regret (prb, pfl 1ls, data ts.index.values, data ts.values)

util.plot histogram(r tr 1s, figsize=figsize, label='training', data2=r ts 1ls, labelZ2='test',K p1

—— fraining

0.30 ~ test

0.25
0.20
0.15

0.10 + } | I

0.05 + ]

0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Mean: 0.059 (training), 0.057 (test)

Theregret is has worsened, due to the effect of uncertainty
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Training a DFL Approach

We also a DFL approach with the same non-linear model

[39]: spo 1s =
$time history =
util.plot training history(history,
util.print ml metrics(spo 1ls, data tr.index.values, data tr.values,

util.print ml metrics(spo 1ls, data ts.index.values, data ts.values,

util.build dfl ml model (input size=1l, output size=nitems, problem=prb, hidden=[8], name
util.train dfl model (spo 1ls, data tr.index.values, data tr.values, epochs=200, x

figsize=figsize narrow, print final scores=False)

label='training')
label="test'")

CPU times: user 2min 51s, sys: 1llmin 19s, total: 14min 11s
Wall time: 1min 23s
— loss

0.30 +

0.25 -

0.20 -

(I) 2I5 5I[} 7I5 l[I)U lé 5 15I[] l_.‘I'S 2 [IIO
epochs
R2: 0.27, MAE: 0.12, RMSE: 0.19 (training)
R2: 0.27, MAE: 0.12, RMSE: 0.19 (test)




DFL Regret l

Now we can compare the regret for both approaches

In [40]: r ts spo 1s = util.compute regret (prb, spo 1ls, data ts.index.values, data ts.values)
util.plot histogram(r ts spo 1s, figsize=figsize, label='spo -- one stage', dataZ=r ts 1ls, label
] —— 5p0 -- one stage
0.5 1 pfl -- one stage
0.4 1
0.3 1
0.2 1
0.1 4 —I_'
0.0 1 l—'—l—'
0.&)0 O.l:I)S O.IlO O.Il5 0.:20
Mean: 0.020 (spo -- one stage), 0.057 (pfl -- one stage)

Thereis a significant gap again, since the PFL approach is operating on an
Incorrect semantic
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Considerations l

DFL can be thought of as a one-stage stochastic optimization approach

In this setting:

m [nparticular, using a more accurate PFL model might still have poor regret
m ..Unless we know a lot about the distribution

B ..Or we use avery complex estimator

m Conversely, DFL has not suchissues

The gap becomes wider in case of non-linear cost functions:

m In this case the expected cost would not be equivalent to a sum of expectations
m But a DFL approach would have no such issues

m ..Provided it could deal with with non-linear functions
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03. Breakng Off




Two-Stage Stochastic Optimization l

If DFL targets one-stage stochastic optimization, could we do two-stage?

m Forexample, in first stage we decide what to pack in our suitcase
m ..During the trip, we may realize we have forgotten something

m ..And we need to spend money to buy the missing stuff
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Two-Stage Stochastic Optimization l
If DFL targets one-stage stochastic optimization, could we do two-stage?
Two-stage problems are among the most interesting in stochastic optimization

m [heyinvolve making a set of decisions now
m [henobserving how uncertainty unfolds
m ..And making a second set of decisions

The former are called first-stage decisions, the latter recourse actions

Here's an example we will use for this topic
Say we need to secure a supply of resources
m First, we make contracts with primary suppliers to minimize costs

m [f there are unexpected setbacks (e.g. insufficient yields)

m ..[henwe can buy what we lack from another source, but at a higher cost
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Two-Stage Stochastic Optimization l
Let's define two-stage stochastic optimization problems (2s-SOP) formally:

argmin, {f(z) + Eypvix=x) [minr(z",z,y)| |z € F,z" € F'(z, y)}
Z

m Y represents the uncertaininformation

m Zisthevector of first stage decisions

m I isthefeasible space for the first stage

m z” isthe vector of recourse actions

m z” is not fixed: it can change for every sampled y

m The set of feasible recourse actions F” (z, y) also changes for every y

m [ istheimmediate cost function, 7 is the cost of the recourse actions
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A Simple Example

We will consider this simple problem
~Which is based on our previous supply planning example:

T " _n

Z + [EyNP(Y|X=x) minc’ z

le

argmin, ¢

subject to: y' z + 2" > v
z € {0,1}", 2" e Ny

m z; = 1 iff we choose then h-th supply contract

m C; isthe cost of the j-th contract

m ), istheyield of the j-th contract, whichis uncertaint
B Vi IS the minimum total yield, which is known

m z” isthe number of units we buy at cost ¢” to satisfy the vield requirement
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Scenario Based Approach

