Learning a value-selection heuristic
inside a
constraint programming solver

ACP Summer School 2023 - Leuven

POLYTECHNIQUE
MONTREAL

Combinatorial Optimizatio

C&RAILE

Quentin Cappart

Artf IItIlg
Laboratory

Human intelligence versus artificial intelligence

Human intelligence Artificial intelligence

Reasoning Reasoning Learning

Learning [Intuition

Adaptation || Intuition

Adaptation

This connection is not yet established

Long-term research plan: building an Al with these connections

Goal: providing a better solving process for combinatorial problems

Combinatorial problems

Combinatorial satisfaction problem (CSP) % % Xy ¥
% ., 0 xn

%o %y @ % ox*"

Finding a feasible solution from a finite set of solutions %« % x% X % « % x% &8
x'o x 0'. ® X' x o" ®x X
Finding a needle in a haystack ® Oy XXX © Oy XXX
@ %@ gx X0 x®gy

Building a schedule satisfying a set of constraints “‘ ® : @ ® "‘ ® : ® ®
% ® Xx‘XQ %x‘ %x"‘Q 2 4

Servicing a set of customers without delays 8‘ ® L 8‘ *e0

% % X g XBF 0 X % g

Combinatorial optimization problem (COP) % nAXx X ¢ xRg B

Finding the best feasible solution from a finite set of solutions | ¢ ‘% % “xx %« ‘% ® ‘:‘% ®
x™ x 0, % % %% * 0, % %
Finding the biggest diamond needle in a haystack ® 0Oy XXX 0O 0y XXX
YO x9S0 x® gy

: : : X0 o %o *8Q X

Scheduling a production while minimizing costs o 0, % R ® O o % ®
*® 8,:‘0 %x‘ %x’%g 2 4

Maximizing serviced customers during a day 8‘ 4 e %‘ ® e

% % % x XT 4 % x g

Quentin Cappart 6

Difficulty of combinatorial problems

% % ’.‘% ¥ x_n ’.‘% X In practice: generally a huge amount of possible solutions!
%o ® gy WEERTO o Fuk
%O " g ROR %
TR %® IR % . . : :
O O In theory: interesting combinatorial problems are NP-complete or NP-hard
@ Ox XXX 9 @y %% _ _ ,
%..."x... i’é x...“x..‘ % Consequence: there is no poly-time algorithms to solve them exactly
0. 0% Xxe%%0 O x %xeg*x
O ® @
O, %0 " Og "%e0
% x o 8% 0% x g

Idea 1: enumerate all the solutions and keep the best one (exhaustive search)

Idea 2: use a kind of intuition to build a solution (heuristic solving or greedy algorithm)

Idea 3: build or enumerate solutions in a clever way (search-based methods)

Heuristic Exhaustive

solving T A search
Search-based methods
Cheap Expensive
No guarantees With guarantees

Local search Meta-heuristics Integer programming

Constraint programming

Observation: there are many search-based methods, with a specific dependency to a heuristic

Quentin Cappart 7

Search-based methods

Heuristic e . . e Exhaustive

solving T " search
Search-based methods

Great challenge: the efficiency of a method is often tightly linked with the quality of the heuristic
Greedy algorithm and local search: huge dependency
Constraint programming: high dependency for good performances (define how the search is directed)
Integer programming: less dependent - but the approach is limited to specific problems

Consequence: a bad heuristic can give very poor performances to most solving approaches

Option 1: hand-crafting the heuristic

Idea: design manually a heuristic, thanks to expert knowledge O/
Exemple (TSP): always visiting the closest available city
Difficulty 1: require a good understanding about the problem (e.g., LKH) Cj/

Difficulty 2: must be designed specifically for each problem

T — —

Quentin Cappart

Search-based methods

Heuristic e e Exhaustive

solving . e e search
Search-based methods

Great challenge: the efficiency of a method is often tightly linked with the quality of the heuristic
Greedy algorithm and local search: huge dependency
Constraint programming: high dependency for good performances (define how the search is directed)
Integer programming: less dependent - but the approach is limited to specific problems

Consequence: a bad heuristic can give very poor performances to most solving approaches

Option 2: learning the heuristic

Observation: we do not leverage the fact that similar problems may be solved many times (e.g., routing)
Consequence: for each problem, the solving process repeatedly restart from scratch with no knowledge
Idea: use past experiments or historical data for learning a heuristic

This idea is actually quite old...

