

Quentin Cappart

Learning a value-selection heuristic
inside a

constraint programming solver

ACP Summer School 2023 - Leuven

LearningReasoning

IntuitionAdaptation

Human intelligence versus artificial intelligence

5

Learning

Reasoning

Intuition

Human intelligence Artificial intelligence

This connection is not yet established

Long-term research plan: building an AI with these connections

Adaptation

Goal: providing a better solving process for combinatorial problems

?

Quentin Cappart

Combinatorial problems

6

What is a combinatorial problem ?

Finding a needle in a haystack

Finding a feasible solution from a finite set of solutions

Combinatorial satisfaction problem (CSP)

Building a schedule satisfying a set of constraints

Servicing a set of customers without delays

Finding the biggest diamond needle in a haystack

Finding the best feasible solution from a finite set of solutions

Combinatorial optimization problem (COP)

Scheduling a production while minimizing costs

Maximizing serviced customers during a day

Quentin Cappart

Difficulty of combinatorial problems

7

How can we solve them ?

Heuristic
solving

Exhaustive
search

Idea 1: enumerate all the solutions and keep the best one (exhaustive search)

In practice: generally a huge amount of possible solutions!

In theory: interesting combinatorial problems are NP-complete or NP-hard

Consequence: there is no poly-time algorithms to solve them exactly

Idea 2: use a kind of intuition to build a solution (heuristic solving or greedy algorithm)

Idea 3: build or enumerate solutions in a clever way (search-based methods)

Search-based methods

Local search Meta-heuristics Integer programming

Constraint programming

Cheap
No guarantees

Expensive
With guarantees

Observation: there are many search-based methods, with a specific dependency to a heuristic

Quentin Cappart

Search-based methods

8

Constraint programming: high dependency for good performances (define how the search is directed)

Integer programming: less dependent - but the approach is limited to specific problems

How to build an efficient heuristic ?

Greedy algorithm and local search: huge dependency

Great challenge: the efficiency of a method is often tightly linked with the quality of the heuristic

Consequence: a bad heuristic can give very poor performances to most solving approaches

Option 1: hand-crafting the heuristic
Idea: design manually a heuristic, thanks to expert knowledge

Exemple (TSP): always visiting the closest available city

Difficulty 1: require a good understanding about the problem (e.g., LKH)

Difficulty 2: must be designed specifically for each problem

Quentin Cappart

Search-based methods

9

Constraint programming: high dependency for good performances (define how the search is directed)

Integer programming: less dependent - but the approach is limited to specific problems

How to build an efficient heuristic ?

Greedy algorithm and local search: huge dependency

Great challenge: the efficiency of a method is often tightly linked with the quality of the heuristic

Consequence: a bad heuristic can give very poor performances to most solving approaches

Option 2: learning the heuristic

Idea: use past experiments or historical data for learning a heuristic

Observation: we do not leverage the fact that similar problems may be solved many times (e.g., routing)

Consequence: for each problem, the solving process repeatedly restart from scratch with no knowledge

This idea is actually quite old…

Quentin Cappart

Back to the past…

10

Answer: In the nineties !

When such papers were written and published ?

Fun-fact 1: papers with similar names are still published :-)

Fun-fact 2: you may not know who is Jean-Marc Rousseau but you may know his son :-)

Observation: learning heuristics (with neural networks) is an old and still open research question!

Quentin Cappart

Search-based methods

11

How learning can be used to solve a combinatorial problem ?

Three integrations have been identified in this survey

(1) End-to-end learning

(2) Learning to configure algorithms

(3) Machine learning within combinatorial solvers

Examples for each of them were proposed this week :-)

End-to-end learning
Idea: the problem is directly solved using machine learning

ML

Training data

...
Supervised learning

Reinforcement learning

Unsupervised learning

Related fields: learning to model & tackling uncertainty (predict-and-optimize, constraint acquisition, etc.)

Limitation of end-to-end learning

12

Fundamental limitation
Machine learning: set of tools dedicated to predict an output

paperswithcode.com/sota/
image-classification-on-mnist

Even in a very simple dataset (MNIST - standard dataset in ML)

Best accuracy reported: 99.87%

Difficulty: it can be an important bottleneck for combinatorial optimization!

