
Rambling Away from Decision Focused Learning
A circuitous investigatation of what DFL can do

if you keep pushing at its limits 
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01. Getting Started
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Getting Started
As stated, our starting point is Decision Focused Learning

Specifically the SPO formulation, where we focus on problems in the form:

■  is the set of decisions (numeric or discrete)

■  is the feasible space

■  is a cost vector, which is not directly measureable

(𝑦) = { 𝑧 ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧 𝑦
𝑇

𝑧

𝐹

𝑦

Rather than to , we have access to an observable 

■ Based on , we can attempt to train a parametric estimator 

■ ...Using training examples 

𝑦 𝑥

𝑥 ℎ(𝑥, 𝜃)

{( , )𝑥𝑖 𝑦𝑖 }
𝑚
𝑖=1
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A Possible Example
For example, we may have to deal with routing problem

We need to select the best path to reach our destination

■ We don't know the current state of the traffic

■ But we can guess! E.g. based on the time, weather, etc.

 



Inference
This setup involves using the estimator and the optimizer in sequence

At inference time:

■ We observe 

■ We evaluate our estimator  to obtain 

■ We solve the problem to obtain 

Overall, the process consists in evaluating:

𝑥

ℎ(𝑥, 𝜃) 𝑦

(𝑦)𝑧∗

(ℎ(𝑥, 𝜃))𝑧∗
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A Two-phase Approach
We can use supervised learning for the estimator

Formally, we obtain an optimal parameter vector by solving:

■ Where  is a suitable loss function (e.g. a squred error)

■ We'll refer to this as a prediction-focused approach

However, using supervised learning is suboptimal

■ A small mistake in terms of 

■ ...May lead the optimizer to choosing a poor solution

= { [𝐿( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

𝐿

𝐿

The root of the issue is a misalignment between the cost
metric at training and inference time

 



Spotting Trouble
Let's see this in action on a toy problem

Consider this two-variable optimization problem:

Let's assume that the true relation between  (a scalar) and  is:

...But that we can only learn this model with a scalar weight :

Our model cannot represent the true relation exactly

{ + ∣ + = 1}argmin𝑧 𝑦0𝑧0 𝑦1𝑧1 𝑧0 𝑧1

𝑥 𝑦

𝑦0

𝑦1

= 2.5𝑥2

= 0.3 + 0.8𝑥

𝜃

𝑦 ̂ 0

𝑦 ̂ 1

= 𝑥𝜃
2

= 0.5𝜃
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Spotting Trouble
This is what we get from supervised learning with uniformly distribute data:

In [15]:

■ The crossing point of the grey lines is where we should pick item 0 instead of 1

■ The orange lines (trained model) miss it by a wide margin

Optimized theta: 1.375

util.draw(w=None, figsize=figsize, model=1)
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Not All is Lost
However, we cas sidestep the issue by disergarding accuracy

In [16]:

■ If we focus on choosing  to match the crossing point

■ ...We lead the optimizer to consistently making the correct choice

𝜃

util.draw(w=0.91, figsize=figsize, model=1)

 



The Main DFL Idea
DFL attempts to achieve this by using a task-based loss at training time

There's some consensus on this "holy grail" training problem:

Where in our setting we have:

■  is the best solution with the estimated costs

■  is the best solution with the true costs

Intuitively, we want to loose as little as possible w.r.t. the best we could do

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

( )𝑧∗ 𝑦 ̂ 

(𝑦)𝑧∗

One of the main challenges in DFL is dealing with this loss

 



Knowing Regret
To see this, let's push our example a little further

In [17]:

■ Say we have access to a normally distributed collection of  values

■ ...And to the corresponding true values 

𝑥

𝑦

x = util.normal_sample_(mean=0.54, std=0.2, size=1000)
util.plot_histogram(x, figsize=figsize, label='x')

 



Knowing Regret
This is how the regret looks like for a single example

In [18]:

■ If  leads to the correct decision, the regret is 0

■ Otherwise we have some non-null value

𝑓(𝑥, 𝜃)

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=1, figsize=fig
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Knowing Regret
...And this is the same for a larger sample

In [19]:

■ For linear problems and finite samples the regret function is piecewise constant

■ ...Which makes a direct use of gradient descent impossible

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=64, figsize=fi
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SPO+ Loss
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [1], which is (roughly) defined as:

There are two main ideas here:

The first it to see what happens with the predicted (not the true) costs

■ We know  is the optimal solution for 

■ But we wish for  to be optimal instead

■ Therefore if  we give a penalty

With this trick, a differentiable term (i.e. ) appears in the loss

( , 𝑦) = (𝑦) − ( )  with:  = 2 − 𝑦spo+ 𝑦 ̂  𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

( )𝑧∗ 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜

(𝑦)𝑧∗

(𝑦) > ( )𝑦 ̂ 
𝑇
𝑠𝑝𝑜𝑧

∗ 𝑦 ̂ 
𝑇
𝑠𝑝𝑜𝑧

∗ 𝑦 ̂ 𝑠𝑝𝑜

𝑦 ̂ 𝑠𝑝𝑜

[1] Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.
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SPO+ Loss
A lot of research in the DFL field is about addressing this problem

We will just recap the SPO+ loss from [1], which is (roughly) defined as:

There are two main ideas here:

The second is to avoid using the estimates  directly

■ We rely instead on an altered cost vector, i.e. 

■ Using  directly would result in a local minimum for 

■ With , the local minimum is in a location _that depends on 

We'll try to visualize this phenomenon

( , 𝑦) = (𝑦) − ( )  with:  = 2 − 𝑦spo+ 𝑦 ̂  𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 
𝑇

𝑠𝑝𝑜𝑧
∗

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

𝑦

𝑦 ̂ 𝑠𝑝𝑜

𝑦 ̂ 𝑠𝑝𝑜 = 0𝑦 ̂ 

𝑦 ̂ 𝑠𝑝𝑜 𝑦 ̂ 

[1] Elmachtoub, Adam N., and Paul Grigas. "Smart “predict, then optimize”." Management Science 68.1 (2022): 9-26.
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SPO+ Loss
This is the SPO+ loss for a single example on our toy problem

In [20]:

■ As expected, there are two local minima

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=1, figsize=fi

 



SPO+ Loss
This is the SPO+ loss for a two examples

In [21]:

■ The "good" local minima for both examples are roughly in the same place

■ The "spurious" local minima fall in different position

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=2, figsize=fi

 



SPO+ Loss
Over many example, the spurious local minima tend to cancel out

In [22]:

■ This effect is invaluable when training with gradient descent

util.draw_loss_landscape(losses=[util.SPOPlusLoss()], model=1, seed=42, batch_size=64, figsize=f

 



A (Sligthly) More Complex Example
Let's see the approach in action on a second example

We will consider this simple optimization problem:

■ We need to decide which of a set of jobs to accept

■ Accepting a job ( ) provides immediate value 

■ The cost  of the job is not known

■ ...But it can be estimated based on available data

(𝑦) = argmin{ 𝑧 ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ {0, 1 }𝑧∗ 𝑦
𝑇
𝑣
𝑇 }𝑛

= 1𝑧𝑗 𝑣𝑗

𝑦𝑗

In [23]:

ProductionProblem(values=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.06239781
1.02323344 1.34647046 1.240446   1.28322903 1.0082338  1.38796394
1.33297706 1.08493564 1.07272999 1.0733618  1.1216969  1.20990257
1.17277801 1.11649166], requirement=11.830809153591138)

nitems, rel_req, seed = 20, 0.5, 42
prb = util.generate_problem(nitems=nitems, rel_req=rel_req, seed=seed)
display(prb)

