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What | cover today

- Avery brief introduction to DRL

- Example 1: learning to make online decisions (in
collaborative picking)

- Example 2: (hybrid) learning to schedule jobs in
manufacturing
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Intro to (deep) reinforcement learning
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* Reinforcement learning is learning what to do—how to map
situations to actions—so as to maximize a numerical reward signal.

 Trial-and-error search

* Delayed reward Credit:
Zaharah Bukhsh
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Agent and Environment

At each step t the agent:

™| Agent » Executes action At
; * Receives observation St
state |7 action « Receives scalar reward Rt
| Feg

The environment:

* Receives action At
* Emits observation St+1
Agent—environment interaction in * Emits scalar reward Rt+1
a Markov decision process

:;x”.. Environment |-

t increments after interaction with the environment
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Introduction to Reinforcement learning

Agent interaction with environment

Je Je
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“RL is a computational approach to understanding and
automating goal-directed learning and decision
making. It is distinguished from other computational
approaches by its emphasis on learning by an agent
from direct interaction with its environment, without
requiring exemplary supervision or complete models
of the environment” (sutonand Barto, 2019)

\/  Formalism for learning decision-making and control
from experience

 Framework for learning to solve sequential decision-
making problem

11 ACP Summer School 2023
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What is “deep” RL?

Reinforcement Learning

', | Agent

state reward
; r,

o

: s.; | Environment ]<—

action
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Deep Learning
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Input Layer Hidden Layer Output Layer

Deep Reinforcement Learning

12  ACP Summer School 2023

TU/e



A non-exhaustive taxonomy of algorithms in modern RL

RL Algorithms

|

] 3
Model-Free RL Model-Based RL
1 3 v )’
Policy Optimization Q-Learning Learn the Model Given the Model

Policy Gradient <— ( —ﬁ DQN World Models M Alphazero
> DDPG D —
A2C / A3C " —% C51 I2A
o

D3
PP —ﬁ QR-DQN MBMF
e
TRPO —% HER ’ MBVE Source.

spinningup.openai.com
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Success stories of DRL
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Human-level control through DRL (1/4)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-
level control through deep reinforcement
learning. nature, 518(7540), 529-533.

49 Atari games

From pixel to actions (no domain knowledge)

The change in score is the reward.

Same algorithm.

Same function approximator w/3M free parameters.
Same hyperparameters

Roughly human-level performance on 29 out 49 games.
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AlphaGo Zero (2/4)

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without

e KneuISces ot SSAETEN A5 AlphaGo beats Go master Lee Se-dol (12 March 2016)
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ChatGPT: Optimizing Language Models for Dialogue — (3/4)

18

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

>
./
Explain reinforcement

learning to a 6 year old.

}

®

4

We give treats and

punishments to teach...

ACP Summer School 2023

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

™

./
Explain reinforcement
learning to a 6 year old.

Wegivetreats and
punishments o

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=

Write a story
about otters.

https://openai.com/blog/chatgpt/
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Solving combinatorial optimization problems (4/4?)

source: Wefabricate

=

] source: NS L

e
source: vanderlande
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Real-world optimization problems

(Combinatorial) optimization problems:
with objectives, constraints
- Route planning for package delivery

- Vehicle routing problem (VRP)

- Stacking/packing problems in harbours/warehouses;
Train shunting

- (3D) bin-packing problem
- Scheduling jobs on production lines
- Job shop/machine scheduling problem

20  ACP Summer School 2023
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Real-world optimization problem

Two types of problems

1. Stochastic, sequential decision making problems: need
quick, online decisions, e.g. ambulance dispatching, order
batching in e-commerce warehouses

2. Fullinformation available, although some executions could
have randomness, e.g. (usually) package delivery,
scheduling problems

21 ACP Summer School 2023 TU/e



Successful story 4.1
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Order Picking

Order Picking is a crucial component of warehouse operation
e Order batching
* Order releasing

* Picker routing: which retrieving tasks should be assigned to each
picker in order to optimize a certain metric, such as total order
tardiness

Traditional human-only order picking
 Humans handle all the work

e Highly inefficient: only 30% of time spent picking, on average.
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A brief history of picking

Collaborative

Order P|ck|ng
1-to-1 1-to-1 1-to-Many Many-to-Many
Manual Autonomous vehicles Autonomous vehicles Autonomous vehicles

Complexity
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Orchestrating chaos

ﬁ
o 3
LB el
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Collaborative Order Picking: Challenge

How to allocate pickers to AMRs (autonomous mobile robots)?