Reason: we do not want solutions that are infeasible (or to lose optimality)

Challenge: how to handle arbitrary combinatorial constraints?

Observation: machine learning can make mistakes! (100% accuracy is not achievable on test set)

Related works on end-to-end learning (and analyses)

Neural combinatorial optimization with reinforcement learning [Bello et al., Arxived-2016]

Attention, learn to solve routing problems! [Kool et al., ICLR-2019]

Learning combinatorial optimization algorithms over graphs [Khalil et al., NeurIPS-2017]

Reinforcement Learning for solving the vehicle routing problem [Nazari et al., NeurIPS-2018]

End-to-end constrained Optimization learning: A survey [Kotary et al., IJCAI-2021]

Learning a SAT solver from single-bit supervision [Selsam et al., ICLR-2019]

And many more!

Learning the TSP requires rethinking generalization [Joshi et al., Constraints-2022]

Quentin Cappart

Learning to configure algorithms

13

Idea: machine learning is used to augment a solver with valuable information

Learning to configure algorithms

Related names: algorithm configuration, automated tuning, portfolio selector

Exemple 1: selecting appropriate parameters for the solver (e.g., CPLEX has more than 70 parameters)

Exemple 3: deciding if a pre-processing step must be carried out before calling the solver

Exemple 2: selecting a specific configuration (e.g., simplex or interior-point method for a linear relaxation)

Comment: these approaches are often complementary with other learning approaches

Sequential Model-Based Optimization for General Algorithm Configuration [Hutter et al., LION-2011]

Learning to schedule heuristics in branch and bound [Chmiela et al., NeurIPS-2021]

Algorithm Selection for Combinatorial Search Problems: A Survey [Kotthoff, 2016]

Automated dynamic algorithm configuration [Adriaensen et al., JAIR-2022]

Related works

The irace package: Iterated racing for automatic algorithm configuration [Lopez-Ibanez et al., ORP-2016]

Machine learning alongside combinatorial solvers

14

Machine learning alongside combinatorial solvers

Idea: use machine learning to speed-up the solving process inside the solver

Traditional solver: can provide guarantee, but sometimes hard to make it efficient

Only learning: struggle to get guarantees, but easier to use (once trained)

Solver

Exemples: learning branching decisions or optimization bounds

Learning to search in branch and bound algorithms [He et al., 2014, NeurIPS]

Learning to branch in mixed integer programming [Khalil et al., 2016, AAAI]

Exact combinatorial optimization with graph convolutional neural networks [Gasse et al., 2019, NeurIPS]

Improving variable orderings of approximate decisions diagrams using reinforcement learning [Cappart et al., 2022, IJOC]

Towards a multimodal artificial intelligence

15

Can we integrate other aspects of artificial intelligence ?

Search

Reasoning: intelligence by logical reasoning

Reasoning

Generic: intelligence to adapt (or generalize) to new situations

Holy grail: making it easy to use (and efficient) for non-experts

Generic framework

Search: intelligence by intuition (heuristic with trials-and-errors)

Machine learning: intelligence to learn from experiments

Constraint programming as a unifying framework

16

Constraint programming can be used as a hosting technology for building this hybrid AI

Our research hypothesis

CP = model + propagation + search (+ learning)

Observation 1: model, propagation and search are present in most standard CP solvers

Observation 2: the only new part is the integration of learning

Is it really difficult to achieve ?

A first proof of concept

17Combining reinforcement learning and constraint programming for combinatorial optimization [Cappart et al. 2021, AAAI]

Combinatorial
optimization problem

Evaluated instances
Training instances

(randomly generated)

Dynamic programming
Model

Learning phase Solving phase

Reinforcement learning

Environment

Agent

Constraint programming

Model

SearchValue-selection heuristic

Deep Q-learning (DQN)
Proximal policy optimization (PPO)

Depth-first search
Restart-based search
Limited discrepancy search

⟨1,{}⟩

1 2 3 4

1 2 3 4

⟨4,{1}⟩

1 2 3 4

⟨2,{1,4}⟩

1 2 3 4

⟨3,{1,2,4}⟩

CP search with a learned heuristic on TSP

18

⟨0,{1,2,3,4}⟩

4
1

2

3 0

⟨1,{4}⟩

Our current position
Remaining customers

A first proof of concept

19

Main assumption: we need to cast the combinatorial problem into a dynamic program

Limitation: learning is disconnected with the CP solver (loss of relevant information - e.g., propagation)

Difficulty: loss of performances with the back-and-forth between C++ and python

Good news: signals of learning were observed and good branching decisions could be obtained

Ok! It seems to be a good idea, but does it work ?