Quentin Cappart

Back to the past...

A Hybrid Approach to Vehicle Routing

. L d L L . . .
using Neural Networks and Genetic Algorithms USlng al‘tlfl(:lal neural networks to solve Neural Networks for Automated Vehicle Dispatching
* -
the orienteering problem
Jean-Yves Potvin Yu Shen
Danny Dubé Jean-Yves Potvin
Christian Robillard Qiwen Wang®, Xiaoyun Sun®, Bruce L. Golden® and Jiyou Jia® Jean-Marc Rousseau
“ College of Business and Management, Beijing University,
Centre de recherche sur les transports Beijing 100871, PR China Centre %nilieeilslietz’fhcele Slﬁoiletiézlransports
c l}J né;’;gmseuc‘le é\gﬁgtere\?:ue P)College of Business and Management, University of Maryland, CP. 6128, Succ. "A"
Montréal (Québec), ’ College Park, MD 20742, USA Montréal (Québec)

Canada H3C 3J7 Canada H3C 3J7

Answer: In the nineties !

Fun-fact 1: papers with similar names are still published :-)

Artificial Intelligence Neurocomputing

| 5 Volume 313, December 2022, 103786 " A Volume 508, 7 October 2022, Pages 79-98
FLSEVIER FLSEVIER Go to table of contents for this volume/issue
Neural large neighborhood search for routing Solve routing problems with a residual edge-
problems graph attention neural network
André Hottung 9 i, Kevin Tierney = Kun Lei ? Peng Guo?® o =, Yi Wang ¢, Xiao Wu ? , Wenchao Zhao ?

Fun-fact 2: you may not know who is Jean-Marc Rousseau but you may know his son :-)

Observation: learning heuristics (with neural networks) is an old and still open research question!

Quentin Cappart 10

Search-based methods

w=sms | hree integrations have been identified in this survey

European Journal of Operational Research
Volume 290, Issue 2, 16 April 2021, Pages 405-421

(1) End-to-end learning

ELSEVIER

(2) Learning to configure algorithms

Invited Review

Machine learning for combinatorial

. : : 3) Machine learning within combinatorial solvers
optimization: A methodological tour d’horizon (3) &

Examples for each of them were proposed this week :-)

Yoshua Bengio ©® =, Andrea Lodi " © =, Antoine Prouvost ?° =

Related fields: learning to model & tackling uncertainty (predict-and-optimize, constraint acquisition, etc.)

End-to-end learning

Idea: the problem is directly solved using machine learning

o © ﬁ@ﬁ

O

O O (Training data)

- N R 4 : h Supervised learning

Reinforcement learning

o

e —

Unsupervised learning

Quentin Cappart

Limitation of end-to-end learning

Fundamental limitation paperswithcode.com/sota/

image-classification-on-mnist

Machine learning: set of tools dedicated to predict an output

Observation: machine learning can make mistakes! (100% accuracy is not achievable on test set)

000tsocesnnocsooo Evenin a very simple dataset (MNIST - standard dataset in ML)

Ad2LARI 22221022722 2%

323333333>3333333| Best accuracy reported: 99.87%

H¥rdagyyy £9449 4444

55585 SS 55958554559
ttbblctbsceseceet | Difficulty: it can be an important bottleneck for combinatorial optimization!
T7777717107920 01 2%7 77

Y3 ®R I B PYTYELCD . . i i i
799949949491 944999 Reason: we do not want solutions that are infeasible (or to lose optimality)

Challenge: how to handle arbitrary combinatorial constraints?

Related works on end-to-end learning (and analyses)

Learning combinatorial optimization algorithms over graphs [Khalil et al., NeurlPS-2017]
Neural combinatorial optimization with reinforcement learning [Bello et al., Arxived-2016]
Reinforcement Learning for solving the vehicle routing problem [Nazari et al., NeurlPS-2018]
Attention, learn to solve routing problems! [Kool et al., ICLR-2019]

Ferdinando Fioretto
Syracuse University

Learning a SAT solver from single-bit supervision [Selsam et al., ICLR-2019]

End-to-end constrained Optimization learning: A survey [Kotary et al., IJCAI-2021]
End-to-end Constrained Optimization Learning

Learning the TSP requires rethinking generalization [Joshi et al., Constraints-2022]