Solution requirements

* Online allocation/decision

* Handling uncertainty and congestion

* Handling different picker/AMR numbers, different warehouse
sizes

. TU/e



Optimization problem

* Develop a ‘picker optimizer’ in
human-robot collaborative picking

* Allocating human pickers to AMRs,
such that the total picking time is
minimized (i.e., max pick rate) tate| | reward

S: R, A,

What we know

- Business rules are available

Environment

- Data (orders, locations of items) available

28 ACP Summer School 2023 I U/e



Environment: simulation model

Representing interactive processes
between pickers, AMRs, and the

picker optimizer. ) LR Pickers travel to [SRRISTRY 7
. e pick locations . i

Uncertainties

QI3

@32
-1

027 :
Picker receives [R¥ | Any picker
new destination X LEN  finishes a pick

W Picker e A
. .. New destination
Picker optimizer
request

29  ACP Summer School 2023 TU/e

 stochastic picker/AMR speeds and |.x
picking times

e picking disruptions

e congestion causing delays for the
AMRs related to overtaking
procedures




DRL approach

Agent

We have built the environment I

state reward action

Next: St Re

 MDP (Markov decision process) formulation
 State space (and embedding): most tricky part!
* Action space
* Reward function

Environment
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Spatial input representation

Classical feed-forward neural networks not suitable as

e Cannot adapt to different problem instances due to fixed input size; hard
to capture important spatial information

Instance as a graph

* Nodes: locations in warehouse; Edges: how to travel between locations

" TU/e



State Representation

Node features capture information for each node/location

1. Controlled picker

2. AMR information

3. Picker information

4. Node location information

5. Node neighborhood information
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Reward Function

Action Space:
 New picker destination

* Truncated action space: current or next AMR destination where no
other picker is going

* Reward function: Penalty on time that passes

efficiency
Ry = Tt-1— Tt
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Agent architecture design

Network must handle graph space and extract spatial information

I m N
I L -

+aaravl,e =N N
C

nNecoc ol ol | Y
VW UUI IND V4 IVIM—JJUB\- VUJJIIIB

We adapt Invariant Feed-Forward network (Alomrani et al., 2022), with
aisle-embedding: capture spatial relations in warehouse, size agnostic

Input Graph Node-Embeddings Combined Node Values

Invariant Feed-Forward
Invariant Feed-Forward

Aisle-Embeddings
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Learning Algorithm

Proximal Policy Optimization (PPO) (Schulman et al., 2017)
- Policy-based method: policy network directly outputs the

Agent

actions :
Actor-critic ’
- Actor network: suggests actions ;™| | i

- Critic network: estimates the
advantage function =
(how good is the selected action)
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Experiments
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Experimental settings

* Performance of fixed warehouse sizes: picking time
 Picker/AMR transferability
e Warehouse size transferability

Multiple warehouse types

Warehouse Type Aisles Aisle Depth Locations Pickers AMRs  Picks

XS 7 7 08 4 7 <100
S 10 10 200 10 25 5000
M 15 15 450 20 50 7500
L 25 25 1250 30 90 7500
XL 35 40 2800 60 180 15000
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Benchmark algorithms

VI benchmark: rule-based method considers the distance of
potential picks and also tries to spread the pickers across aisles

- Greedy : assign a picker to the closest available location where an

AMR is going, and no other picker is already going.

- MILP: assuming no uncertainties/randomness, no congestions, in

38

XS environment
min C, subject to

ACP Summer School 2023

vieN (2.3)
Vi eNvi#i keK (24)
Vi,i' e Nyi#i' keK (2.5)
VieN. kek (2.6)
Vi €Ni#d (2.7)
VieN.keKreR (2.8)
Vi,i' € Nyi# i (2.9)
VieN.reR (2.10)
VieN,reR.kek (2.11)
Vie N.reR. (2.12)

DO NOT READ!
(is incomplete)
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Experiment 1: performance on deterministic, XS instances

(a) Instances of type XS with diverse starting.

Instance DRL  Greedy VI Benchmark MILP MILP gap (%)
1 154 154 355 149 17.8
2 187 190 397 187 6.0
3 155 167 299 149 12.2
4 206 248 269 212 17.5
5 227 236 277 206 15.9

(b) Instances of type XS without diverse starting.

Instance DRL  Greedy VI Benchmark MILP  MILP gap (%)
1 244 262 355 244 28.2
2 249 253 297 271 28.1
3 265 272 299 267 29.3
4 240 257 269 245 22.8
5 251 255 277 260 30.9

39  ACP Summer School 2023

Compared to MILP solver:
small instances without

randomness and overtaking
penalty. Each AMR does 1
pickrun.

Gurobi: gaps after 20 hours

(DRL: solves in milliseconds)
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Experiment 1: performance with various sizes

Values indicate the average picking time over 100 evaluation episodes

DRL Greedy VI Benchmark
Warehouse Picking Time %  Picking Time % Picking Time
S 8586 +62 149 10619+59  —5.3 10087 + 58
M 8425 +46 21.0 1102358  —3.3 10669 £ 41
L 6540+ 37 31.7 0823 + 33 —2.7 9569 + 61
XL 9010+21 336 13972+44  -3.0 13570 4 72
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Experiment 2: Picker/AMR Transferability

(a) Warehouse type S.