Additional improvement: caching to avoid unnecessary call to the trained model

Additional improvement: leveraging dominance to prune the search space (redundant constraints)

Difficulty: we need to build a specific model for each problem (e.g., a neural network)

Build the CP model from the recursive formalization

Initialize a standard CP search

Branch on the value predicted by the trained model

Encode the current solving stage into an RL state

Use caching if the prediction was already done

Motivation a new CP solver

20

There are a lot of drawbacks! Can we do something ?

Idea: embed the learning directly inside the CP solver

Difficulty: there is no available solver allowing us to do that easily (and efficiently)

Reason: friction between the need of an efficient language, and the ML support mostly available in Python

(1) Simple to get on-board, yet fast and clean

Introducing and building a new CP solver, making easy to integrate learning inside

Technical contribution

Ok! but which programming language do you plan to consider ?

Moto of Julia: « Looks like Python… runs like C »

(2) Active community in optimization and machine learning

(3) Quite young language (both a benefit and a drawback)

(4) No CP solver available (excepting one that seems no longer developed)

SeaPearl (Cee-Pee-Air-El) - CP with RL

21

Next topics in this talk
(1) Describing the architecture behind SeaPearl

(2) Presenting few experiments on its performance

(3) Identifying current challenges and possible future research directions in this field

We have a lot of research ideas if you would like to contribute :-)

Seapearl: A constraint programming solver guided by reinforcement learning [Chalumeau, Coulon, Cappart and Rousseau, 2021, CPAIOR]

Lab session: a tutorial has been prepared in order to build a first CP model and train a model inside it

Hackathon: give you the opportunity to try other design choices

CP = model + propagation + search + learning

Philosophy: minimalist CP solver dedicated to ease the integration of learning

Open-source project, available on Github (still under active development)

Zoo of models: https://github.com/corail-research/SeaPearlZoo.jl

Solver: https://github.com/corail-research/SeaPearl.jl

Learning a generic value-selection heuristic inside a constraint programming solver [Marty, Cappart et al., to appear at CP 2023]

Architecture behind SeaPearl

22

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network

Main components of SeaPearl

Constraint programming solver

23

Search 1: depth-first search with branch-and-bound (default strategy)

General characteristics

Propagation engine
Filtering: constraint propagation at each node with fix-point execution

The solver is currently compatible for XCSP3 mini-track competition (but not the learning)

Constraints: intension, extension, allDifferent, sum, element (+ few others)

Search strategies

Search 2: iterated limited discrepancy search (allow to leverage good heuristics)

Search 3: restart-based search (allow to leverage probabilistic heuristics)

Inspiration: MiniCP solver (in Java)

Data structure: trail-based solver

Modeling: an interface with JuMP is planned

Modeling example: graph-coloring

24https://github.com/corail-research/SeaPearlZoo.jl/blob/master/src/classic_cp/graph_coloring/graph_coloring.ipynb

Prototyping: possible to write model directly in a jupyter notebook

Goal: keeping the philosophy of CP and the ease in modeling

Standard CP depth-first search (DFS)

25

Fix-point:
no solution

Fix-point:
branch pruned

Fix-point:
no solution

Solution with cost 10 found

Branches pruned
(cost > 10)

x1 = 1 x1 = 2
Fix-point

Fix-point

Fix-point

x1 = 1 x1 = 2

Iterated limited discrepancy search (ILDS)

26

0 1 1 12 2 2 3
Principle: explore the tree with no deviation from the left branch, then allow 1 deviation, then allow 2, etc.