 



A (Sligthly) More Complex Example
Next, we generate some training (and test) data

In [24]:

■ We assume that costs can be estimated based on an scalar observable 

■ The set of least expensive jobs changes considerably with 

𝑥

𝑥

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=0, noise_type=
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set')

 



Prediction Focused Approach
As a baseline, we'll consider a basic prediction-focused approach

In [25]:

■ The ML model is just a linear regressor, but it is decently accurate

CPU times: user 8.94 s, sys: 330 ms, total: 9.27 s
Wall time: 7.36 s

R2: 0.86, MAE: 0.086, RMSE: 0.10 (training)
R2: 0.86, MAE: 0.087, RMSE: 0.10 (test)

pfl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_det', output_
%time history = util.train_nn_model(pfl, data_tr.index.values, data_tr.values, epochs=1000, loss
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl, data_ts.index.values, data_ts.values, label='test')

 



Prediction Focused Approach
...But our true evaluation should be in terms of regret

In [26]:

■ In this case, the average relative regret is ~5%

Mean: 0.052 (training), 0.053 (test)

r_tr = util.compute_regret(prb, pfl, data_tr.index.values, data_tr.values)
r_ts = util.compute_regret(prb, pfl, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr, figsize=figsize, label='training', data2=r_ts, label2='test', print_me
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A Decision Focused Learning Approach

In [27]:

In terms of accuracy, this is considerably worse

CPU times: user 4min 31s, sys: 20.3 s, total: 4min 51s
Wall time: 4min 51s

R2: -0.14, MAE: 0.22, RMSE: 0.27 (training)
R2: -0.14, MAE: 0.22, RMSE: 0.27 (test)

spo = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name='sp
%time history = util.train_dfl_model(spo, data_tr.index.values, data_tr.values, epochs=200, verb
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo, data_ts.index.values, data_ts.values, label='test')
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Comparing Regrets
But the regret is so much better!

In [28]:

This is the kind of result that attracted so much attention since [2]
[2] Donti, Priya, Brandon Amos, and J. Zico Kolter. "Task-based end-to-end model learning in stochastic optimization." Advances in neural
information processing systems 30 (2017).

Mean: 0.008 (spo), 0.053 (pfl)

r_ts_spo = util.compute_regret(prb, spo, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo, figsize=figsize, label='spo', data2=r_ts, label2='pfl', print_mean
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02. Picking a Direction
 



Let's Second-Guess Ourselvers
However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

Intuitively:;

■ The more accurate we can be, the lower the regret

■ Eventually, perfect predictions will result in 0 regret

𝔼[regret( , 𝑦)] 0𝑦 ̂  − →−−−−−−−

𝔼[𝐿( ,𝑦)]→0𝑦 ̂ 
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Let's Second-Guess Ourselvers
However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

Intuitively:;

■ The more accurate we can be, the lower the regret

■ Eventually, perfect predictions will result in 0 regret

𝔼[regret( , 𝑦)] 0𝑦 ̂  − →−−−−−−−

𝔼[𝐿( ,𝑦)]→0𝑦 ̂ 

But then... What if we make our model bigger?

■ We could get good predictions and good regret

■ ...And training would be much faster
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Our Baseline
Let's check again the results for our PFL linear regressor

In [2]:

This will be our main baseline

Mean: 0.052 (training), 0.053 (test)

pfl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_det', output_
history = util.train_nn_model(pfl, data_tr.index.values, data_tr.values, epochs=1000, loss='mse'
r_tr = util.compute_regret(prb, pfl, data_tr.index.values, data_tr.values)
r_ts = util.compute_regret(prb, pfl, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr, figsize=figsize, label='training', data2=r_ts, label2='test', print_me
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PFL Strikes Back
Let's try to use a non-linear model

In [3]:

More accurate, it is!

CPU times: user 10.3 s, sys: 367 ms, total: 10.7 s
Wall time: 7.95 s

R2: 0.99, MAE: 0.019, RMSE: 0.03 (training)
R2: 0.99, MAE: 0.019, RMSE: 0.03 (test)

pfl_acc = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[8], name='pfl_det_acc'
%time history = util.train_nn_model(pfl_acc, data_tr.index.values, data_tr.values, epochs=1000, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_acc, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_acc, data_ts.index.values, data_ts.values, label='test')
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PFL Strikes Back
...And the improvement in terms of regret is remarkable

In [4]:

DFL might do better with the same model complexity, but we the return would be
diminished

Mean: 0.005 (pfl -- hidden layer), 0.053 (pfl -- linear)

r_ts_acc = util.compute_regret(prb, pfl_acc, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_acc, figsize=figsize, label='pfl -- hidden layer', data2=r_ts, label2='

 



Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

 



Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

For example:

■ You can use a problem relaxation, as in [1]

■ You can limit recomputation by caching past solutions, as in [2]

■ You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail
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Evening the Field
Can't we do anything about it?

■ DFL predictions will always be off (more or less)

■ ...But there are ways to make the approach faster

For example:

■ You can use a problem relaxation, as in [1]

■ You can limit recomputation by caching past solutions, as in [2]

■ You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

[1] Mandi, Jayanta, and Tias Guns. "Interior point solving for lp-based prediction+ optimisation." Advances in Neural Information Processing
Systems 33 (2020): 7272-7282.
[2] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns: Contrastive Losses and Solution
Caching for Predict-and-Optimize. IJCAI 2021: 2833-2840
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Solution Cache and Warm Start
Solution caching is applicable if the feasible space is fixed

I.e. to problems in the form:

■ During training, we maintain a solution cache 

■ Initially, we populate  with the true optimal solutions  for all examples

■ Before computing  we flip a coin

■ With probability , we run the computation (and store any new solution in )

■ With probability , we solve instead 

(𝑦) = {𝑓(𝑧) ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧

𝑆

𝑆 ( )𝑧∗ 𝑦𝑖

( )𝑧∗ 𝑦 ̂ 

𝑝 𝑆

1 − 𝑝 (𝑦) = {𝑓(𝑧) ∣ 𝑧 ∈ 𝑆}𝑧 ̂ 
∗

argmin𝑧

Warm starting simple consists in using the PFL weights to initialize 

Since accuracy is correlated with regret, this might accelerate convergence

𝜃

 



Speeding Up DFL
Let's use DFL with linear regression, a warm start, and a solution cache

In [5]:

The training time is still large, but much lower than our earlier DFL attempt

CPU times: user 50.8 s, sys: 4.91 s, total: 55.7 s
Wall time: 55.4 s

R2: 0.65, MAE: 0.12, RMSE: 0.16 (training)
R2: 0.65, MAE: 0.12, RMSE: 0.16 (test)

spo = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name='sp
%time history = util.train_dfl_model(spo, data_tr.index.values, data_tr.values, epochs=200, verb
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo, data_ts.index.values, data_ts.values, label='test')

 



Speeding Up DFL
And the regret is even better!