DRL Greedy VI Benchmark
Pickers/AMRs Picking Time %  Picking Time %  Picking Time
7/15 12825 +83 17.1 15166 + 74 2.0 15472 4+ 87
10/20 9206 £51 194 11274+ 69 1.3 11420 + 56
10/30 8221 +54 13.0 10283+60 —8.8 9447 + 52
15/25 6737+ 42 21.5 7994 + 40 6.9 8583 £ 36
15/30 5930 + 34 24.7 7804 4+ 55 1.0 7879 + 46
15/35 5938 £ 35 16.6 7550 £ 44 —6.0 7121 £ 38
(d) Warehouse type XL.
DRL Greedy VI Benchmark
Pickers/AMRs  Picking Time %  Picking Time %  Picking Time
50/120 12028 +23 40.2 16816 £ 32 16.5 20142+ 112
60/140 10150 £ 20 40.7 14312427 16.4 17118 £ 101
60/200 9009 +44 356 14293 +88  —2.2 13979 4+ 87
80/180 8106+ 77 389 11343+ 30 14.6 13275 + 83
80/200 8011+59 36.8 11765+ 52 6.4 12571 + 91
80/220 6947+19 415 10799+ 40 9.1 11877 + 84

Trained with:
- 10/25 for S
- 60/180 for XL

The trained policies are
applied to scenarios with
different numbers of
pickers and AMRs and
their ratios

TU/e



Experiment 3: Warehouse Size Transferability

- Trained policies on specific sized are tested on different sized

instances
Warehouse  Policy S Policy M Policy L. Policy XL Greedy VI Benchmark
S 8586 =62 9190 £53 8875 £ 58 8986 =51 10619 4 59 10087 + 58
M 7931 42 8425 4+46 8064 £41 8220+ 37 11023 & 58 10669 + 41
L 6877 £31 T190+£42 6540£37 6877 £23 9823 £33 9569 £+ 61
XL 0478 £20 11275433 8567 +24 9010+£21 13972 + 44 13570 £ 72
42  ACP Summer School 2023 TU/e



Ablation study: architecture comparison

INV-FF: invariant feed-forward
network without aisle

embedding

GIN: Graph Isomorphism

Network

GCN: Graph Convolutional

Network

43
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Warehouse INV-FF  AISLE-EMB GIN GCN

S 8689 + 58 8586 £ 62 8869 +55 11677 + 67
M 8628 +40 8425 +46 14151 £75 13851 £65
L 6602+29 6540 +37 11723 +76 14419 + 88

Picking performance

Warchouse  INV-FF  AISLE-EMB GIN GCN

S 1.44+0.03 216+0.03 3.10+0.03 6.02+0.05
M 1.534+0.03 2224003 3254003 6.28+0.05
L 1.534+0.03 2414003 3414004 6.65+0.05
XL 1.734+0.03 2574004 3.77+0.04 7.19+0.06

Inference time (in milliseconds)

TU/e
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RS
Humans are not robots
where is fairness?
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Multi-objective DRL

Fairness: Minimize standard deviation of carried product masses

Add to state space workload fairness features
- Node-specific information, distributional information

Add to reward function
- penalty on increase in standard deviation

Learning algorithm, adapted from the prediction-guided MORL (Xu
et al., 2020)

* A meta-policy approach, to present a non-dominated set showing the
trade-offs
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Experiment: multi-objective fixed warehouse sizes

Warehouse S

® Multi-Objective Policies
Pure Performance Policy
® Pure Fairness Policy
® Greedy
VI Benchmark

0
0 2500 5000 7500 10000 12500 15000 17500 20000

Picking Time (s)
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Experiment: multi-objective fixed warehouse sizes
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Inspecting Policy Behavior
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Policy analysis

Approximating policy behavior with
a decision tree

state reward action
S R, A

[Fampies = 8764) (e = = 10 | [Gampies = 2508) ([Eps =, ees = 1500
I value = 219 I [u-\m'— 1c=.a| [Ceaie =586 II vobue = 245 || velue = 1637

Environment
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Performance of DT

500
Approximating policy behaviour i
. o o — DRL
Wlth d dECISlon tree 400 -®- Multi-Objective Policies

B Pure Performance Policy
A Pure Fairness Policy

°
X
5
g 300 ™
o
B
[]
©
Tree-Best DRL 3 e
@ 200 ¢
Policy PT WF PT WF B i A
£ i
1 163734+ 139 41+£5 15555 +£125 41+4 g 10
2 12347 +83 41 +4 12431 4+ 86 434+ 4 100 il
3 9350 = 65 81 +5 9164 =60 66 + 4 .*.:::\ A
4 95054+62 161 £ 10 0188 + 55 114 £ 8 e
5 9561+ 77 197+ 14 9074 4+ 60 118 &7 0
6 9480 + 79 2954+ 12 0149 + 68 167+9 0 2500 5000 7500 10000 12500 15000 17500 20000
Pure Performance 8785 +57 304 £ 21 8586 =62 308 £17 Picking Time (s)
Pure Fairness 19141 £110 173 4+20 19962 4 86 61+9