Convention: the left branch is what is explored first (value recommended by the heuristic)

Restart-based search

27
Restart schedule: Luby sequence in terms of number of failures (1, 1,2, 1,1,2,4, 1,1,2,1,1,2,4,8,…)

Principle: follow the branch based on a weighted probability, and periodically restart

x2 = 1 (30%) x2 = 2 (70%) x2 = 1 (90%) x2 = 2 (10%)

x1 = 1 (80%) x1 = 2 (20%)

Architecture behind SeaPearl

28

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network

Main components of SeaPearl

Generic representation function

29

Our goal: leverage learning algorithms to speed-up the solving process (e.g., value-selection heuristic)

What are the requirements of such a function ?

It is now going different than other CP solvers !

Observation: CP solvers can handle many combinatorial problems (routing, scheduling, assignment, etc.)

Practical use: the learning component should work for any problem given as input

Idea: build a function able to encode any combinatorial problem into a structure suited for learning

Requirement 1: able to encode variables with different domains

Requirement 3: able to handle problems regardless of the number of variables

Requirement 4: able to handle problems regardless of the number of constraints

Requirement 5: preserving the combinatorial structure of the problem

Requirement 2: able to encode any kind of constraint

Requirement 6: the function must be bijective (1-to-1 mapping with a CSP and the encoding)

How can we build such a function ?

Generic representation function

30

Current proposition: encoding as a labeled tripartite heterogeneous graph

Heterogeneous graph: graph where the vertices and edges can have a different meaning

Tripartite: there are three kinds of vertices

Labeled: each vertex is decorated with additional information (i.e., features)

Encoding function

(1) One vertex per variable

(2) One vertex per constraint

(3) One vertex per value

(4) One edge if a variable is involved in a constraint

(5) One edge if a value is on the domain of a variable

V1 : set of vertices for variables

V2 : set of vertices for constraints

V3 : set of vertices for values

E1 : set of variable/constraint edges

E2 : set of value/variable edges

Generic representation function

31

V1 : set of vertices for variables

V2 : set of vertices for constraints

V3 : set of vertices for values

E1 : set of variable/constraint edges

E2 : set of value/variable edges

f1 : features for variables

f2 : features for constraints

f3 : features for values

(1) Current domain size (integer)

(2) Initial domain size (integer)

(3) Is already assigned (binary)

(4) Is the objective to optimize (binary)

Features for variables

(1) Its numerical value (integer)

Features for values

What about the features on vertices ?

(1) Constraint type (one-hot)

(2) Has reduced domains with propagation (integer)

Features for constraints

Conclusion

Disclaimer: this representation is not perfect and has some drawbacks (discussed later)

Extension: other information can be easily added as new features

Goal: encoding any combinatorial problem in a generic way

Inspiration: bipartite encoding proposed by Gasse et al. for MIP

Exact combinatorial optimization with graph convolutional neural networks [Gasse et al., 2019, NeurIPS]

Architecture behind SeaPearl

32

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network

Main components of SeaPearl

Learning a value-selection heuristic

33

Branching on x1 (e.g., first-fail)

Branching on x1=2Trained
Model

Training data

With a training carried out by deep reinforcement learning

Learning a value-selection heuristic

34

Step 1: encoding the current solving process as a labeled tripartite heterogeneous graph (previous slides)

Step 2: leveraging this graph thanks to a graph neural network and obtain an embedding for each node

Step 3: estimating the most promising value thanks to fully-connected neural networks

Step 4: selecting the branching value based on the estimated score of each value

Learning algorithm

Neural architecture

Paradigm: training based on deep reinforcement learning

Data: require historical or synthetic data (i.e., other combinatorial problems) to train the model

Benefit: there is no need to solve the historical problems a priori (can be very costly)

Primer on fully-connected neural network (FCNN)

35

x1

x2

x3

h1
1

h1
2

h1
3

h1x

h2
1

h2
2

h2

̂y

̂y

Layer 1: h1 = g(θ1x + b1)

Layer 2: h2 = g(θ2h1 + b2)

Output: real value (prediction)

Input: vector of features (x)