And many more! i

Learning to configure algorithms

Learning to configure algorithms

Problem
definition

(_ Decision) Solution

Idea: machine learning is used to augment a solver with valuable information

Exemple 1: selecting appropriate parameters for the solver (e.g., CPLEX has more than 70 parameters)
Exemple 2: selecting a specific configuration (e.g., simplex or interior-point method for a linear relaxation)
Exemple 3: deciding if a pre-processing step must be carried out before calling the solver

Related names: algorithm configuration, automated tuning, portfolio selector

Comment: these approaches are often complementary with other learning approaches

Related works

Sequential Model-Based Optimization for General Algorithm Configuration [Hutter et al., LION-2011]
The irace package: Iterated racing for automatic algorithm configuration [Lopez-lbanez et al., ORP-2016]

Algorithm Selection for Combinatorial Search Problems: A Survey [Kotthoff, 2016]

Lars Kotthoff
University of Wyoming

Learning to schedule heuristics in branch and bound [Chmiela et al., NeurlPS-2021]

Automated dynamic algorithm configuration [Adriaensen et al., JAIR-2022]

Getting the Best out of your Constraint Solver

Quentin Cappart 13

Machine learning alongside combinatorial solvers

Machine learning alongside combinatorial solvers
Traditional solver: can provide guarantee, but sometimes hard to make it efficient
Only learning: struggle to get guarantees, but easier to use (once trained)

Idea: use machine learning to speed-up the solving process inside the solver

Problem
Solver
definition

Exemples: learning branching decisions or optimization bounds

Learning to search in branch and bound algorithms [He et al., 2014, NeurlPS]
Learning to branch in mixed integer programming [Khalil et al., 2016, AAAI]
Exact combinatorial optimization with graph convolutional neural networks [Gasse et al., 2019, NeurlPS]

Improving variable orderings of approximate decisions diagrams using reinforcement learning [Cappart et al., 2022, 1JOC] 14

Towards a multimodal artificial intelligence

f Problem \
Search
definition

State
\ Generic frameworkJ
o P

Search: intelligence by intuition (heuristic with trials-and-errors)

Machine learning: intelligence to lcarn from experiments
Reasoning: intelligence by logical reasoning

Generic: intelligence to adapt (or generalize) to new situations

Holy grail: making it easy to use (and efficient) for non-experts

15

Constraint programming as a unifying framework

JW GAN WE DO THAT?
. F TR 52

Reasoning Learning

0

Adaptation Intuition

\ /

N @ ~ QOur research hypothesis

Constraint programming can be used as a hosting technology for building this hybrid Al

CP = model 4+ propagation + search

Observation 1: model, propagation and search are present in most standard CP solvers

Observation 2: the only new part is the integration of learning

16

A first proof of concept

Learning phase

Training instances
(randomly generated)

Combinatorial
optimization problem

Solving phase

v

Evaluated instances

Reinforcement learning

@ O PyTorch DG

Dynamic programming
Model

pyLinad11

Constraint programming

CHG,

Deep Q-learning (DQN)
Proximal policy optimization (PPO)

Depth-first search

Restart-based search

Limited discrepancy search

Combining reinforcement learning and constraint programming for combinatorial optimization [Cappart et al. 2021, AAAI] 17

CP search with a learned heuristic on TSP

18

A first proof of concept

Algorithm 1: BaB-DQN Search Procedure.

> Pre: Q, is a COP having a DP formulation.
> Pre: w is a trained weight vector.
(X,D,C,0) := CPEncoding(Q,)
K=0

U= BaB—search((X,D, C,0))
while ¥ is not completed do

» Build the CP model from the recursive formalization

Initialize a standard CP search

s := encodeStateRL(¥) 3 - s Encode the current solving stage into an RL state

X 1= takeFlrstNonAss1gnedVar(X)

if s € K then

| v:=peek(K,s) s Use caching if the prediction was already done

else

| v = argmax, ¢) Q(s, u, W) o » Branch on the value predicted by the trained model
end

K:=KU{(s,v)}

branchAndUpdate(V, x,v)
end
return bestSolution(¥)

Additional improvement: caching to avoid unnecessary call to the trained model

Additional improvement: leveraging dominance to prune the search space (redundant constraints)

Good news: signals of learning were observed and good branching decisions could be obtained

Main assumption: we need to cast the combinatorial problem into a dynamic program

Limitation: learning is disconnected with the CP solver (loss of relevant information - e.g., propagation)
Difficulty: we need to build a specific model for each problem (e.g., a neural network)