Figure 8.5: Performance evaluation of decision tree policies.
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Conclusions

e Efficiency improvements +- 40%
* Higher warehouse capacity
* Lower picking costs
* Good trade-off between efficiency and fairness
 Explicitly outline achievable trade-offs
e Simultaneous improvement of picking times and workload fairness

* For large warehouse policy with 23.6% efficiency and 92% fairness
improvements

* Good transferability

51 Learning to Be Efficient and Fair for Collaborative Order Picking TU/e



Is DRL ready for dynamic, real-world sequential
decision making problems?

Yes! It gives better performance than handcrafted heuristic
rules, which also generalizes well

Recipe
- Build a good (discrete event) simulation model

- Representing problem instances well:
good features, (size-agnostic, general) architecture

- Applying model-free/model based DRL algorithms

52  ACP Summer School 2023
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Is DRL ready for dynamic, real-world sequential
decision making problems?

Other real-world dynamic sequential decision problems

- Travelling repairwomen problem: Da Costa et al., Policies for the dynamic traveling maintainer problem
with alerts, European Journal of Operational Research, 2023

- Order batching problem: Beeks et al., Deep Reinforcement Learning for a Multi-Objective Online Order
Batching Problem, ICAPS 2022

- Cals et al., Solving the online batching problem using deep reinforcement learning, CAIE 2021
- Train shunting problem: Peer et al., Shunting Trains with Deep Reinforcement Learning, IEEE SMC, 2018

- Dynamic pricing in ad network: An Automated Deep Reinforcement Learning Pipeline for Dynamic Pricing,
IEEE TAI, 2022
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Is DRL ready for dynamic, real-world sequential
decision making problems? .

It can be even better...

Challenges & opportunities

- d UtORL (AfSha r et d I c 2022) Fig. 1: Overview of the proposed automated DRL pipeline.
Afshar et al.,2022

Instance representation (Ya et al. 2023)
Non-Deep RL (Vos & Verwer, 2023)

Simulation to real-world

Adoption
54  ACP Summer School 2023 TU/e



Successful story 4.2
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Flexible Job-Shop Scheduling

WEFABRICATE

Kjell van Straaten Robbert Reijnen
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Flexible Job Shop Scheduling Problem (FJSP)

- A set of n jobs, m machines
- Each job j contains an ordered sequence of operations O;

- Each O;;must be performed by one of the machines compatible with O;;

- 0,1 can only start after O;; is completed. w [ 1o B
- O;; has processing time on specific machine m mo [ /
- Each machine can only process one operation M J,
at a time '
Figure 3.2: Flexible Job-Shop Scheduling

Objective: find a schedule that minimizes makespan
(the time when all jobs have been processed)

57  ACP Summer School 2023 TU/e



FJSP in practice...

4]

w2 T3] 5 ] [6 [ 1 ]
s3]« 6 | 1 B
Ji [2]+] [3]e[ 5 ] [6 ]
Js [ 3 J2[5] [e] [JH
J6 [2]a] & [ 1+ [sH
Figure 3.1: Job-Shop Scheduling, adopted from Yamada and Nakano (1992)
Jobs (i.e., orders) Objectives
* Quantity * Makespan
° 1 . .
Deadll.ne - Machines * Operational Cost
J Materlz.alavalla.b!llty * Eligibility * Manual labor
* Operations (milling steps) Tl  Consumed Tools
* Duration e Maintenance * Logistic movements

* Setu .
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Existing approaches for FISP

- Mathematical optimization models; Constraint programming
- Dispatching rules: (e.g., shortest processing times (SPT))
- Heuristics: constructive, metaheuristics

- Reinforcement learning based approaches

- End-to-end DRL (Song et al., 2022)
- Hybrid approaches: parameter controls of evolutionary
algorithms with DRL (Chen et al., 2020)

59  ACP Summer School 2023
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What is missing in the literature?

A comparison study between e2e DRL and a hybrid approach

Algorithm

Performance ?
Runtime ?
Scalability ?

Robustness/generalization ?

on benchmark FJSP instances and a real-world instance
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Two approaches

Create Initial
Population (GS + LS
+RS), t=0

Initial population

1. Ours: Self-Learning Effective

Decoder '
. . ‘
Genetic Algorithm (SLEGA ‘
——— Decode Individuals ‘
g Vet cenedue into Schedule :
- - | 4{‘-@]%}9’0 77777777777777777777 offspring | i
. ) Population population

] GA !
(Song et al. 2022) ‘
O '
: Cross. Rate i

rewad | 17T TTTTTL Mut. Rate, Mut. Prob | ="~ =" T T T T

Job state Stage 1: Machine Actions Distribution H oo B ;)RL

A . . . embedding update . & sampling

Information flow:
Operations -Machines.