Layer 3: ̂y = θ3h2 + b3

Fondamental equation of FCNN: hk+1 = g(θk+1hk + bk+1)

Principle: each neuron computes a linear combination of the previous layer followed by a non-linearity

Learning aspect: trainable weights are involved at each layer

In practice: many variants exist (classification tasks, other activations, regularization mechanisms, etc.)

g : non-linear function (e.g., ReLU)

θ1, b1 : weights learned through backpropagation

Main characteristic: the network is differentiable and can be trained by gradient descent algorithms

What about graph neural networks ?

h2
1

h2
2

h2
3 h2

4

h2
5

h2

h1
1

h1
2

h1
3 h1

4

h1
5

h1

Fondamental equation of GNNs: hk+1
u = g(θk+1

1 hk
u ∥ ⨁

v∈N(u)
θk+1

2 hk
v)

Primer on graph neural networks

36

v1

v2

v3 v4

v5
G(v1, …, v5)

f v1
1 , f v1

2 , f v1
3 , …

Layer 1: h1
2 = g(θ1

1v2 ∥ (θ1
2v1 ⊕ θ1

2v3))

Layer 2: h2
2 = g(θ2

1 h1
2 ∥ (θ1

2h1
1 ⊕ θ1

2h1
3))

Idem for each vertex at layer 1

Idem for each vertex at layer 2

Principle: at each layer, each node aggregates information from its neighbours (message passing)

After few iterations: the nodes have information from more distant node

Learning aspect: trainable weights are involved at each layer (biases b have been omitted for clarity)

Output: embedding for each node (e)

Input: graph with node features (G)

In practice: many architectures are existing (with attention, other aggregations, etc.)

⊕ : aggregation operation

∥ : merging operation

ev1
1 , ev1

2 , ev1
3 , …

Primer on graph neural networks

37

Link: https://www.youtube.com/watch?v=uF53xsT7mjc

What are the benefits of graph neural networks?

In practice: many architectures are existing (with attention, other aggregations, etc.)

Last comment: architecture increasingly used in combinatorial optimization and worth to study

Content: survey on how GNNs can be used in combinatorial optimization and related challenges

Our GNN module

38

But your graph is heterogeneous! How do you handle this?

Equation for variable nodes: hk+1
x = g(θk

1h0
x ∥ θk

2hk
x ∥(⨁

c∈Nc(x)
θk

3hk
c) ∥(⨁

v∈Nv(x)
θk

4hk
v))

Equation for constraint nodes: hk+1
c = g(θk

5h0
c ∥ θk

6hk
c ∥ (⨁

x∈Nx(v)
θk

7hk
x))

Equation for value nodes: hk+1
v = g(θk

8h0
v ∥ θk

9hk
v ∥ (⨁

x∈Nx(v)
θk

10hk
x))

x1 x2

c1 c2 c3

v1 v2 v3

Constraint nodes

Variable nodes

Value nodes Keeping the initial features at each layer
(skip connection as in ResNet)

Idea: having specific parameters
for each type of nodes

Our FCNN module

39

x1 x2

c1 c2 c3

v1 v2 v3

ex2
1

ex2
2

ex2
m

…

ev3
1

ev3
2

ev3
n

…

…

…
Q̂(x2, v3)

Embedding ex2 : vectorized representation of variable x2 after GNN inference

Embedding ev3 : vectorized representation of value v3 after GNN inference

Final inference: Q̂(x2, v3) = FCNN(FCNN(ex2) ∥ FCNN(ev3))
Q̂(x2, v3) : prediction of how good v3 is for variable x2 (Q-value)

Variable we want to branch

Summary of the architecture

40

GNN step: leveraging the labeled tripartite heterogeneous graph and obtain an embedding for each node

FCNN step: estimating the most promising value thanks to fully-connected neural networks

Final selection: taking the value inside the domain of x with the highest score

How do we select the final value to branch on a variable x ?

hk+1
x = g(θk

1h0
x ∥ θk

2hk
x ∥(⨁

c∈Nc(x)
θk

3hk
c) ∥(⨁

v∈Nv(x)
θk

4hk
v))

hk+1
c = g(θk

5h0
c ∥ θk

6hk
c ∥ (⨁

x∈Nx(v)
θk

7hk
x))

hk+1
v = g(θk

8h0
v ∥ θk

9hk
v ∥ (⨁

x∈Nx(v)
θk

10hk
x))

Q̂(X1,2) = FCNN(FCNN(eX1) ∥ FCNN(e2))
Branching value for x : argmaxv∈D(x)Q̂(x, v)

FCNN(eX1)

FCNN(e2)

There is something missing…

41

But how to train this model?