Classical solution approaches for 2s-SOP are scenario based
We start by sampling a finite set of N values from P(Y | X = x)

T 1 " _ny

argmin, min,» ¢ z + ~ &

subject to: y' z + 21 2 Ymin Vk=1..N
z e {0,1}"
Z;c’ e Ny Vk=1..N

Then we build different recourse action variables for each scenario
m .\We define the feasible sets via constraints
m ..And we use the Sample Average Approximation to estimate the expectation

The method is effective, but also computationally expensive
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DFL for 2s-SOP

Could we do something similar with DFL?
As a recap, our DFL training problem is:

0" = argming { Exy~pox.v) [regret(y, y)] | ¥ = h(x, 6) |
With:

regret(y, y) = y' z°(P) — y' 2" (y)

And:

z"(y) = argmin_{y' z | z € F)




DFL for 2s-SOP l

With the same transformations used in the one-stage case, we get:

0" = argming { Eypiyjx=x) [y 2] | ¥ = h(x,0),z"(») € F}

Now, say we had a DLF approch that could deal with any function g(z, y)

m Inthiscase y would be a vector of uncertain parameters (not necessarily costs)

m The function should compute the equivalent of y! z*(9)
m ..|.e.the true cost of the solution computed for the estimate costs

Under this conditions, at training time we could solve:

0" = argming { Ey.pry)x=x) [8Z* (D), W] | ¥ = h(x,0), 2" (p) € F}

[t would still be DFL, just a bit more general
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DFL for 2s-SOP

At this point, let's choose:

8(z.y) = min {f(2) +r(z". 2,y | 2" € F'(z )}

m Foragivensolution z, g(z, y) computes the best possible objective

m ..Assuming that the value of the parametersis y

By substituting in the training formulation we get:

Z

argming f(z"(y)) + Ey~pr|x=x) |minr 2", 2" (), y)
subject to: y = h(x,0),z*(y) € F,z" € F"(z,y)

WHRich can definitely be used for 2s-SOP problems!
¢ ' :




Grouding the Approach l

We can ground the approach by relying on the scenario-based formulation

In our example problem, we compute z*(y) by solving:

L c"zZ

z*(y) = argmin_minc
subject to: vz + 21 2 Ymin Vk=1..N
z e {0,1}"

ZZ e Ng Vk=1..N

And we define g(z, y) as:

. /!
g(z,y) = minyg ¢l z + ¢ z)

subject to: vyl z + 21 2 Ymin Vk=1..N
ZZ e Ny Vk=1..N




Overview and Properties

Intuitively, the approach works as follows

m We observe x and we compute y
m We compute z*(3) by solving a scenario problem
m We compute g(z*(9), y) by solving a scenario problem with fixed z values

JAnd we end up minimizing the expected cost of the 25-SOP

Compared to the classical approach, we have 1 restriction and 3
"superpowers"”

m Therestriction: we control z* only through 0
m Superpower 1: we are not restricted to a single x

m Superpower 2: works with any distribution

m Superpower 3: at inference time, we always consider a single scenario
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Scalable Two-stage Stochastic Optimization

The last advantage is massive
The weakest point of classical 2s-SOP approach is scalability

m Multiple scenarios are required to obtain good results

m ..But they also add more variables

With NP-hard problem, that solution time may grow exponentially

With this approach, the computational cost is all at training time

m |t caneven be lower, since you always deal with single scenarios
m [here are alternatives, such as 1], where ML is used to estimate the recourse

m ...[hese have their own pros and cons

[1] Dumouchelle, Justin, et al. "Neur2sp: Neural two-stage stochastic programming." arXiv preprint arXiv:2205.12006 (2022).
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The Elephant in the Room l

So far, so good, but how to we make g(z, y) differentiable?
There are a few alternatives, all with limitations:

m [he approachfrom [1] handles parameters in the problem constraints
't is based on the idea of differencing the recourse action
..Butitis (mostly) restricted to 1D packing problems

m [he approachfrom [2] can be used for 2s-SOP with a stretch
't based on idea of embedding a MILP solver in ML
..But it's semantic does not fully align with 2s-SOP