State Space

Determine

Compute Adjust

@@ (@

Policy

Stage 2: Operation — ™ INetwork State Space Action Parameters
Machine State embedding update
eee Information flow: — !
.. Machines snd Ol I 0 I
-1 —= operations—Operations S—
Scheduling state Heterogeneous Graph Heterogeneous GNN Decision Making

. y
Figure 4.1: SLEGA framework

Environment transition -

* Generate reward

* Move to the next decision time

* Update state information

Figure 4.8: E2E-DRL Framework, adopted from Song et al. (2022)
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End-to-end DRL
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E2E-DRL approach

Environment

. |
wiaz @& ——

M3 2 | A=

AN EX s m Agent
== §

2

*Estimated Makespan
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E2E-DRL

64

[ Job state ] Stage 1: Machine - Actions —- Distribution
embedding update | & sampling
L— emsans— £| | [(@-HD
Operations—Machines i
0-0-® : HWRICY )
SE——— Stage 2. Operation | = f cas{ NE
Machine State —— embedding update [ oo
Scheduling state Heterogeneous Graph Heterogeneous GNN Decision Making
Environment transition
* Generate reward 2

Figure 4.8: E2E-DRL Framework, adopted from Song et al. (2022)

ACP Summer School 2023

* Move to the next decision time |
* Update state information
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E2E-DRL: MDP formulation (adapted from Song et al.
2022)

Actions:
Select operation to machine allocation action, from set of
eligible actions.

Reward:
Absolute penalty if expected makespan increases.
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E2E-DRL: state representation

State space: represented as a heterogeneous graph

66

Operation nodes:
Status; #neighboring machine; Average or actual processing time;
#unscheduled jobs; Potential or actual start time; Time until the release
date...

Machine nodes:
#neighboring operations;
available time; utilization...

Arcs:
: t c () (b)
processing time; sequence
1 Figure 4.15: Heterogeneous Graph representation of FJSP. A dotted line means processable, while a
d € pe n d € nt set u p tl me... solid line means scheduled. Adopted from Song et al. (2022)
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State embedding

PPO with actor-critic

GAT (graph attention network) is used for machine node embedding

The message-passing step: a machine node aggregates information from

only the direct neighbors (eligible operations on that machine).

The operation node is then embedded given the eligible machines, the

previous node, the next node and the node itself.

structure

67
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Operation
raw faaturesL

Machine
raw featuresL

O-M arc
raw featuresL

HGNN
—

(x L)

Operation
embeddings

A4
dT

I Y
7] Le

P

Bujood | | Bujood |

“dTN

Xewyos

v

(s|*0)u

> e * >
W i State ¥
Machine embedding
embeddings
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E2E-DRL approach

Environment

. |
wiaz @& ——

M3 2 | A=

AN EX s m Agent
== §

2

*Estimated Makespan

TU/e



A hybrid GA-DRL approach
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Genetic algorithm

&l

Mutation

\

& "

Reproduction
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/ New generation \

<

b oflie o
L% -

Evaluation

®’ - I
2
Selection
Credit: Robbert Reijnen

based on
https://www.generativedesign.org/02-

deeper—dive/02-04_genetic-a/gorW /e



Solution presentation for FISP

Chromosome: operator sequence & machine allocation components

Input Jobs

* The operation sequence determines the
order in which operations should be

e

The machine allocation determines on
which an operation is scheduled.
* 044 is scheduled on M1

* O;p0nM3 ...

Encoding

011 021 01,2 031 O1,1 01,2 021 031

Fefered Operations — This enables a representation that is
always feasible for FJSP
Figure 4.2: Example encoding format of a job schedule. TU /e



Genetic Algorithm

Crossover

* Machine selection crossover = maintain certain machine allocations and fill
remaining with other solution

» Operation sequence crossover = preserve relative scheduling random selected
jobs and fill with other solution

Job Shop Scheduling Gantt Chart Job Shop Scheduling Gantt Chart Job Shop Scheduling Gantt Chart Job Shop Scheduling Gantt Chart
- Bl - DEEE B E B - S R
i I \ o 1
g 1 1 Rl 11 - DDI] &
- - @ InIPRs B it .- E i

= M2 = M2

-] = B -EFEE B - EII“EH ol
EHHEI gl K1 CESD Cpel - [OER [END

=

M:

=

M1

=
=

. - CHCTH-EENY - R [
. 30 40 50 Tlme ) 0 10 2°T‘me 30 40 0 5 10 15 Timezo 25 30 35
Gen 0 — makespan: 50 Gen 2 — makespan 46 Gen 8 — makespan 44 Gen 50 — makespan 36
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SLEGA: Online control of Genetic Algorithm with DRL

/New generatim\ T

T

s N

/vM ion Evaluation
Mutation \ 7, I

v - e
parameters % % c@ “J/_},
Reproduction <=

e

Reproduction
73 ace RAFAMELS %023

Selection
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SLEGA: GA controlled with DRL

Action: "perparameter Update Evaluate
ECoriatiation individuals individuals
Environment
(set of solutions)
Reward ’ N - .'-__ .

s
el .