In [6]:

We are matching the more complex PFL model with a simple linear regressor

Mean: 0.004 (spo), 0.053 (pfl)

r_ts_spo = util.compute_regret(prb, spo, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo, figsize=figsize, label='spo', data2=r_ts, label2='pfl', print_mean

 



Reflecting on What we Have
Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

■ As the models become more complex we have diminishing returns

■ ...But for some applications every little bit counts

Second, it may allow using simpler ML models

■ Simple models are faster to evaluate

■ ...But more importantly they are easier to explain

■ E.g. we can easily perform feature importance analysis
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Reflecting on What we Have
Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

■ As the models become more complex we have diminishing returns

■ ...But for some applications every little bit counts

Second, it may allow using simpler ML models

■ Simple models are faster to evaluate

■ ...But more importantly they are easier to explain

■ E.g. we can easily perform feature importance analysis

Intuitively, DFL works best where PFL has estimation issues
Can we exploit this fact to maximize our advantage?
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Maximizing Results
There's a simple case where PFL cannot make perfect predictions

You just need need to target a stochastic problem!

■ E.g. you can usually tell the traffic situation based on (e.g.) time and weather

■ ...But there still a lot of variability 



Maximizing Results
Formally, we need a stochastic process, i.e. a stochastic function

We can generate for a stochastic variant of our problme

In [8]:

We treat boh  and  as random variables, with distribution 𝑋 𝑌 𝑃 (𝑋, 𝑌 )

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.15, noise_typ
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Adjusting Goals
But with a stochastic process, what is our real objective?

For a given , we can formalize it like this:𝑥

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

■ Given a value for the observable 

■ We want to find a single decision vector 

■ Such that  is feasible

■ ...And  minimized the expected cost over the distribution 

𝑥

𝑧

𝑧

𝑧 𝑃 (𝑌 ∣ 𝑋 = 𝑥)

This is called a one-stage stochastic optimization problem

 



...And Keeping the Setup
Let's look again at the DFL training problem

With:

Since  is independent on , this is equivalent to:

Which can be rewritten as:

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

(𝑦)𝑦𝑇 𝑧∗ 𝜃

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼𝑥∼𝑃(𝑋),𝑦∼𝑃(𝑌 ∣𝑋) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 
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...And Keeping the Setup
Now, let's restrict to the case where  is fixed

Finally, by definition of  we have:

In other words:

■ We are choosing 

■ So that  minimizes 

𝑥

= { [ ( )] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂ 

(⋅)𝑧∗

= { [ ( )] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

𝜃

( )𝑧∗ 𝑦 ̂  [ ( )]𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂ 

This is almost identical to one-stage stochastic optimization!

 



DFL For One-Stage Stochastic Optimization
This means that DFL can address these problems, with one restriction and
two "superpowers":

The restriction is that we control  only through 

■ Therefore, depending on the chosen ML model architecture

■ ...Obtaining some solutions might be impossible

■ This issue can be sidestepped with a careful model choice

𝑧 𝜃

The first superpower is that we are not restricted to a single  value

■ Given a new value for , we just need to evaluate 

■ ...And then solve the usual optimization problem

■ Many approaches do not deal with the estimation of the  distribution

For the second superpower, we need to investigate a bit more

𝑥

𝑥 ℎ(𝑥, )𝜃∗

𝑦

 



Classical Solution Approach
What would be the classical solution approach?

Starting from:

We can use linearity to obtain:

■ So, we would first need to estimate the expected costs

■ ...Then we could solve a deterministic problem

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

{ [𝑦 𝑧 ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ]
𝑇

 



Classical Solution Approach
What would be the classical solution approach?

Starting from:

We can use linearity to obtain:

■ So, we would first need to estimate the expected costs

■ ...Then we could solve a deterministic problem

{ [ 𝑧] ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇

{ [𝑦 𝑧 ∣ 𝑧 ∈ 𝐹}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ]
𝑇

But isn't this what PFL is doing?

 



Regression and Expectation
(Stochastic) Regression is often presented as learning an expectation

...But it's trickier than that

■ Using an MSE loss is equivalent to trying to learn 

■ ...But only assuming that  is Normally distributed

■ ...And that it has the same variance everywhere

[𝑦]𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥)

𝑃 (𝑌 ∣ 𝑋 = 𝑥)

It is possible to do the same under more general conditions

...But it is much more complex

■ If we know the distribution type, we can use a neuro-probabilistic model

■ Otherwise, we need a fully fledged contextual generative model

In DFL, we can address this problem with 0 added effort!

 



A Simple Stress Test
We can test this idea by generating a stochastic dataset

In [34]:

...And scaling the variance with  (a very common seeting in practice)𝑦

data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.2, noise_type
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Training a PFL Approach
We will train again a non-linear prediction focused approach

In [36]:

The accuracy is (inevitably) worse, but still pretty good

CPU times: user 9.74 s, sys: 330 ms, total: 10.1 s
Wall time: 7.53 s

R2: 0.81, MAE: 0.068, RMSE: 0.09 (training)
R2: 0.82, MAE: 0.068, RMSE: 0.08 (test)

pfl_1s = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[8], name='pfl_1s', outp
%time history = util.train_nn_model(pfl_1s, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_1s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_1s, data_ts.index.values, data_ts.values, label='test')

 



PFL Regret
Let's evaluate the regret of the PFL approach

In [37]:

The regret is has worsened, due to the effect of uncertainty

Mean: 0.059 (training), 0.057 (test)

r_tr_1s = util.compute_regret(prb, pfl_1s, data_tr.index.values, data_tr.values)
r_ts_1s = util.compute_regret(prb, pfl_1s, data_ts.index.values, data_ts.values)
util.plot_histogram(r_tr_1s, figsize=figsize, label='training', data2=r_ts_1s, label2='test', pr

 



Training a DFL Approach
We also a DFL approach with the same non-linear model

In [39]:

CPU times: user 2min 51s, sys: 11min 19s, total: 14min 11s
Wall time: 1min 23s

R2: 0.27, MAE: 0.12, RMSE: 0.19 (training)
R2: 0.27, MAE: 0.12, RMSE: 0.19 (test)

spo_1s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[8], name
%time history = util.train_dfl_model(spo_1s, data_tr.index.values, data_tr.values, epochs=200, v
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(spo_1s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(spo_1s, data_ts.index.values, data_ts.values, label='test')

 



DFL Regret
Now we can compare the regret for both approaches

In [40]:

There is a significant gap again, since the PFL approach is operating on an
incorrect semantic

Mean: 0.020 (spo -- one stage), 0.057 (pfl -- one stage)

r_ts_spo_1s = util.compute_regret(prb, spo_1s, data_ts.index.values, data_ts.values)
util.plot_histogram(r_ts_spo_1s, figsize=figsize, label='spo -- one stage', data2=r_ts_1s, label

 



Considerations
DFL can be thought of as a one-stage stochastic optimization approach

In this setting:

■ In particular, using a more accurate PFL model might still have poor regret

■ ...Unless we know a lot about the distribution

■ ...or we use a very complex estimator

■ Conversely, DFL has not such issues

The gap becomes wider in case of non-linear cost functions:

■ In this case the expected cost would not be equivalent to a sum of expectations

■ But a DFL approach would have no such issues

■ ...Provided it could deal with with non-linear functions

 



03. Breakng Off
 



Two-Stage Stochastic Optimization
If DFL targets one-stage stochastic optimization, could we do two-stage?

■ For example, in first stage we decide what to pack in our suitcase

■ ...During the trip, we may realize we have forgotten something

■ ...And we need to spend money to buy the missing stuff

 



Two-Stage Stochastic Optimization
If DFL targets one-stage stochastic optimization, could we do two-stage?