Here, we will see different technique

[1]Hu, X, Lee, J. C. H.,and Lee, J. H. M. Predict+optimize for packing and covering Ips with unknown parameters in constraints. CoRR,

abs/2209.03668, 2022. doi: 10.48550/arXiv.2209.03668.
[2] Paulus, Anselm, et al. "Comboptnet: Fit the right np-hard problem by learning integer programming constraints." International Conference on

Machine Learning. PMLR, 2021.
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Looking Back at SPO l

Let's look again at the regret loss for our original toy example

In [2]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=32, figsize=f:

number of examples: 32

0.16 -

—— regret
0.14 -

0.12
0.10 +
0.08

0.06 - !—r

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [t isnon-differentiable at places, and flat almost everywhere

m Canwe think of another way to address these issues?
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Looking Back at SPO l

If we could act on this function itself, a simple solution would be smoothing

In [3]: util.draw loss landscape (losses=[util.Regretloss ()], model=1l, seed=42, batch size=32, figsize=f:

number of examples: 32

0.16 -

—— regret
0.14 -

0.12
0.10 +
0.08

0.06 - !—r

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m VWe could think of computing a convolution with a Gaussian kernel

m [t would be like applying a Gaussian filter to an image
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Stochastic Smoothing

But how can we do it through an optimization problem?
A viable approach is using stochastic smoothing

m Rather than learning a point estimator A(x, 0)
m We learnastochastic estimator s.t. y ~ N (h(x, 0), o)

Intuitively:

m We still use a point estimator, but to predict a vector of means

m Then we sample y from a normal distribution having the specified mean
m ..And a fixed standard deviation

We end up smoothing over y rather than over 0
But it's very close to what we wanted to do!

a s



Stochastic Smoothing l

Let's see how it works on our toy example

In [4]: util. draw loss landscape (losses=[util.RegretlLoss (), util.RegretlLoss (smoothing samples=32, smootl

number of examples: 32

— regret
regret (ns=32, std=0.1)
— regret (ns=1024, std=0.1)

0.16
0.12

0.10 +

0.08

0.06 -

0.04

0.02

0.00

T T T T T T T T
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

m [t's astochastic approach, some some noise is to be expected

m Using more samples leads to better smoothing
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Stochastic Smoothing l

We can control the smoothing level by adjusting ¢

In [5]: util. draw loss landscape (losses=[util.Regretloss (), util.RegretLoss (smoothing samples=1024, smoc

number of examples: 32

0.16 4
— regret

0.14 A /_/_,—-' regret (ns=1024, std=0.05)
0.12 4 |- — regret (ns=1024, std=0.1)
0.10

0.08

0.06

0.04

1
0.02 1
0.00 1
T T T T T T T T
—0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
2]

m Larger o value remove flat sections better

m ..But also cause a shift in the position of the optimum
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Score Function Gradient Estimation

How does that help us?
Normally, the DFL loss looks like this:

Lprr(0) = Ex.y)~px.v) [regret(y, y)]
When we apply stochastic smoothing, it turns into:
Lprr(0) = [E(x,y)NP(X,Y),)?NN(h(x,H)) [regret(y, y)]

The expectation is now computed on x, y, and y

m WWe can use a sample average to handle the expectationon x and y

m ..Butif wedoiton ywe are left with nothing differentiable
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Score Function Gradient Estimation

So we expand the last expectation on ):

Lprr(0) = B y~pix.y) / regret(y, y)p(y, 6)dy
| J Y _

m regret(y, y) cannot be differentiated, since y is a fixed sample in this setup
m However, the probability p(y, ) can! It's just a Normal PDF

Now, we just need a way to handle the integral
We do it by focusing on the gradient

Due to linearity of expectation and integration, this is given by:

VLprr(0) = Expy~prx.yy / regret(y, y)Vop(y, 0)dy
| J Y J




Score Function Gradient Estimation l

Let's consider again the expression we have obtained

VLprr(0) = Eqx pypixyy / regret(y, y)Vop(y, 6)dy
 J Y _

By taking advantage of the fact that log’ (f(x)) = 1/xf'(x),we canrewrite it
as:

VLprr(0) = Expy~prx.yy / regret(y, y)p(y, @)Vo log p(y, 6)dy
 J Y _

Now, the integral is again an expectation, so we have:

ViDFL (0) = [E(x,y)NP(X,Y),§~N(h(x,9),0) [regret()?, ¥)Vg log p(y, 9)]
4



Score Function Gradient Estimation

Finally, we can use a sample averate to approximate both expectations:
|
VL 0) ~ — regret(y, y)Vy lo , 0
prr(6) mz Z gret(y, y)Vo log p(y, 0)

m For every training example we sample y from the stochastic estimator

m We compute regret(y, y) as usual
m ..And we obtain a gradient since p(y, 0) is easily differentiable in 6

We can trick a tensor engine into doing the calculation by using this loss:

|
L 9 =~ — t s 1 99
prL(O) = Z Zregre (3, y) log p(3, 0)
¢



Score Function Gradient Estimation

This approach is also know as Score Function Gradient Estimation (SFGE)
m Itisaknown approach (see e.g.[3]), but it has seen limited use in DFL
m We applied it to 2s-SOP in [4] (accepted, not yet published)

It works with any function, not just regret

JAnd in practice it can be improved by standardizing the gradient terms:

_ Il & 1 < g9, y) — mean(g(¥, y))
VLprr(0) ~ — — ’ A "2 Vlog p(y, 0)
n AN ey

m Standardization helps in particular with small numbers of samples

[3] Berthet, Quentin, et al. "Learning with differentiable pertubed optimizers." Advances in neural information processing systems 33 (2020):
9508-9519.
[4] Silvestri, Mattia et al. "Score Function Gradient Estimation to Widen the Applicability ofDecision-focused Learning". Differetiable Almost

gverWere workshop at ICML 2023



A Practical Example l

We test this on our supply planning problem
We start by generaring a dataset of contract values (the costs are fixed)

In [21]: seed, nitems = 42, 20
data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, nolise scale=.2, nolse type
util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)

Training Set
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The distribution is the same we used for the one-stage problem

a s



A Practical Example l

Then we generate the remaining problem parameters

In [22]: |# Generate the problem
rel req = 0.6
rel buffer cost = 10
prb = util.generate 2s problem(nitems, requirement=rel req * data tr.mean().sum(), rel buffer cc

prb

Out[22]: ProductionProblem2Stage (costs=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.062397

81
1.02323344 1.34647046 1.24044¢0 1.28322903 1.0082338 1.38796394

1.33297706 1.08493564 1.07272999 1.0733618 1.1216969 1.20990257
1.17277801 1.11649166], requirement=3.8862101169088654, buffer cost=11.830809153591137)

m [he minimum value if 60% of the sum of average values on the training data

m Buying in the second stage is 10 times more expensive then the average cost




A Practical Example l

For testing, we generate multiple samples per instance

In [23]: data ts = util.generate costs (nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noic
util.plot df cols(data ts, figsize=figsize, title='Training Set', scatter=True)

Training Set
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By doing this, we get a more reliable evaluation of uncertainty
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A PFL Approach

We start by training a prediction focused approach

In [24]: pfl 2s = util.build nn model (input_ shape=1,
$time history = util.train nn model (pfl Zs,

util.plot training history(history, figsize=
util.print ml metrics(pfl 2s, data tr.index.
util.print ml metrics(pfl 2s, data ts.index.

CPU times: user 8.21 s, sys: 352 ms, total:
Wall time: 6.83 s

output shape=nitems, hidden=[], name='pfl 2s', outpt
data tr.index.values, data tr.values, epochs=1000,
figsize narrow, print final scores=False)

values, data tr.values, label='training')

values, data ts.values, label='training')

8.56 s

0.15 ~

0.10 ~

0.05 ~

— loss

T T
0 200 400

R2: 0.80, MAE: 0.071, RMSE: 0.09 (training)
R2: 0.75, MAE: 0.072, RMSE: 0.09 (training)

T T T
600 800 1000
epochs

AT highs as fast as the DFL approach, and can be used for warm-starting



Evaluating Two-Stage Approaches

Two-state stochastic approaches can be evaluated in two ways
We can compare then with the best we could do

m [ hecostdifferent is the proper regret

m [ts computation requires solving a 2s-SOP with high accuracy

m ..Making it a very computationally expensive metric

We can compare them with the expected cost of a clairvoyant approach

m [ he cost difference is called Expected Value of Perfect Information
m ..Or sometimes Post-hoc regret
m [ts computation requires solving a 2s-SOP with just a single scenario

m .50 it's much faster, but only provide an upper bound on true regret

a s



Evaluating the PFL Approach

Let's check the EVPF/Post-hoc regret for the PFL Approach

In [25]: pfl 2s evpf = util.compute evpf 2s(prb, pfl 2s, data ts, tlim=10)
util.plot histogram(pfl 2s evpf, figsize=figsize, label='pfl -- two stage', print mean=True)
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Mean: 0.634 (pfl -- two stage)