Difficulty: loss of performances with the back-and-forth between C++ and python 5

Motivation a new CP solver

Idea: embed the learning directly inside the CP solver
Difficulty: there is no available solver allowing us to do that easily (and efficiently)

Reason: friction between the need of an efficient language, and the ML support mostly available in Python

\ /

N @ ~ Technical contribution

Introducing and building a new CP solver, making easy to integrate learning inside

(1) Simple to get on-board, yet fast and clean

7

(2) Active community in optimization and machine learning

(3) Quite young language (both a benefit and a drawback)

(4) No CP solver available (excepting one that seems no longer developed)

Moto of Julia: « Looks like Python... runs like C »
20

SeaPearl (Cee-Pee-Air-El) - CP with RL

CP = model + propagation + search + learning

Philosophy: minimalist CP solver dedicated to ease the integration of learning

Open-source project, available on Github (still under active development)

=~

Sea PearI.JI Zoo of models: https://github.com/corail-research /SeaPearlZoo.jl

| —— S

Next topics in this talk

Solver: https://github.com/corail-research /SeaPearl.jl

(1) Describing the architecture behind SeaPearl
(2) Presenting few experiments on its performance

(3) Identifying current challenges and possible future research directions in this field

We have a lot of research ideas if you would like to contribute :-)

Lab session: a tutorial has been prepared in order to build a first CP model and train a model inside it

Hackathon: give you the opportunity to try other design choices
Seapearl: A constraint programming solver guided by reinforcement learning [Chalumeau, Coulon, Cappart and Rousseau, 2021, CPAIOR]

Learning a generic value-selection heuristic inside a constraint programming solver [Marty, Cappart et al., to appear at CP 2023] 01

Architecture behind SeaPear]

] ' - = - - N e

Representation - Cbnétraint Prdgfarhrﬁirigﬂolﬁvef ¢ |

Variable selection
heuristic

Fix point
algorithm

Value selection
heuristic

CP solver

e)

Reward

Main components of SeaPearl

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network o

Constraint programming solver

2

Welcome and Intro to Constraint Programming

Tias Guns 10/07/2023
KU Leuven VHI 00.10 AULA GASTON EYCKENS

Prof. Guns will welcome all to the summer school with a general motivation of why machine learning is increasingly used with constraint solving. This will be

followed by an overview of the interactions between constraint solving and machine learning and how the program of the summer school highlights many of these

General characteristics

Inspiration: MiniCP solver (in Java)

Data structure: trail-based solver M N

O
7))
—
C
<
1

Modeling: an interface with JuMP is planned

Search strategies
Search 1: depth-first search with branch-and-bound (default strategy)

Search 2: iterated limited discrepancy search (allow to leverage good heuristics)

—_ . .
Search 3: restart-based search (allow to leverage probabilistic heuristics) e I

Propagation engine

N
" =
Filtering: constraint propagation at each node with fix-point execution 5 F

Constraints: intension, extension, allDifferent, sum, element (4 few others)

The solver is currently compatible for XCSP3 mini-track competition (but not the learning) -

Modeling example: graph-coloring

trailer = SeaPearl.Trailer()
model = SeaPearl.CPModel(trailer)

Goal: keeping the philosophy of CP and the ease in modeling

Prototyping: possible to write model directly in a jupyter notebook

https://github.com/corail-research /SeaPearlZoo.jl /blob/master/src/classic_ cp/graph coloring/graph coloring.ipynb o4

Standard CP depth-first search (DFS)

Fix-point
Fix-point n
x| =) Fix-point
Branches pruned
Fix-point:

(cost > 10)

no solution Fix-point:
Fix-point: .

no solution
branch pruned

olution with cost 10 found

25

lterated limited discrepancy search (ILDS)

Principle: explore the tree with no deviation from the left branch, then allow 1 deviation, then allow 2, etc.

Convention: the left branch is what is explored first (value recommended by the heuristic)
26

Restart-based search

x; =1 (80%) x; =2 (20%)

Principle: follow the branch based on a weighted probability, and periodically restart

Restart schedule: Luby sequence in terms of number of failures (1, 1,2, 1,1,2,4, 1,1,2,1,1,2,4,8,...) -

Architecture behind SeaPear]

. Representation

Constraint Programming Solver

Variable selection
heuristic

Fix point
algorithm

Value selection
heuristic

CP solver

e)

Reward

Main components of SeaPearl

Module 1: a constraint programming solver

Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network -

Generic representation function

It is now going different than other CP solvers !