Two-stage problems are among the most interesting in stochastic optimization

■ They involve making a set of decisions now

■ Then observing how uncertainty unfolds

■ ...And making a second set of decisions

The former are called first-stage decisions, the latter recourse actions

Here's an example we will use for this topic

Say we need to secure a supply of resources

■ First, we make contracts with primary suppliers to minimize costs

■ If there are unexpected setbacks (e.g. insufficient yields)

■ ...Then we can buy what we lack from another source, but at a higher cost
 



Two-Stage Stochastic Optimization
Let's define two-stage stochastic optimization problems (2s-SOP) formally:

■  represents the uncertain information

■  is the vector of first stage decisions

■  is the feasible space for the first stage

■  is the vector of recourse actions

■  is not fixed: it can change for every sampled 

■ The set of feasible recourse actions  also changes for every 

■  is the immediate cost function,  is the cost of the recourse actions

{𝑓(𝑧) + [ 𝑟( , 𝑧, 𝑦)] ∣ 𝑧 ∈ 𝐹 , ∈ (𝑧, 𝑦)}argmin𝑧 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″

𝑧″ 𝑧″ 𝐹
″

𝑌

𝑧

𝐹

𝑧″

𝑧″ 𝑦

(𝑧, 𝑦)𝐹 ″ 𝑦

𝑓 𝑟

 



A Simple Example
We will consider this simple problem

...Which is based on our previous supply planning example:

■  iff we choose then -th supply contract

■  is the cost of the -th contract

■  is the yield of the -th contract, which is uncertaint

■  is the minimum total yield, which is known

■  is the number of units we buy at cost  to satisfy the yield requirement

 argmin𝑧

subject to: 

𝑧 + [ ]𝑐
𝑇

𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″
𝑐″𝑧″

𝑧 + ≥𝑦𝑇 𝑧″ 𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1 , ∈}𝑛 𝑧″ ℕ0

= 1𝑧𝑗 ℎ

𝑐𝑗 𝑗

𝑦𝑗 𝑗

𝑦𝑚𝑖𝑛

𝑧″ 𝑐″

 



Scenario Based Approach
Classical solution approaches for 2s-SOP are scenario based

We start by sampling a finite set of  values from 

Then we build different recourse action variables for each scenario

■ ...We define the feasible sets via constraints

■ ...And we use the Sample Average Approximation to estimate the expectation

The method is effective, but also computationally expensive

𝑁 𝑃 (𝑌 ∣ 𝑋 = 𝑥)

 argmin𝑧min𝑧″

subject to: 

𝑧 +𝑐𝑇
1

𝑁
𝑐″𝑧″

𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1}𝑛

∈𝑧″
𝑘

ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

 



DFL for 2s-SOP
Could we do something similar with DFL?

As a recap, our DFL training problem is:

With:

And:

= { [regret( , 𝑦)] ∣ = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂  𝑦 ̂ 

regret( , 𝑦) = ( ) − (𝑦)𝑦 ̂  𝑦𝑇 𝑧∗ 𝑦 ̂  𝑦𝑇 𝑧∗

(𝑦) = { 𝑧 ∣ 𝑧 ∈ 𝐹}𝑧∗ argmin𝑧 𝑦
𝑇

 



DFL for 2s-SOP
With the same transformations used in the one-stage case, we get:

Now, say we had a DLF approch that could deal with any function 

■ In this case  would be a vector of uncertain parameters (not necessarily costs)

■ The function should compute the equivalent of 

■ ...I.e. the true cost of the solution computed for the estimate costs

Under this conditions, at training time we could solve:

It would still be DFL, just a bit more general

= { [ ( )] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑦
𝑇 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

𝑔(𝑧, 𝑦)

𝑦

( )𝑦𝑇 𝑧∗ 𝑦 ̂ 

= { [𝑔( ( ), 𝑦)] ∣ = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹}𝜃∗ argmin𝜃 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) 𝑧∗ 𝑦 ̂  𝑦 ̂  𝑧∗ 𝑦 ̂ 

 



DFL for 2s-SOP
At this point, let's choose:

■ For a given solution ,  computes the best possible objective

■ ...Assuming that the value of the parameters is 

𝑔(𝑧, 𝑦) = {𝑓(𝑧) + 𝑟( , 𝑧, 𝑦) ∣ ∈ (𝑧, 𝑦)}min
𝑧″

𝑧″ 𝑧″ 𝐹 ″

𝑧 𝑔(𝑧, 𝑦)

𝑦

By substituting in the training formulation we get:

...Which can definitely be used for 2s-SOP problems!

 𝑓( ( )) + [ 𝑟( , ( ), 𝑦)]argmin𝜃 𝑧∗ 𝑦 ̂  𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) min
𝑧″

𝑧″ 𝑧∗ 𝑦 ̂ 

subject to:  = ℎ(𝑥, 𝜃), ( ) ∈ 𝐹 , ∈ (𝑧, 𝑦)𝑦 ̂  𝑧∗ 𝑦 ̂  𝑧″ 𝐹 ″

 



Grouding the Approach
We can ground the approach by relying on the scenario-based formulation

In our example problem, we compute  by solving:

And we define  as:

(𝑦)𝑧∗

(𝑦) =𝑧∗ argmin𝑧min𝑧″

subject to: 

𝑧 +𝑐𝑇 𝑐″𝑧″
𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

𝑧 ∈ {0, 1}𝑛

∈𝑧″𝑘 ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

𝑔(𝑧, 𝑦)

𝑔(𝑧, 𝑦) =  min𝑧″

subject to: 

𝑧 +𝑐𝑇 𝑐″𝑧″
𝑘

𝑧 + ≥𝑦𝑇 𝑧″
𝑘
𝑦𝑚𝑖𝑛

∈𝑧″
𝑘

ℕ0

∀𝑘 = 1..𝑁

∀𝑘 = 1..𝑁

 



Overview and Properties
Intuitively, the approach works as follows

■ We observe  and we compute 

■ We compute  by solving a scenario problem

■ We compute  by solving a scenario problem with fixed  values

...And we end up minimizing the expected cost of the 2s-SOP

𝑥 𝑦 ̂ 

( )𝑧∗ 𝑦 ̂ 

𝑔( ( ), 𝑦)𝑧∗ 𝑦 ̂  𝑧

Compared to the classical approach, we have 1 restriction and 3
"superpowers"

■ The restriction: we control  only through 

■ Superpower 1: we are not restricted to a single 

■ Superpower 2: works with any distribution

■ Superpower 3: at inference time, we always consider a single scenario

𝑧∗ 𝜃

𝑥

 



Scalable Two-stage Stochastic Optimization
The last advantage is massive

The weakest point of classical 2s-SOP approach is scalability

■ Multiple scenarios are required to obtain good results

■ ...But they also add more variables

With NP-hard problem, that solution time may grow exponentially

With this approach, the computational cost is all at training time

■ It can even be lower, since you always deal with single scenarios

■ There are alternatives, such as [1], where ML is used to estimate the recourse

■ ...These have their own pros and cons

[1] Dumouchelle, Justin, et al. "Neur2sp: Neural two-stage stochastic programming." arXiv preprint arXiv:2205.12006 (2022).

 



The Elephant in the Room
So far, so good, but how to we make  differentiable?

There are a few alternatives, all with limitations:

■ The approach from [1] handles parameters in the problem constraints

■ It is based on the idea of differencing the recourse action

■ ...But it is (mostly) restricted to 1D packing problems

■ The approach from [2] can be used for 2s-SOP with a stretch

■ It based on idea of embedding a MILP solver in ML

■ ...But it's semantic does not fully align with 2s-SOP

Here, we will see different technique

𝑔(𝑧, 𝑦)

[1] Hu, X., Lee, J. C. H., and Lee, J. H. M. Predict+optimize for packing and covering lps with unknown parameters in constraints. CoRR,
abs/2209.03668, 2022. doi: 10. 48550/arXiv.2209.03668.
[2] Paulus, Anselm, et al. "Comboptnet: Fit the right np-hard problem by learning integer programming constraints." International Conference on
Machine Learning. PMLR, 2021.