This will be our baseline

a s

0.6
pfl -- two stage

T
0.8

1.0

T
1.2

T
1.4



Training a DFL Approach

We traing a DFL with warm starting, but no solution cache

..Since the feasible space for the recourse actions is not fixed

In [30]: sfge 2s = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name
$time history = util.train dfl model (sfge 2s, data tr.index.values, data tr.values, epochs=100,
util.plot training history(history, figsize=figsize narrow, print final scores=False, excluded r
util.print ml metrics(sfge 2s, data tr.index.values, data tr.values, label='training')

util.print ml metrics(sfge 2s, data ts.index.values, data ts.values, label='test')

CPU times: user 4min 41s, sys: 34.8 s, total: 5min 16s
Wall time: 5min 16s

—— sample cost
18 1 ple_

17 4
16

15

14 1

epochs

R2: 0.61, MAE: 0.095, RMSE: 0.12 (training)
R2: 0.66, MAE: 0.081, RMSE: 0.10 (test)
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Evaluating the DFL Approach l
We can now inspect the EVPF/Post-hoc regret for the DLF approach, as well

In [31]: sfge 2s evpf = util.compute evpf 2s(prb, sfge 2s, data ts, tlim=10)
util.plot histogram(sfge 2s evpf, figsize=figsize, label='dfl -- two-stage', print mean=True)

— dfl -- two-stage
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dfl -- two-stage

Mean: 0.382 (dfl -- two-stage)




A More In-depth Comparison

A more extensive experimentation will be found in [4]
The method has been tested on:

m Some "normal" DFL benchmarks

m Several two-stage stochastic problems

The baselines are represented by:

m Specialize methods (e.g. SPO, the one from [1]), when applicable

m A neuro-probabilistic model + a scenario based approach

Specialized method tend to work better

m .. But SFGE is much more versatile

m [ he bestresults are obtained on 2s-SOPs

a s



A More In-depth Comparison

This is how the approach fares again the scenario based method

..Onaproblem somewhat similar to our supply planning one
p=1 p =05 p =10

Relative post-hoc regret Relative post-hoc regret Relative post-hoc regret
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03. Off-beat Path




Two-Stage Stochastic Optimization l

Let's consider this variant of our example problem

- - N
n

z"(u) = argmin < E,.pyix=x) Z sin(2ru;z;)| | vlz>r zel0,1]"
| Jj=1 J

't's similar to the one-stage variant, except that:

m [ hedecisionvariables are continuous
m [ he cost functionis non-linear

m VWe using u to denote the uncertain parameters

(

't's just another one-stage stochastic optimization problem,
but the use of sin terms makes it much more challenging

a s



SFGE Enables Objective Decoupling

We will see that it can also be addressed via DFL
The point is that the SFGE approach has a nice property:

m The function g(3, ¥) used as a loss term

m ..And the cost we use to compute z*(y)

..Can be completely distinct

We can put this to our advantage

m [nparticular, we can use an ML model
m ..To guide a low-complexity problem

m .50 that we get a solution for tougher one

.JAnd since we are using DFL we also get a contextual approach (we react to x)

a s



Target Problem

Let's try to come up with a formalization
Say we want to target an optimization problem in the form:

argmin, {E,pyix=x) [f(z,u,x)] | z € F(x)}

Where:

m X isanobservable, zis avector of decisions

B U IS avector of parameters

m f(z,u, x)isthe cost function (which can depend on the observable)

m F(x) isthe feasible space (which can depend on the observable)

m Atraining sample {(x;, u;) }i~, from the distribution P(X, U)

This is a (slightly) generalized version of the problem class targeted by DFL
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A DFL Approach l

In principle we can apply "normal” DFL to this problem

First, we define:
z"(u, x) = argmin_{ f(z,u,x) | z € F(x)}
Then, at training time we solve:

0% = argming {Ecu~pox,v) | f(Z* W, ), u,x) = f(2* W, x), u,x)| | p = h

In practice, if f(z, u, x) is not linear like in our current example
..Then doing it would not be easy at all

m \\e'd need to use a non-linear solver

m ..And the computational cost would be much higher
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Another DFL Approach