74

- cardinality indicators,

State - convergence indicators,
- distribution indicators,
- spread indicators

ACP Summer School 2023

MDP formulation

State:

quality of individuals (mean, max,
standard deviation)

number of generations left,
stagnation count

Actions:

individual mutation rate, crossover
rate and gene mutation rate
Reward:

Objective value increased in new

generation
TU/e



Experiments
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Experiments

m FISP type

Vanilla FJSP Literature & Custom Makespan
2 FISP + SDST Literature & Custom Makespan
3 FISP-WF (SDST, release Custom Makespan

date, night time)

SLEGA E2E-DRL

Performance °? ?
Runtime ? ?
Scalable ? ?
Robust ? ?
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Data SEt Instance

nom s.i.p. k.l Flexibility LB UB  CP
1 2 2 2 [38  Total 66 66 GG
Benchmark 2 2 2 2 [3.10] Partial 107 107 107
cne ark datasets 3 3 2 2 [615] Partial 212 221 221
4 32 2 [821] Partial 331 355 355
Real-world data (WF) 5 3 2 2 [36]  Total 107 119 119
6 3 2 2 [518) Partial 310 320 320
instance n  m  h; M;| pir; LB UB CP 7 35 3 823 Total 397397 397
: 8 3 4 3 [413]  Total 216 253 253
mk01 0 6 [b.7 3 7] 36 39 40 9 3 3 3 [411]  Total 210 210 210
mk02 10 6 [B.7 6 .7 24 26 27 10 4 5 3 [10.28] Partial 427 516 516
mk03 15 8 10 5 [1,20] 204 204 204 11 5 6 3 F‘-‘Zﬂ Em‘tiﬂ} 403 468 468
: - . . | iy : 12 5 7 3 [0.26 artia 306 446 446
< 5 8 3. . . 18 (
mi_ }% 1_.) 1 [:' 1?] 3 [1 ]g] JN Glg 69 , 13 6 7 3 [930] Partial 306 466 466
mkU5 15 4 _["_'1 )] < [5.10] }.)( 17217 14 7 7 3 [1031] Partial 496 554 554
mk06 10 15 15 5 [1,10] 33 58 59 g5 77 3 [1030] Partial 414 514 541
mk07 20 5 5 5 [1,20] 133 139 143 16 8 7 3 [10,30] Partial 614 635 634
mkO08 20 10 [5,15] 2 [5.20] 523 523 523 17 8 7 4 [1031] Partial 764879 931
mk09 20 10 [1015] 5 5,200 209 307 o7 1° Lo HE::H ot TS
9 < E r o = V91, ¢ ¢ - " artia 7 7
mk10 20 15 [10.15] 5 [5,20] 165 197 214 12 8 4 [10.33] Partial 944 1267 1208
Table 5.3: Brandimarte FJSP instances description Table 5.6: Fattahi dataset description
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E2E-DRL and SLEGA: Training

Train both our SO-SLEGA and E2E-DRL approaches on 100
different FJSP instances.

We do so for 5 different FJSP sizes from sodata, 10x05, 15x10,
20x05, 20x10, and a mix of the instance sizes.
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Results - Experiment 1 — Vanilla FISP