 



Looking Back at SPO
Let's look again at the regret loss for our original toy example

In [2]:

■ It is non-differentiable at places, and flat almost everywhere

■ Can we think of another way to address these issues?

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=32, figsize=fi

 



Looking Back at SPO
If we could act on this function itself, a simple solution would be smoothing

In [3]:

■ We could think of computing a convolution with a Gaussian kernel

■ It would be like applying a Gaussian filter to an image

util.draw_loss_landscape(losses=[util.RegretLoss()], model=1, seed=42, batch_size=32, figsize=fi

 



Stochastic Smoothing
But how can we do it through an optimization problem?

A viable approach is using stochastic smoothing

■ Rather than learning a point estimator 

■ We learn a stochastic estimator s.t. 

ℎ(𝑥, 𝜃)

∼  (ℎ(𝑥, 𝜃), 𝜎)𝑦 ̂ 

Intuitively:

■ We still use a point estimator, but to predict a vector of means

■ Then we sample  from a normal distribution having the specified mean

■ ...And a fixed standard deviation

We end up smoothing over  rather than over 

But it's very close to what we wanted to do!

𝑦 ̂ 

𝑦 ̂  𝜃

 



Stochastic Smoothing
Let's see how it works on our toy example

In [4]:

■ It's a stochastic approach, some some noise is to be expected

■ Using more samples leads to better smoothing

util.draw_loss_landscape(losses=[util.RegretLoss(), util.RegretLoss(smoothing_samples=32, smooth

 



Stochastic Smoothing
We can control the smoothing level by adjusting 𝜎

In [5]:

■ Larger  value remove flat sections better

■ ...But also cause a shift in the position of the optimum

𝜎

util.draw_loss_landscape(losses=[util.RegretLoss(), util.RegretLoss(smoothing_samples=1024, smoo

 



Score Function Gradient Estimation
How does that help us?

Normally, the DFL loss looks like this:

When we apply stochastic smoothing, it turns into:

The expectation is now computed on , , and 

■ We can use a sample average to handle the expectation on  and 

■ ...But if we do it on  we are left with nothing differentiable

(𝜃) = [regret( , 𝑦)]𝐿𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) 𝑦 ̂ 

(𝜃) = [regret( , 𝑦)]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ), ∼(ℎ(𝑥,𝜃))𝑦 ̂  𝑦 ̂ 

𝑥 𝑦 𝑦 ̂ 

𝑥 𝑦

𝑦 ̂ 

 



Score Function Gradient Estimation
So we expand the last expectation on :

■  cannot be differentiated, since  is a fixed sample in this setup

■ However, the probability  can! It's just a Normal PDF

Now, we just need a way to handle the integral

We do it by focusing on the gradient

Due to linearity of expectation and integration, this is given by:

𝑦 ̂ 

(𝜃) = [ regret( , 𝑦)𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  𝑦 ̂  𝑦 ̂ 

regret( , 𝑦)𝑦 ̂  𝑦 ̂ 

𝑝( , 𝜃)𝑦 ̂ 

∇ (𝜃) = [ regret( , 𝑦) 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 
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Score Function Gradient Estimation
Let's consider again the expression we have obtained

By taking advantage of the fact that , we can rewrite it
as:

Now, the integral is again an expectation, so we have:

∇ (𝜃) = [ regret( , 𝑦) 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 

(𝑓(𝑥)) = 1/𝑥 (𝑥)log′ 𝑓 ′

∇ (𝜃) = [ regret( , 𝑦)𝑝( , 𝜃) log 𝑝( , 𝜃)𝑑 ]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ) ∫
𝑦 ̂ 

𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂  𝑦 ̂ 

∇ (𝜃) = [regret( , 𝑦) log 𝑝( , 𝜃)]�̃� 𝐷𝐹𝐿 𝔼(𝑥,𝑦)∼𝑃(𝑋,𝑌 ), ∼(ℎ(𝑥,𝜃),𝜎)𝑦 ̂  𝑦 ̂  ∇𝜃 𝑦 ̂ 

 



Score Function Gradient Estimation
Finally, we can use a sample averate to approximate both expectations:

■ For every training example we sample  from the stochastic estimator

■ We compute  as usual

■ ...And we obtain a gradient since  is easily differentiable in 

∇ (𝜃) ≃ regret( , 𝑦) log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁

𝑦 ̂  ∇𝜃 𝑦 ̂ 

𝑦 ̂ 

regret( , 𝑦)𝑦 ̂ 

𝑝( , 𝜃)𝑦 ̂  𝜃

We can trick a tensor engine into doing the calculation by using this loss:

(𝜃) ≃ regret( , 𝑦) log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁

𝑦 ̂  𝑦 ̂ 
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Score Function Gradient Estimation
This approach is also know as Score Function Gradient Estimation (SFGE)

■ It is a known approach (see e.g. [3]), but it has seen limited use in DFL

■ We applied it to 2s-SOP in [4] (accepted, not yet published)

It works with any function, not just regret

...And in practice it can be improved by standardizing the gradient terms:

■ Standardization helps in particular with small numbers of samples

∇ (𝜃) ≃ ∇ log 𝑝( , 𝜃)�̃� 𝐷𝐹𝐿
1

𝑚∑
𝑖=1

𝑚
1

𝑁 ∑
𝑘=1

𝑁
𝑔( , 𝑦) − mean(𝑔( , 𝐲))𝑦 ̂  �̂� 

std(𝑔( , 𝐲))�̂� 
𝑦 ̂ 

[3] Berthet, Quentin, et al. "Learning with differentiable pertubed optimizers." Advances in neural information processing systems 33 (2020):
9508-9519.
[4] Silvestri, Mattia et al. "Score Function Gradient Estimation to Widen the Applicability ofDecision-focused Learning", Differetiable Almost
Everywhere workshop at ICML 2023 



A Practical Example
We test this on our supply planning problem

We start by generaring a dataset of contract values (the costs are fixed)

In [21]:

The distribution is the same we used for the one-stage problem

seed, nitems = 42, 20
data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.2, noise_type
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



A Practical Example
Then we generate the remaining problem parameters

In [22]:

■ The minimum value if 60% of the sum of average values on the training data

■ Buying in the second stage is 10 times more expensive then the average cost

Out[22]: ProductionProblem2Stage(costs=[1.14981605 1.38028572 1.29279758 1.23946339 1.06240746 1.062397
81
1.02323344 1.34647046 1.240446   1.28322903 1.0082338  1.38796394
1.33297706 1.08493564 1.07272999 1.0733618  1.1216969  1.20990257
1.17277801 1.11649166], requirement=3.8862101169088654, buffer_cost=11.830809153591137)

# Generate the problem
rel_req = 0.6
rel_buffer_cost = 10
prb = util.generate_2s_problem(nitems, requirement=rel_req * data_tr.mean().sum(), rel_buffer_co
prb

 



A Practical Example
For testing, we generate multiple samples per instance

In [23]:

By doing this, we get a more reliable evaluation of uncertainty

data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_ts, figsize=figsize, title='Training Set', scatter=True)

 



A PFL Approach
We start by training a prediction focused approach

In [24]:

This is as fast as the DFL approach, and can be used for warm-starting

CPU times: user 8.21 s, sys: 352 ms, total: 8.56 s
Wall time: 6.83 s

R2: 0.80, MAE: 0.071, RMSE: 0.09 (training)
R2: 0.75, MAE: 0.072, RMSE: 0.09 (training)

pfl_2s = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_2s', outpu
%time history = util.train_nn_model(pfl_2s, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_2s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_2s, data_ts.index.values, data_ts.values, label='training')

 



Evaluating Two-Stage Approaches
Two-state stochastic approaches can be evaluated in two ways

We can compare then with the best we could do

■ The cost different is the proper regret

■ Its computation requires solving a 2s-SOP with high accuracy

■ ...Making it a very computationally expensive metric

We can compare them with the expected cost of a clairvoyant approach

■ The cost difference is called Expected Value of Perfect Information

■ ...Or sometimes Post-hoc regret

■ Its computation requires solving a 2s-SOP with just a single scenario

■ ...So it's much faster, but only provide an upper bound on true regret

 



Evaluating the PFL Approach
Let's check the EVPF/Post-hoc regret for the PFL Approach

In [25]:

This will be our baseline

Mean: 0.634 (pfl -- two stage)

pfl_2s_evpf = util.compute_evpf_2s(prb, pfl_2s, data_ts, tlim=10)
util.plot_histogram(pfl_2s_evpf, figsize=figsize, label='pfl -- two stage', print_mean=True)

 



Training a DFL Approach
We traing a DFL with warm starting, but no solution cache

...Since the feasible space for the recourse actions is not fixed

In [30]:

CPU times: user 4min 41s, sys: 34.8 s, total: 5min 16s
Wall time: 5min 16s

R2: 0.61, MAE: 0.095, RMSE: 0.12 (training)
R2: 0.66, MAE: 0.081, RMSE: 0.10 (test)

sfge_2s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name
%time history = util.train_dfl_model(sfge_2s, data_tr.index.values, data_tr.values, epochs=100, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False, excluded_m
util.print_ml_metrics(sfge_2s, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(sfge_2s, data_ts.index.values, data_ts.values, label='test')

 



Evaluating the DFL Approach
We can now inspect the EVPF/Post-hoc regret for the DLF approach, as well

In [31]:

Mean: 0.382 (dfl -- two-stage)

sfge_2s_evpf = util.compute_evpf_2s(prb, sfge_2s, data_ts, tlim=10)
util.plot_histogram(sfge_2s_evpf, figsize=figsize, label='dfl -- two-stage', print_mean=True)

 



A More In-depth Comparison
A more extensive experimentation will be found in [4]

The method has been tested on:

■ Some "normal" DFL benchmarks

■ Several two-stage stochastic problems

The baselines are represented by:

■ Specialize methods (e.g. SPO, the one from [1]), when applicable

■ A neuro-probabilistic model + a scenario based approach

Specialized method tend to work better

■ ...But SFGE is much more versatile

■ The best results are obtained on 2s-SOPs

 



A More In-depth Comparison
This is how the approach fares again the scenario based method

...On a problem somewhat similar to our supply planning one

 



03. Off-beat Path
 



Two-Stage Stochastic Optimization
Let's consider this variant of our example problem

It's similar to the one-stage variant, except that:

■ The decision variables are continuous

■ The cost function is non-linear

■ We using  to denote the uncertain parameters

(𝑢) = argmin{ [ sin(2𝜋 )] ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ 𝔼𝑦∼𝑃(𝑌 ∣𝑋=𝑥) ∑
𝑗=1

𝑛

𝑢𝑗𝑧𝑗 𝑣𝑇 ]𝑛

𝑢

It's just another one-stage stochastic optimization problem,
but the use of  terms makes it much more challengingsin

 



SFGE Enables Objective Decoupling
We will see that it can also be addressed via DFL

The point is that the SFGE approach has a nice property:

■ The function  used as a loss term

■ ...And the cost we use to compute 

...Can be completely distinct

𝑔( , 𝑦)𝑦 ̂ 

(𝑦)𝑧
∗

We can put this to our advantage

■ In particular, we can use an ML model

■ ...To guide a low-complexity problem

■ ...So that we get a solution for tougher one

...And since we are using DFL we also get a contextual approach (we react to )𝑥

 



Target Problem
Let's try to come up with a formalization

Say we want to target an optimization problem in the form:

Where:

■  is an observable,  is a vector of decisions

■  is a vector of parameters

■  is the cost function (which can depend on the observable)

■  is the feasible space (which can depend on the observable)

■ A training sample  from the distribution 

This is a (slightly) generalized version of the problem class targeted by DFL

  { [𝑓(𝑧, 𝑢, 𝑥)] ∣ 𝑧 ∈ 𝐹 (𝑥)}argmin𝑧 𝔼𝑢∼𝑃(𝑌 ∣𝑋=𝑥)

𝑥 𝑧

𝑢

𝑓(𝑧, 𝑢, 𝑥)

𝐹 (𝑥)

{( , )𝑥𝑖 𝑢𝑖 }
𝑚
𝑖=1 𝑃 (𝑋,𝑈)

 



A DFL Approach
In principle we can apply "normal" DFL to this problem

First, we define:

Then, at training time we solve:

(𝑢, 𝑥) = {𝑓(𝑧, 𝑢, 𝑥) ∣ 𝑧 ∈ 𝐹 (𝑥)}𝑧∗ argmin𝑧

=   { [𝑓( ( , 𝑥), 𝑢, 𝑥) − 𝑓( (𝑢, 𝑥), 𝑢, 𝑥)] ∣ = ℎ𝜃∗ argmin𝜃 𝔼(𝑥,𝑢)∼𝑃(𝑋,𝑈) 𝑧∗ 𝑢 ̂  𝑧∗ 𝑦 ̂ 

In practice, if  is not linear like in our current example

...Then doing it would not be easy at all

■ We'd need to use a non-linear solver

■ ...And the computational cost would be much higher

𝑓(𝑧, 𝑢, 𝑥)

 



Another DFL Approach
But we can cheat! Since SFGE enables distinct costs

...We can compute  through a surrogate problem:

■  is the same decision vector as before

■ ...But  is a set of created ad-hoc for the surrogate

■ We'll call them virtual parameters, because they may have real counterpart

Then:

■  is a surrogate cost function

■  is a surrogate feasible space

For the solution to be valid we need to have 

𝑧∗

(𝑦, 𝑥) = { (𝑧, 𝑦, 𝑥) ∣ 𝑧 ∈ (𝑦, 𝑥)}𝑧∗ argmin𝑧 𝑓
̃  𝐹 ̃ 

𝑧

𝑦

(𝑧, 𝑦, 𝑥)𝑓 ̃ 

(𝑦, 𝑥)𝐹 ̃ 

𝑧 ∈ (𝑦, 𝑥) ⇒ 𝑧 ∈ 𝐹 (𝑥)𝐹 ̃ 

 



Another DFL Approach
At training time, we solve:

Intuitively:

■ We observe  and we estimate a virtual parameter vector 

■ We obtain a decision vector  through the surrogate problem

■ Then we evaluate the cost via the true cost function 

=   { [𝑓( (𝑦, 𝑥), 𝑢, 𝑥)] ∣ 𝑦 = ℎ(𝑥, 𝜃)}𝜃∗ argmin𝜃 𝔼(𝑥,𝑢)∼𝑃(𝑋,𝑈) 𝑧∗

𝑥 𝑦

(𝑦, 𝑥)𝑧∗

𝑓(𝑧, 𝑢)