Learning phase

42

Paradigm: training based on reinforcement learning

Data: require historical or synthetic data to train the model

Benefit: there is no need to solve the historical problems a priori

General characteristics

Reinforcement learning algorithm: based on ReinforcementLearning.jl package

https://juliareinforcementlearning.org/

Training algorithm: deep Q-learning (support for proximal policy optimization -PPO- is on development)

https://fluxml.ai/Flux.jl/stable/

Implementation

Neural network architecture: based on Flux.jl package

Note: some modifications have been done from the initial implementation to fulfill our specific needs

Novelty: on the reinforcement learning environment (and not so much on the training algorithm)

Reinforcement learning environment

43

Reinforcement learning in a nutshell
Goal of the agent: obtain the most reward as possible during an episode

Episode: sequence of states from an initial state to a final state

Action: move the agent in a new state (and update it through the transition)

Reward: score obtained after each action

Environment: formal definition of the set of states, possible actions, transition, and reward function

Solving a problem with RL require to define the environment (modeling step)

Reinforcement learning environment

44

Environment
Agent to train: a value-selection heuristic inside a CP solver for a specific problem

Episode: a path from in the tree search without backtracks

Initial state: the root node (unsolved combinatorial problem)

Final state: a leaf node (either a feasible or unfeasible solution)

Action: selecting the value to branch on the current variable (agent choice)

Transition: branching and executing all the related CP solver stuff (fix-point, propagation, etc.)

Reward function: not trivial! Explanation on the next slide :-)

Initial state

Action + reward obtained

New state

Final state (episode end)

Reward function

45

Main principles
Goal: finding good solutions (and not to prove optimality)

Intuitive idea: use the final objective cost as reward signal
What do you think about this reward ?

Proposition: rewarding scheme based on the domain reduction of the objective variable at each node

Difficulty: this information is only often available at the end of an episode (sparse reward issue)

Propagation-based reward

Principle 1: rewarding the propagation of largest values of the domain

Propagation scope: on the variable corresponding to the objective function (to minimize)

Principle 2: penalizing the propagation of lowest values of the domain

Principle 3: penalizing episodes reaching an unfeasible solution

Reward at state t + 1 = 3 − 1
10 = 2

10

3 highest values pruned at state t + 1

10 values (initial domain)

1 lowest value pruned at state t + 1

Final reward: accumulated reward from each transition

Architecture behind SeaPearl

46

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network

Main components of SeaPearl

Architecture behind SeaPearl

47

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on deep reinforcement learning

Main components of SeaPearl

Experimental setup

48

Experimental protocol

Baselines: random selection, impact-based search, and activity-based search

Combinatorial problems: graph coloring, maximum independent set, maximum cut

Training phase: 72 hours on Nvidia Tesla V100 32Go GPU for the most difficult cases

Instance sizes: graphs from 20 to 100 nodes

Implementation: everything on SeaPearl (no comparisons yet with other solvers)

Metrics: optimality gap and execution time to reach a specific solution

Question explored: what is the best solutions obtained given a limited budget of explored nodes ?

Models trained: one per configuration (problem/size pair)

Performances of the approach

49

Configurations tested (20 instances per scenario)

Average value of the optimal cost

Optimality gap obtained with a single dive (no backtrack)

Observation 2: we are able to obtain good solutions in less explored nodes compared to baselines

Observation 3: the execution time of calling the NN is important

Number of explored nodes to obtain a given gap (capped at 100,000)

Observation 1: a gap of 0.16 is obtained in a single dive while it 44,664 nodes for baselines to have 0.17

Zoom on the hardest scenarios - performance profiles

50

Maximum-cut with 50 nodes Maximum independent set with 100 nodes

Baselines: each curve corresponds to a method

Performance profiles: each tick gives the proportion of instances able to achieve a given optimality gap

Metric: optimality gap

Interpretation: the upper is the curve, the better is the method

Observation: results obtained by the learned approach is robust among all the instances tested

Conclusion of the experiments: it seems that we are able to learn interesting branching decisions!