But we can cheat! Since SFGE enables distinct costs
~We can compute z* through a surrogate problem:

z5(y, x) = argminz{f(z, v.x) | z € F(y,x))

m Zisthe same decision vector as before
m ..But yisasetof created ad-hoc for the surrogate
m We'll call them virtual parameters, because they may have real counterpart

Then:

m f(z, y, X) is a surrogate cost function

o F(y, X) is a surrogate feasible space

For the solution to be valid we need to have z € F(y, x) > z € F(x)
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Another DFL Approach

At training time, we solve:

6" = argmin, {[E(x,u)NP(X,U) [f(z*(y, X), U, x)] | vy = h(x, 9)}

Intuitively:

m \We observe x and we estimate a virtual parameter vector y
m \We obtain a decision vector z*(y, x) through the surrogate problem

m Thenwe evaluate the cost via the true cost function f(z, u)

There is a distinction between the virtual parameter y for z*(y, x)
.And the parametersu for f(z, u, x) are distinct

m For thisreason, thereisno ground truth for y

m ..\Which prevents us from using a regret |oss
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Motivation

The appeal here is that the surrogate problem can be easier to solve
In our example, instead of using:

z"(u, x) = argmin Z sinQru;z;) | v'z>r,z €10,1]"
j=1

We could use instead the following surrogate:
z"(y, x) = argmin {yTz vz >r z €]0, 1]"}

The surrogate is an LP, so it's very fast to solve

m [ogether with the ML estimator, it can still lead to high-quality solutions

m Aslong as the surrogate is sufficiently well aligned with the true problem
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Benchmark Data l

Let's try a proof-of-concept experiment

In [3]: seed, nitems = 42, 20
data tr = util.generate costs(nsamples=350, nitems=nitems, seed=seed, noise scale=.1, nolse type

util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)
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m e generate data for the u parameter as in all previous variants

m VWe keep the distribution simple, since we want to stress non-linearity
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Benchmark Data
Then we generate the remaining problem data and a test set

In [4]: rel req = 0.6
prb = util.generate problem(nitems=nitems, rel reg=rel req, seed=seed, surrogate=True)
data ts = util.generate costs(nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+l, noi:
util.plot df cols(data ts, figsize=figsize, title='Training Set', scatter=True)
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A Baseline
We'll use again a PFL approach as a baseline

Note thisis not a particularly good choice, but it's difficult to find an alternative

In [5]: pfl nl = util.build nn model (input shape=1, output shape=nitems, hidden=[], name='pfl nl', outpt
$time history = util.train nn model (pfl nl, data tr.index.values, data tr.values, epochs=1000,
util.plot training history(history, figsize=figsize narrow, print final scores=False)
util.print ml metrics(pfl nl, data tr.index.values, data tr.values, label='training')

util.print ml metrics(pfl nl, data ts.index.values, data ts.values, label='training')

CPU times: user 8.61 s, sys: 256 ms, total: 8.87 s
Wall time: 7.16 s

0.25 — loss
0.20
0.15
0.10 1

0.05 +

0.00 -

T
0 200 400 600 800 1000
epochs

R2: 0.84, MAE: 0.076, RMSE: 0.09 (training)
R2: 0.84, MAE: 0.079, RMSE: 0.09 (training)
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PFL Approach Evaluation l

We'll also evaluate the results in terms of cost, not relative regret

Again, the reason is that this problem is not so easy to solve

In [6]: tc tr nl
tc ts nl
util.plot histogram(tc tr nl, figsize=figsize, label='trailining',6 dataZ=tc ts nl, label2='test',

util.compute regret surrogate (prb, pfl nl, data tr, tlim=10, cost only=True)

util.compute regret surrogate(prb, pfl nl, data ts, tlim=10, cost only=True)

0.16
— ftraining
0.14 test

0.12

0.10 - | |

0.08
0.06 Ii

0.04 ‘

0.02 - J EE— R

0.00 |

Mean: 5.691 (training), 5.497 (test)
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Alternative DFL Approach

We can now try out alternative DFL approach
In this case, warm starting may not be a good idea

In [7]: sfge sg = util.build dfl ml model (input size=1, output size=nitems, problem=prb, hidden=[], name
$time history = util.train dfl model (sfge sg, data tr.index.values, data tr.values, epochs=300,

util.plot training history(history, figsize=figsize narrow, print final scores=False, excluded r
util.print ml metrics(sfge sg, data tr.index.values, data tr.values, label='training')

util.print ml metrics(sfge sg, data ts.index.values, data ts.values, label='test')