Our goal: leverage learning algorithms to speed-up the solving process (e.g., value-selection heuristic)
Observation: CP solvers can handle many combinatorial problems (routing, scheduling, assignment, etc.)

Practical use: the learning component should work for any problem given as input

Idea: build a function able to encode any combinatorial problem into a structure suited for learning

Requirement 1: able to encode variables with different domains

Requirement 2: able to encode any kind of constraint

Requirement 3: able to handle problems regardless of the number of variables
Requirement 4: able to handle problems regardless of the number of constraints
Requirement 5: preserving the combinatorial structure of the problem

Requirement 6: the function must be bijective (1-to-1 mapping with a CSP and the encoding)

_ 29

Generic representation function

Current proposition: encoding as a labeled tripartite heterogeneous graph

Heterogeneous graph: graph where the vertices and edges can have a different meaning

Tripartite: there are three kinds of vertices

Labeled: each vertex is decorated with additional information (i.e., features)

(\ ﬂ‘r‘ipar‘tite Heterogeneous Gr‘apm

Encoding function

Vs Vi Vs
X16{1,2}, X2€{1,2}, X;;€{1,2,3} ’

O =X <Xy

oy = X5 < X3

\003 = AllDif ferent(X,, X2, X

3)j

(1) One vertex per variable V, : set of vertices for variables

(2) One vertex per constraint V, : set of vertices for constraints
(3) One vertex per value V; : set of vertices for values

(4) One edge if a variable is involved in a constraint E, : set of variable/constraint edges
(5) One edge if a value is on the domain of a variable E, : set of value/variable edges

30

Generic representation function

Kl'r'i partite Heterogeneous Gr apﬁ
V3 Vi Vs

Features for variables

(1) Current domain size (integer)

(2) Initial domain size (integer)

(3) Is already assigned (binary)

(4) Is the objective to optimize (binary)

Features for constraints v,

: set of vertices for variables

(1) Constraint type (one-hot) V, : set of vertices for constraints

(2) Has reduced domains with propagation (integer) V, : set of vertices for values

Features for values E, : set of variable/constraint edges

(1) Its numerical value (integer) E, : set of value/variable edges

Conclusion : features for variables

Goal: encoding any combinatorial problem in a generic way . features for constraints

Inspiration: bipartite encoding proposed by Gasse et al. for MIP . features for values

Extension: other information can be easily added as new features

Disclaimer: this representation is not perfect and has some drawbacks (discussed later)

Exact combinatorial optimization with graph convolutional neural networks [Gasse et al., 2019, NeurlPS] 31

Architecture behind SeaPear]

Representation Constraint Programming Solver

Variable selection
heuristic

Fix point
algorithm

 Value selection 4 CP solver

heuristic
< e

Main components of SeaPearl
Module 1: a constraint programming solver
Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network

32

Learning a value-selection heuristic

ﬂr‘ipartite Heterogeneous Grapm

V3 Vi Vs

Trained
Model

Branching on x1=2

IT SEEMS T0 BE

I \
| !
| !
| !
| !
| !
| !
| !
| !
| !
| !
| !

\J J

Branching on x1 (e.g., first-fail)

(Training data)

Solver state and GNN Encoder (2) NN Decoder (3)
selected variable : \ r A

St = (Pt,mt) Q-Table
| Extract }
[CP Encoder](1) GNN layers it Po

Predicted

* | % | %
(|
-0 o

features

X, [+=3 QS X1 = 3)
X, | *=2 — @q 05, % =2)
L=t O(S0, X1 = 1)

OB Extract l
variable i— X .—llm
L[; (4)[Action—5election]

features ,
Policy

With a training carried out by deep reinforcement learning 33

Learning a value-selection heuristic

Solver state and GNN Encoder (2) NN Decoder (3)
selected variable r :) r !

i (ipt’mt) Extract
I
[CP Encoder]Cl) GNN layers fe\;i:rees
| Extract
variable X, .)
features C 4)[Actlon-SeIectlon‘]

Policy

Predicted
Q-Table

* | % %
(mnil
N W
‘e\

X, (23] | |[QBuXi=3)

§1 * = 3 | Pq QS X1 =2)
* = A

. Q(S, X1 =1)