Second conclusion

51

Personal note: I have the same opinion for many works using ML for combinatorial optimization :-)

It seems great! Should I use this for solving my problems and get competitive results? No!!!!

Explanation: I believe it is a promising research direction, but not mature yet to get competitive results

Getting quickly competitive results: currently better to use problem-specific heuristics

Take-home message: see this work as first building blocks to unlock new avenues in the mid-term

I also like this idea of a hybrid paradigm! What kind of research can I carry out in this field ?

Next slides: I will propose and discuss few challenges and related research questions

Research idea: reducing the inference time

52

Explanation: calling the model (GNN + FCNN) is much more costly than simple branching heuristics

Learned heuristic: 130 seconds to explore 38,744 nodes (298 nodes/second)

Random selection: 19 seconds to explore 53,110 nodes (2795 nodes/second)

Ratio: roughly an exploration rate 10 times slower!

What can we do ?

Idea 1: caching Q-values and use them in similar states

Idea 3: calling the model only in few nodes of the search tree (gave good results in another project)

Idea 2: reducing the inference time of the model (transfer learning, network pruning, etc.)

Improving Variable Orderings of Approximate Decisions Diagrams using Reinforcement Learning [Cappart, Rousseau et al., IJOC-2022]

Research idea: rethinking the representation

53

Encoding function

Challenge 2: expressivity
Difficulty: we may miss important relationships in the model

Challenge 1: scalability
Difficulty: the size of the representation is growing fast

Idea: curriculum learning from small instances

Consequence: the training phase is harder and more costly

5 vertices: 18 nodes (graph coloring)

200 vertices: 4002 nodes

20 vertices: 117 nodes

100 vertices: 1477 nodes

Consequence: we either lose information on the constant, or that the constraint is similar

Idea: expend the representation with new information (as in an abstract syntactic tree)

c1 : x ≤ y + 3
c2 : x ≤ y + 6
c3 : x ≤ y2

Exemple: inequalities with different constant values

Research idea: learning a double heuristic

54

Variable-selection
heuristic

Value-selection heuristic

Idea: expend the architecture to learn a variable-selection heuristic at the same time

Possible option 2: allowing the agents to share information (a good value selection depends on the variable)

Possible option 1: adopting a methodology similar to cooperative multi-agent reinforcement learning

Motivation: selecting the variable to branch on is also challenging

And many other ideas can also be leveraged and tested !

Conclusion

55

Combining reinforcement learning and constraint programming for combinatorial optimization [Cappart et al., AAAI 2021]

Seapearl: A constraint programming solver guided by reinforcement learning [Chalumeau, Cappart et al., CPAIOR 2021]

Learning a generic value-selection heuristic inside a constraint programming solver [Marty, Cappart et al., CP 2023]

CP = model + propagation + search + learning

Constraint programming can be used as a hosting technology for building an hybrid AI

Our research hypothesis

Zoo of models: https://github.com/corail-research/SeaPearl.jl

Solver: https://github.com/corail-research/SeaPearl.jl

Paper: https://arxiv.org/abs/2102.09193 (updated version to appear at CP23)

Contact: quentin.cappart@polymtl.ca

Other related projects: https://corail-research.github.io/publications/

Contributors

56
Current and past contributors: Max Bourgeat, Axel Navarro, Tristan François, Louis Gautier, Pierre Tessier, Félix Chalumeau, Ilan Coulon,
Ziad El Assal, Malik Attalah, Tom Sanders, Marco Novaes

Main Contributors: Quentin Cappart, Louis-Martin Rousseau, Tom Marty, Léo Boisvert

We are always open for new contributions :-)

Quentin Cappart

Learning a value-selection heuristic
inside a

constraint programming solver

ACP Summer School 2023 - Leuven