CPU times: user 3min 35s, sys: 3.43 s, total: 3min 38s
Wall time: 3min 38s

—— sample_cost

T T T T T
0 50 100 150 200 250 300
epochs

.5, RMSE: 0.61 (training)
5, RMSE: 0.61 (test)




DFL Approach Evaluation l

...And we can compare the two cost distributions on the training data

In [8]: tc tr sg
tc ts sg

util.compute regret surrogate (prb, sfge sg, data tr, tlim=10, cost only=True)

util.compute regret surrogate (prb, sfge sg, data ts, tlim=10, cost only=True)

util.plot histogram(tc ts sg, figsize=figsize, label='dfl', data2=tc ts nl, label2='pfl', print

____1 — dfl
0.20 - pfl

0.15 ‘

0.10

0.05

=7.5 =5.0 —-2.5 0.0 2.5 5.0 7.5 10.0

Mean: -3.178 (dfl), 5.497 (pfl)

The difference is very noticeable

a s



Considerations l

By using DFL + a surrogate we can "partition"” the problem complexity

m VWe cansimplify some elements that the solver has trouble addressing

m ..And dump them partially on the ML model
m ..Or we can dothe opposite (e.g. hard constraints in ML based decision making)

m |t canwork without an observable (no x)

m |t could be used for black-box optimization

Some caveats:
m Thisisnot awell investigate approach: treat is as a proof-of-concept
m Banning special case, the method works as a heuristic

m ..And finding a good surrogate can be quite difficult
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Multi-Stage Stochastic Optimization

What if we have a sequence of decision stages?
Consider for example and Energy Management System:

\

i i
= FLA!

Solar Pannels Boost Converter

B P4

= Energy

Diesel Generator ~ Inverter Mana gme nt _V

el SySte m Inverter
aaaaaaaaaaaaa _ Residential Load
System

\ eeeeeeeeeeeeeeeeeeeeeee /

m \We need to make some decisions (using a generator, buyng from the grid...)

m ...[henobserve how uncertainty unfolds

m ..Based onthat, we make another round of decisions and so on
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Multi-Stage Stochastic Optimization

We will also assume that there are non-trivial constraints

m [hissetupis called multi-stage stochastic optimization
m ..Or alsoonline stochastic optimization, or sequential decision making

There are a few possible solution approaches

One approach consist in using scenarios, again

m ...Butsince there are many stages, the decisions variables branch out

m Asolutionis called a policy tree, which is very expensive to compute
A second approach consists in using anticipatory algorithms

m We iteratively solve an optimization problem with a bit of look-ahead

m Several examples can be found in|1]

[1] Hentenryck, Pascal Van, and Russell Bent. Online stochastic combinatorial optimization. The MIT Press, 2006.
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Formalization l

Formally, this setup is well captured by a constrained Markov Decision
Process (MDP)

In particular, we will consider a constrained (X, Z, P°, P, f, FYbe an MDP
with:

m A set of possible (observable) states X

m A set of possible decisions Z

m Adistribution PY(X) for the initial state

m Adistribution P(X | X, Z) for the possible state transitions
m A cost function f(z, x, x)

m Afeasible space F(x) which depends on the state

Some comments:

m [ he next state depends on the current state and decisions

G #e cost depends on the current state and decisions, and on the next state



Formalization

Wi ithin this framework, we can formalize a multi-stage problem

Our goal is to define a solution policy £* from a set of candidates I1 s.t.:

* °
U = arginin . [EXONPO,xt+1~P(X|xf,z’)

subject to: z' = z(x")
7' € F(x")

Thisisvery complex problem:

[ eoh

2 f(zt, xt, xt+1)
=1

m Ve are not searching for a fixed solution, but for a policy

m [hedecisions can be anything (including discrete and combinatorial)

m ...[hey affect the state at the next stage (endogenous uncertainty)

7 n .‘.}nd they should be feasible according to hard constraints




Solution Approach Wanted
Normally, with an MDP we may turn to Reinforcement Learning
..But in this case there are a couple of difficulties:

m Handling constraints (hard ones in particular) in RLis challenging

m Handling combinatorial decisions in RL is very challenging

Let's recap our situation

m Classical approaches from stochastic optimization have poor scalability

m RL approaches have poor support for constraints and combinatorial spaces

[ Can we use DFL in this scenario? ]

1] Garcia, Javier, and Fernando Ferndndez. 'A comprehensive survey on safe reinforcement learning." Journal of Machine Learning Research
6.14D15): 1437-1480.