Heuristics rules

Vanilla GA «—

Model trained on
different sized

—

instances
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mkdata edata rdata vdata
Approach - - -
Cmax Gopt t(s) Crmax Gopt Crax Gopt Cmax  Gopt
OPT 1633 - - 1005 - 923 - 807.9 -
SPT 2832  7348% - 1305.35 29.89% 1184.80 28.36% - -
MOR 2023  2389% - 12112 20.52% 10640 15.28% - -
MWKR 200.17  22.58% - 1179.9  17.40% 10462  13.35% - -
FIFO 206.1  26.20% - 1255.46  24.92% 10821  17.24% - -
RANDOM 6375  290.39% 60.00 12259 21.98% 12129 31.41% 10417 28.94%
GREEDY 4849  196.94% 130 12005 28.41% 11504  24.64% 8945  10.72%
SO-GA 1922 17.09%  30.02 11446 13.89% 11053 19.75% 9534  18.01%
SLGA (R. Chen et al., 2020) 181.3 11.02% - - - - - - -
10x05 200.1  2254% 122 11931 18.72% 10497 13.73% 856.1  5.97%
15x10 2003 2266% 123 11975 19.15% 10543 14.23% 8580  6.20%
DRL-G 20x05 2201  34.78% 122 12695 26.32% 11251 21.90% 8974  11.08%
20x10 1993 22.05% 1.21 11925 18.66% 10462 13.35% 8413 4.13%
Mixed 1980  21.25% 129 12180 21.19% 10563 14.44% 845.0  4.59%
10x05 1946  19.16% 4.60 11395 13.38% 1009.0 9.32%  827.6 [ 2.44% |
15x10 1931 18.25%  4.32 11449  13.92% 10082 9.23% 8288  2.59%
DRL-S 20x05 2081  27.37% 425 11760 17.01% 1049.1 13.66% 857.8  6.18%
20x10 1952 19.53% 4.24 115285 14.71% 10155 10.02% 830.9 2.85%
Mixed 1968  20.51% 511 11075  10.20% 990.0 8311  2.87%
10x05 180.7  10.66% 29.83 11035 9.80%  1047.8  13.52% 8945  10.12%
15x10 1845  1298%  29.62 1110.3 10.48% 10610  14.95% 9147  13.22%
SO-SLEGA  20x05 1801 10.29% 3491 1097.7 10403 12.71% 8954  10.83%
20%10 1805 1053% 3323 10995  940% 10349  1212% 88813 0.93%
Mixed 179.6 2818 1111.8  10.63% 1069.3 15.85% 9558 18.31%

Table 6.1: Results of different algorithms on literature test data.



Best Makespan

80

GA vs SLEGA

Best makespan per generation

—— Without learning module
—— With learning module

120 A
110
100 4
a0 -
80 A

0 20 40 60 80 100

Generation
(a) Best makespan
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Average makespan

Average makespan per generation

150 4
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[=:]
[=]
1

—— Without learning module
—— With learning module
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Generation

(b) Average makespan
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Results - Experiment 1 — Vanilla FISP

E2E-DRL and SO-SLEGA (both trained on 15x10 instances) on the cudata.

Makespan difference between DRL-S and SO-SLEGA (%)
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Results - Experiment 1 — Vanilla FISP

82

Instance J-M Ratio OR-Tools LB 8R'_T()(:st, Ti Gopt
omputation 1mme R _Tools  DRL-S 15x10  SO-SLEGA 15x10 SO-GA
15x80 0.2 99! 30s 0% (991) 21% (120) 0% (99%) 0% (99%)
80x50 1.6 115 6.5h 6% (122) 33% (153) 63% (188) 75% (203)
90x10 9.0 146 7.5h 314% (604) 371% (687) 336% (637) 476% (695)
!Optimal solution found. 2 DRL-S computes a solution within 1-60 seconds, whereas the (SLE)GAs take from 1-5
minutes.

Probability densities for SO-SLEGA and DRL-S

0.25

Distribution of makespan for 50-job, 50-machine instances
ol Lo Ifor DRL-S(15x10) and SO-SLEGA(15x10).

Makespan

ACP Summer School 2023
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Results - Experiment 2

- FISP + SDSTs

e Solution quality

* Transferability

83
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FTdata

Chax Gopt t(s) Win Count Average Rank

LB? 536.4 - - - -
MWKR 787.4 46.81% 0.73 0 8.85
RANDOM 638.6 19.06% 60.00 10 3.75
GREEDY 667.5 24.45% 0.92 0 7.30
SO-GA 607.6 13.28% 59.24 4 5.10
10x05 643.2 19.91% 0.08
. 15x10  634.9 18.37% 0.08 o
DRL-G 20x05 681.3 27.03% 0.08 8 5.25
20x10 648.4 20.89% 0.08
10x05 577.0 7.57%  0.23
i 15x10 5728 6.80%  0.22 ~ .
DRL-S 20x05 594.6 10.86% 0.21 ! 2.7
20x10 576.3 7.45%  0.24
1005 580.0 8.04%  0.22
1510 580.3 8.18%  0.22
ql -
DRL-S 20x05 589.9 9.97%  0.25 ! 8.10
20x10 583.3 8.74%  0.22
10x05 543.3 [1.29%] 56.60
o erores 15x10 5684 5.98%  42.22 i .
SO-SLEGA o0 05 5564 3.74%  66.08 15 1.25
20x10 549.4 242%  70.22
10x05 547.7 2.12%  68.83
1510 547.1 1.99%  55.21
@ Al .
SO-SLEGA™ o005 5522 2.96%  66.92 16 1.20
20x10 5455 1.71%  68.20

!Models trained on vanilla FJSP (Experiment 1), 2lower bound calculated using best makespan found over variot

algorithms.

Table 6.3: Results of different algorithms on SDST literature test data.
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Results - Experiment 3 - WFdata

We train the E2E-DRL and SO-SLEGA approaches on instance sets of
different sizes.