There is a distinction between the virtual parameter  for 

...And the parameters  for  are distinct

■ For this reason, there is no ground truth for 

■ ...Which prevents us from using a regret loss

𝑦 (𝑦, 𝑥)𝑧∗

𝑢 𝑓(𝑧, 𝑢, 𝑥)

𝑦
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Motivation
The appeal here is that the surrogate problem can be easier to solve

In our example, instead of using:

We could use instead the following surrogate:

The surrogate is an LP, so it's very fast to solve

■ Together with the ML estimator, it can still lead to high-quality solutions

■ As long as the surrogate is sufficiently well aligned with the true problem

(𝑢, 𝑥) = argmin{ sin(2𝜋 ) ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ ∑
𝑗=1

𝑛

𝑢𝑗𝑧𝑗 𝑣𝑇 ]𝑛

(𝑦, 𝑥) = argmin { 𝑧 ∣ 𝑧 ≥ 𝑟, 𝑧 ∈ [0, 1 }𝑧∗ 𝑦𝑇 𝑣𝑇 ]𝑛

 



Benchmark Data
Let's try a proof-of-concept experiment

In [3]:

■ We generate data for the  parameter as in all previous variants

■ We keep the distribution simple, since we want to stress non-linearity

𝑢

seed, nitems = 42, 20
data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.1, noise_type
util.plot_df_cols(data_tr, figsize=figsize, title='Training Set', scatter=True)

 



Benchmark Data
Then we generate the remaining problem data and a test set

In [4]: rel_req = 0.6
prb = util.generate_problem(nitems=nitems, rel_req=rel_req, seed=seed, surrogate=True)
data_ts = util.generate_costs(nsamples=150, nitems=nitems, seed=seed, sampling_seed=seed+1, nois
util.plot_df_cols(data_ts, figsize=figsize, title='Training Set', scatter=True)

 



A Baseline
We'll use again a PFL approach as a baseline

Note this is not a particularly good choice, but it's difficult to find an alternative

In [5]:

CPU times: user 8.61 s, sys: 256 ms, total: 8.87 s
Wall time: 7.16 s

R2: 0.84, MAE: 0.076, RMSE: 0.09 (training)
R2: 0.84, MAE: 0.079, RMSE: 0.09 (training)

pfl_nl = util.build_nn_model(input_shape=1, output_shape=nitems, hidden=[], name='pfl_nl', outpu
%time history = util.train_nn_model(pfl_nl, data_tr.index.values, data_tr.values, epochs=1000, l
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False)
util.print_ml_metrics(pfl_nl, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(pfl_nl, data_ts.index.values, data_ts.values, label='training')

 



PFL Approach Evaluation
We'll also evaluate the results in terms of cost, not relative regret

Again, the reason is that this problem is not so easy to solve

In [6]:

Mean: 5.691 (training), 5.497 (test)

tc_tr_nl = util.compute_regret_surrogate(prb, pfl_nl, data_tr, tlim=10, cost_only=True)
tc_ts_nl = util.compute_regret_surrogate(prb, pfl_nl, data_ts, tlim=10, cost_only=True)
util.plot_histogram(tc_tr_nl, figsize=figsize, label='training', data2=tc_ts_nl, label2='test', 

 



Alternative DFL Approach
We can now try out alternative DFL approach

In this case, warm starting may not be a good idea

In [7]:

CPU times: user 3min 35s, sys: 3.43 s, total: 3min 38s
Wall time: 3min 38s

R2: -6.83, MAE: 0.5, RMSE: 0.61 (training)
R2: -6.54, MAE: 0.5, RMSE: 0.61 (test)

sfge_sg = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name
%time history = util.train_dfl_model(sfge_sg, data_tr.index.values, data_tr.values, epochs=300, 
util.plot_training_history(history, figsize=figsize_narrow, print_final_scores=False, excluded_m
util.print_ml_metrics(sfge_sg, data_tr.index.values, data_tr.values, label='training')
util.print_ml_metrics(sfge_sg, data_ts.index.values, data_ts.values, label='test')

 



DFL Approach Evaluation
...And we can compare the two cost distributions on the training data

In [8]:

The difference is very noticeable

Mean: -3.178 (dfl), 5.497 (pfl)

tc_tr_sg = util.compute_regret_surrogate(prb, sfge_sg, data_tr, tlim=10, cost_only=True)
tc_ts_sg = util.compute_regret_surrogate(prb, sfge_sg, data_ts, tlim=10, cost_only=True)
util.plot_histogram(tc_ts_sg, figsize=figsize, label='dfl', data2=tc_ts_nl, label2='pfl', print_
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Considerations
By using DFL + a surrogate we can "partition" the problem complexity

■ We can simplify some elements that the solver has trouble addressing

■ ...And dump them partially on the ML model

■ ...Or we can do the opposite (e.g. hard constraints in ML based decision making)

■ It can work without an observable (no )

■ It could be used for black-box optimization

𝑥

Some caveats:

■ This is not a well investigate approach: treat is as a proof-of-concept

■ Banning special case, the method works as a heuristic

■ ...And finding a good surrogate can be quite difficult

 



05. Last Leg of the Journey
 



Multi-Stage Stochastic Optimization
What if we have a sequence of decision stages?

Consider for example and Energy Management System:

■ We need to make some decisions (using a generator, buyng from the grid...)

■ ...Then observe how uncertainty unfolds

■ ...Based on that, we make another round of decisions and so on

 



Multi-Stage Stochastic Optimization
We will also assume that there are non-trivial constraints

■ This setup is called multi-stage stochastic optimization

■ ...Or also online stochastic optimization, or sequential decision making

There are a few possible solution approaches

One approach consist in using scenarios, again

■ ...But since there are many stages, the decisions variables branch out

■ A solution is called a policy tree, which is very expensive to compute

A second approach consists in using anticipatory algorithms

■ We iteratively solve an optimization problem with a bit of look-ahead

■ Several examples can be found in [1]

[1] Hentenryck, Pascal Van, and Russell Bent. Online stochastic combinatorial optimization. The MIT Press, 2006.

 



Formalization
Formally, this setup is well captured by a constrained Markov Decision
Process (MDP)

In particular, we will consider a constrained  be an MDP
with:

■ A set of possible (observable) states 

■ A set of possible decisions 

■ A distribution  for the initial state

■ A distribution  for the possible state transitions

■ A cost function 

■ A feasible space  which depends on the state

Some comments:

■ The next state depends on the current state and decisions

■ The cost depends on the current state and decisions, and on the next state

Thi i t th l MDP d fi iti b t it ill b i t f

⟨𝑋,𝑍, , 𝑃 , 𝑓, 𝐹⟩𝑃 0

𝑋

𝑍

(𝑋)𝑃 0

𝑃 (𝑋 ∣ 𝑋,𝑍)

𝑓(𝑧, 𝑥, )𝑥+

𝐹 (𝑥)
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Formalization
Within this framework, we can formalize a multi-stage problem

Our goal is to define a solution policy  from a set of candidates  s.t.:

This is very complex problem:

■ We are not searching for a fixed solution, but for a policy

■ The decisions can be anything (including discrete and combinatorial)

■ ...They affect the state at the next stage (endogenous uncertainty)

■ ...And they should be feasible according to hard constraints

𝜋∗ Π

=  𝜋∗ argmin𝜋∈Π

subject to: 

[ 𝑓( , , )]𝔼 ∼ , ∼𝑃(𝑋∣ , )𝑥0 𝑃 0 𝑥𝑡+1 𝑥𝑡 𝑧𝑡 ∑
𝑡=1

𝑒𝑜ℎ

𝑧𝑡 𝑥𝑡 𝑥𝑡+1

= 𝜋( )𝑧𝑡 𝑥𝑡

∈ 𝐹 ( )𝑧𝑡 𝑥𝑡

 



Solution Approach Wanted
Normally, with an MDP we may turn to Reinforcement Learning

...But in this case there are a couple of difficulties:

■ Handling constraints (hard ones in particular) in RL is challenging

■ Handling combinatorial decisions in RL is very challenging

Let's recap our situation

■ Classical approaches from stochastic optimization have poor scalability

■ RL approaches have poor support for constraints and combinatorial spaces

Can we use DFL in this scenario?