DFL and RL (UNIFY)

Indeed we can, and at this point it's not even that difficult
The trick is simply to decompose the policy 7, leading to:

[ eoh

2 - Y S £
9 — argmlng [EXONPO,XH_INP(Xlxt,Zt) 2 f(Z s X o X )
| i=1

subject to: z' = z*(y', x')
Y = h(x', 0)

Intuitively:

m We use a ML model to output a set of virtual parameters y

m ..[henwe compute zk by solving a constrained optimization problem
m [ he ML model take care of uncertianty

7 n T}e optimization problem take care of the constraints



DFL and RL (UNIFY)

We use the generalized, surrogate-based approach to compute z*
In particular, we have:

z5(y, x) = argminz{f(z, v.x) | z € F(y,x))

m Depending on our choice for the virtual parameters

m We will need to craft the surrogate cost f and feasible space F

m Theoriginal constraints are satisfied aslongas z € F(y,x) = z € F(x)
The surrogate terms can usually be designed by tweaking a bit f and F

4 )

The overall idea is that the ML model guides the optimizer,
exactly asin normal DFL




DFL and RL (UNIFY)

For training, we can rely on a simple reformulation

In particular, we define a new unconstrained MDP (X, ®, PV, P, g)such that:

m [ heset of statesis the same as before

m The set of statesis the set ® of possible training parameters

m [ hestate transition distributions are the same as before

m [ he cost function is defined as:

gy, x,x") = f(2*(y), x,x™)

Intuitively, we treat the solver as part of the environment

r

This new MDP can be addressed by any RL learning approach
so we can benfit from recent advances in such field
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DFL and RL (UNIFY)

This setup is the most general we have seen so far

't can be used to address a wide number of problem types

m Optimization with parameters that need to be estimated

m One-stage stochastic programming

m [wo-state stochastic programming

m Sequential decision making with constraints

m [nprinciple, also black-box optimization and parameter tuning

m ..[hough it probably would not a good fit for such cases
You can find it described in [1], under the name UNIFY

[2] Silvestri, Mattia, et al. "UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine
Learning." arXiv preprint arXiv:2210.14030 (2022).
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An Example

Let's consider the Energy Management System example in detail
Every 15 minutes, we need to adjust power flow to/from a set of nodes

m Nodes can be generators, demand points, or the grid

m One special node represents a storage system

The decisions z' at time 7 include:

t

nodes to/from the main nodes

m A vector of power flows z

t

storage to/from the storage system

m Apower flow Z

The state x’ at time ¢ is given by:

m [hepower xf,owe,, generated by some nodes (e.g. PV plants)

m [hedemand xgemand for some nodes (e.g. production sites or housing)

t
storage

m [hestorage charge level x
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An Example
The transition distribution P is defined by:

m Adistribution Ppyyer Of the yield of renewable energy generators
m Adistribution Pyemang of the demand

m [hedeterministic transition xgol,,age = xgmmge + NZstorage

The feasible space F(x'") is defined via:

m Flow capacity constraints: | < z! <t
m Flow balance constraints: 17 z + X power — Xdemand = 0

m Storage capacity constraints 0 < xgmmge + NZstorage < C

The cost f(Z', x', x'T1) is given by:
1 T
f(zta xt, x'T ) = C Znodes

o T}ere IS No cost associate to demands, renewable generators, and the storage



The Optimization Problem

We can compute z*(y, x) by solvig the following LP

. T
Argmin, ¢ Zypdes + YZstorage

subjectto: [ < 7' <t
T
1" z + Xpower — Xdemand = 0

O S xgtorage + nzstorage S C

The main alterationis that a virtual cost is associated to the storage system

m Ify > 0,the solve will tend to charge the storage
m If y < 0, the solve will tend to draw power from the storage

m ..Sothat the ML model can alter the decisions

Without the virtual cost, the storage system would never be charged
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Some Results

Here's a comparison with some constrained RL methods
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Some Results l

And here's a comparison with a specialized stochastic optimization approach

----- tuning
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Some Final Thoughts l

If you retain one idea from our ramble, makes sure it is this:

[ DFL can be used for way more than one purpose! ]

You just need to stretch it a little bit ;-)

Where next?
m \We can reap what we haven't sowed! Let's test more RL algos (spoiler: started)
m Scalability is still a bigissue

m \We need more (and more realistic) applications




Thanks for your patience! Any question?