- Wfdata: Release dates, deadlines, night times

Training Validation
Instances E2E-DRL SO-SLEGA Inference Time Average Makespan

Duration Iteration Duration Timestep DRL-G DRL-S (20x) SO-SLEGA DRL-G DRL-S (20x) SO-SLEGA
17x02 0.8h 840 3.3h 14000 0.2s 2.8s 48.9s 142787 127219 101122
42x02 2.4h 460 6.2h 24000 0.5s 3.3s 93.8s 281604 282146 223935
64x04 4.8h 160 7.5h 16000 0.8s 3.8s 111.3s 243945 230984 192755
88x08 7.4h 460 10.9h 11000 1.1s 4.3s 142.1s 202454 185219 165779
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Results - Experiment 3
- WFdata Wt

Crnax Gopt t(s) Win Count  Average Rank
LB? 132173 - - - -
MWKR 266848 101.89% 6.22 1 6.85
WFdata: Wlth additiona| RANDOI\'I 195869  46.95% 10.00 3 5.29
. GREEDY 164040 23.07% 15.63 24 3.16
constraints: release dates, SO-GA 161651  22.31%  37.45 13 3.14
. . ] 17x02 177421  34.23% 1.68
deadllnes’ nlght tlmes DRL-G 42x02 181551  37.44% 1.47 1 3.96
) 64x04 192354 45.53%  2.32 :
Instances where the number of 88x08 187690 42.00%  2.20
jobs ranges between 5 and 100 and i;xgg 1;2;}32 gggf/ 4;6
. x 38.31% 35
the number of machines ranges DRL-S 64x04 177147 34.03% 287 5 3.51
. 88x08 183488  38.82% 3.35
between 2 and 10 are considered. I5el0! 188850 42'880/72 )28
. . 17x02 138733 [L96%] 35.92
An instance of size 100x10 matches 0 16076 2060% 2396
the industry Scale. SO-SLEGA  64x04 142333 7.69% 29.65 81 1.21

88x08 144898  9.63% 30.45
155101 143992  8.03% 39.54

IModels trained on vanilla FJSP (Experiment 1), 2Jower bound calculated using best makespan found per instance a
all algorithms.
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Table 6.7: Results of different algorithms on WF-specific instances.
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Results - Experiment 3 - WFdata

Makespan difference between SO-SLEGA and DRL-S (%)
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When E2E-DRL falls short?

Average makespan
Index Instance Type i P

GREEDY SO-SLEGA  DRL-S DRL-S stack. feat. DRL-S all feat. A
1 FISP 48170 45051 45821 45821 46556 770 (1.7%)
2 (1) with SDSTs 102778 93992 119522 118148 128335 25530 (20.5%)
3 (2) with Release Dates 115135 103773 129749 126371 132535 22598 (17.9%)
4 (3) with Night Times 164040 138733 184627 175447 175447 36714 (20.9%)
5 (1) with Night Times 71760 64261 68276 67727 73552 3466 (5.4%)

Table 6.9: Ablation study for FJSP characteristics and E2E-DRL features.
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Hybrid approach vs E2E DRL

Performance Performs well generally Fails to perform when under more

speaking. complicated constraints and
instances.

Runtime Fast enough. Almost instant.

Scalability Generalizable to larger Training on large instances does not
instances. work.
Can be parallelized in order Retraining is necessary for different
to support scalability. instance characteristics.

Transferability/ Can handle various instance Fails to deal with complicated
robustness types. instance types.



Are DRLs there?

- End-to-end DRL

- Fast (on solving)
- Hard to scale, hard to handle heavily constrained problems
* Hybrid approaches work

* learning to guide search/speed up solution finding
* highly transferable/generalizable
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Coming soon: Job Shop Scheduling Benchmark

A open sourced repo for benchmarking scheduling solutions
* Benchmark instances of variants of JSP problems + various solution methods
* Environment of developing other (learning based) solution methods

Release date V1: August 15, 2023:
https://github.com/RobbertReijnen/Job_Shop Scheduling_ Benchmark

Solutions methods Job Shop SDST Assembly Online Arrivals
operatlons

Heuristics
Dispatching Rules v
GA: Genetic Algorithm

SLEGA: GA with DRL

< << <

DRL — learning to dispatch

<< <K<K
S <K<K
S <KX
<< <K<K

v
v TU/e

90 E2E DRL with GNN



The need of benchmarks

* The first Al for TSP competition @ 1JCAI 2021
https://tspcompetition.com/

Zhang et al., The first AI4TSP competition: Learning to solve
stochastic routing problems, Artificial Intelligence. 2023

* EURO Meets NeurlPS 2022 Vehicle Routing Competition,
https://euro-neurips-vrp-2022.challenges.ortec.com/

Kool et al., EURO Meets NeurlPS 2022 Vehicle Routing
Competition. 2022
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