[1] Garcıa, Javier, and Fernando Fernández. "A comprehensive survey on safe reinforcement learning." Journal of Machine Learning Research
16.1 (2015): 1437-1480. 



DFL and RL (UNIFY)
Indeed we can, and at this point it's not even that difficult

The trick is simply to decompose the policy , leading to:

Intuitively:

■ We use a ML model to output a set of virtual parameters 

■ ...Then we compute  by solving a constrained optimization problem

■ The ML model take care of uncertianty

■ The optimization problem take care of the constraints

𝜋

=  𝜃∗ argmin𝜃

subject to: 

[ 𝑓( , , )]𝔼 ∼ , ∼𝑃(𝑋∣ , )𝑥0 𝑃 0 𝑥𝑡+1 𝑥𝑡 𝑧𝑡 ∑
𝑡=1

𝑒𝑜ℎ

𝑧𝑡 𝑥𝑡 𝑥𝑡+1

= ( , )𝑧𝑡 𝑧∗ 𝑦𝑡 𝑥𝑡

= ℎ( , 𝜃)𝑦𝑡 𝑥𝑡

𝑦

𝑧𝑘

 



DFL and RL (UNIFY)
We use the generalized, surrogate-based approach to compute 

In particular, we have:

■ Depending on our choice for the virtual parameters

■ We will need to craft the surrogate cost  and feasible space 

■ The original constraints are satisfied as long as 

The surrogate terms can usually be designed by tweaking a bit  and 

𝑧∗

(𝑦, 𝑥) = { (𝑧, 𝑦, 𝑥) ∣ 𝑧 ∈ (𝑦, 𝑥)}𝑧∗ argmin𝑧 𝑓
̃  𝐹 ̃ 

𝑓 ̃  𝐹 ̃ 

𝑧 ∈ 𝐹 (𝑦, 𝑥) ⇒ 𝑧 ∈ 𝐹 (𝑥)

𝑓 𝐹

The overall idea is that the ML model guides the optimizer,
exactly as in normal DFL

 



DFL and RL (UNIFY)
For training, we can rely on a simple reformulation

In particular, we define a new unconstrained MDP  such that:

■ The set of states is the same as before

■ The set of states is the set  of possible training parameters

■ The state transition distributions are the same as before

■ The cost function is defined as:

Intuitively, we treat the solver as part of the environment

⟨𝑋, Θ, , 𝑃 , 𝑔⟩𝑃 0

Θ

𝑔(𝑦, 𝑥, ) = 𝑓( (𝑦), 𝑥, )𝑥+ 𝑧∗ 𝑥+

This new MDP can be addressed by any RL learning approach
so we can benfit from recent advances in such field

 



DFL and RL (UNIFY)
This setup is the most general we have seen so far

It can be used to address a wide number of problem types

■ Optimization with parameters that need to be estimated

■ One-stage stochastic programming

■ Two-state stochastic programming

■ Sequential decision making with constraints

■ In principle, also black-box optimization and parameter tuning

■ ...Though it probably would not a good fit for such cases

You can find it described in [1], under the name UNIFY

[2] Silvestri, Mattia, et al. "UNIFY: a Unified Policy Designing Framework for Solving Constrained Optimization Problems with Machine
Learning." arXiv preprint arXiv:2210.14030 (2022).

 



An Example
Let's consider the Energy Management System example in detail

Every 15 minutes, we need to adjust power flow to/from a set of nodes

■ Nodes can be generators, demand points, or the grid

■ One special node represents a storage system

The decisions  at time  include:

■ A vector of power flows  to/from the main nodes

■ A power flow  to/from the storage system

The state  at time  is given by:

■ The power  generated by some nodes (e.g. PV plants)

■ The demand  for some nodes (e.g. production sites or housing)

■ The storage charge level 

𝑧𝑡 𝑡

𝑧𝑡𝑛𝑜𝑑𝑒𝑠
𝑧𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑥𝑡 𝑡

𝑥𝑡𝑝𝑜𝑤𝑒𝑟

𝑥𝑡
𝑑𝑒𝑚𝑎𝑛𝑑

𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒
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An Example
The transition distribution  is defined by:

■ A distribution  of the yield of renewable energy generators

■ A distribution  of the demand

■ The deterministic transition 

The feasible space  is defined via:

■ Flow capacity constraints: 

■ Flow balance constraints: 

■ Storage capacity constraints 

The cost  is given by:

■ There is no cost associate to demands, renewable generators, and the storage

𝑃

𝑃𝑝𝑜𝑤𝑒𝑟

𝑃𝑑𝑒𝑚𝑎𝑛𝑑

= + 𝜂𝑥𝑡+1𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝐹 ( )𝑥𝑡

𝑙 ≤ ≤ 𝑡𝑧𝑡

𝑧 + − = 01𝑇 𝑥𝑝𝑜𝑤𝑒𝑟 𝑥𝑑𝑒𝑚𝑎𝑛𝑑

0 ≤ + 𝜂 ≤ 𝐶𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑓( , , )𝑧𝑡 𝑥𝑡 𝑥𝑡+1

𝑓( , , ) =𝑧𝑡 𝑥𝑡 𝑥
𝑡+1

𝑐
𝑇
𝑧𝑛𝑜𝑑𝑒𝑠

 



The Optimization Problem
We can compute  by solvig the following LP

The main alteration is that a virtual cost is associated to the storage system

■ If , the solve will tend to charge the storage

■ If , the solve will tend to draw power from the storage

■ ...So that the ML model can alter the decisions

Without the virtual cost, the storage system would never be charged

(𝑦, 𝑥)𝑧∗

 argmin𝑧

subject to: 

+ 𝑦𝑐𝑇 𝑧𝑛𝑜𝑑𝑒𝑠 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑙 ≤ ≤ 𝑡𝑧𝑡

𝑧 + − = 01𝑇 𝑥𝑝𝑜𝑤𝑒𝑟 𝑥𝑑𝑒𝑚𝑎𝑛𝑑

0 ≤ + 𝜂 ≤ 𝐶𝑥𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑧𝑠𝑡𝑜𝑟𝑎𝑔𝑒

𝑦 > 0

𝑦 < 0
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Some Results
Here's a comparison with some constrained RL methods
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Some Results
And here's a comparison with a specialized stochastic optimization approach
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Some Final Thoughts
If you retain one idea from our ramble, makes sure it is this:

You just need to stretch it a little bit ;-)

DFL can be used for way more than one purpose!

Where next?

■ We can reap what we haven't sowed! Let's test more RL algos (spoiler: started)

■ Scalability is still a big issue

■ We need more (and more realistic) applications

■ ...
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Thanks for your patience! Any question?
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