Neural architecture
Step 1: encoding the current solving process as a labeled tripartite heterogeneous graph (previous slides)
Step 2: leveraging this graph thanks to a graph neural network and obtain an embedding for each node
Step 3: estimating the most promising value thanks to fully-connected neural networks
Step 4: selecting the branching value based on the estimated score of each value

Learning algorithm
Paradigm: training based on deep reinforcement learning
Data: require historical or synthetic data (i.e., other combinatorial problems) to train the model

Benefit: there is no need to solve the historical problems a priori (can be very costly)
34

Primer on fully-connected neural network (FCNN)

Input: vector of features (x)
Layer 1: h' = g(0'x + b')
¢ : non-linear function (e.g., ReLU)

0'.b" : weights learned through backpropagation
Layer 2: h% = g(02h1 + bz)

Layer 3: $ = 0°h? + b°

X hl h2 y Output: real value (prediction)

Principle: each neuron computes a linear combination of the previous layer followed by a non-linearity

Fondamental equation of FCNN: A% = g<‘9k+1hk+ bk+1)

Learning aspect: trainable weights are involved at each layer
Main characteristic: the network is differentiable and can be trained by gradient descent algorithms

In practice: many variants exist (classification tasks, other activations, regularization mechanisms, etc.)

35

Primer on graph neural networks

1% 1% \%
611,621,831,

Input: graph with node features (G)

Layer 1: hy = g(0)v, | (Vv @ 7 vy))
¢ : aggregation operation

| : merging operation

Idem for each vertex at layer 1
Layer 2: hy = g(0%h, || (- h} @ ' h3))
Idem for each vertex at layer 2

Output: embedding for each node (¢)

Principle: at each layer, each node aggregates information from its neighbours (message passing)
Learning aspect: trainable weights are involved at each layer (biases b have been omitted for clarity)
After few iterations: the nodes have information from more distant node

In practice: many architectures are existing (with attention, other aggregations, etc.)

Fondamental equation of GNNs: A%+l = g(@f“hb’f | @ hk)

"
VEN(u)
36

Primer on graph neural networks

? What are the benefits of graph neural networks?
|

DeepMind

Theoretical Foundations

of Graph Neural Networks

Petar Velickovi¢

CST Wednesday Seminar
17 February 2021

P Pl o) 1:29/1:12:19 - Theoretical Foundations of Graph Neural Networks >

Theoretical Foundations of Graph Neural Networks

Petar Velickovié¢ e
v S'abonner 21k Partager =4 Enregistrer
l ‘! 371 k abonnés - i &P Partag g

Link: https://www.youtube.com/watch?v=uF53xsT7mjc

Combinatorial Optimization and Reasoning
with Graph Neural Networks

Quentin Cappart

Department of Computer Engineering and Software Engineering
Polytechnique Montréal

Montréal, Canada

Didier Chételat

CERC in Data Science for Real-Time Decision-Making
Polytechnique Montréal

Montréal, Canada

Elias B. Khalil

Department of Mechanical € Industrial Engineering
University of Toronto

Toronto, Canada

Andrea Lodi
Jacobs Technion-Cornell Institute
Cornell Tech and Technion - IIT
New York, USA

QUENTIN.CAPPART@QPOLYMTL.CA

DIDIER.CHETELAT@QPOLYMTL.CA

KHALIL@QMIE.UTORONTO.CA

ANDREA.LODIQCORNELL.EDU

Christopher Morris MORRIS@CS.RWTH-AACHEN.DE

Department of Computer Science
RWTH Aachen University
Aachen, Germany

Petar Velickovié
DeepMind
London, UK

PETARVQDEEPMIND.COM

In practice: many architectures are existing (with attention, other aggregations, etc.)

Last comment: architecture increasingly used in combinatorial optimization and worth to study

Content: survey on how GNNs can be used in combinatorial optimization and related challenges

Our GNN module

Idea: having specific parameters
for each type of nodes

Constraint nodes GIIIIII NEWS E“ERY“"E
S
Variable nodes ‘

= Value nodes Keeping the initial features at each layer

(skip connection as in ResNet)

I o5 11 €D ont) 1(€D einl))

Equation for variable nodes: h*t! = g(@fh)?
CEN(x) VEN, (x)

Equation for constraint nodes: h*t! = g(@é‘hg I 65h% 1| (@ Héch’lf))
XEN (v)

Equation for value nodes: h*! = g(@é‘hg | %‘hf | (@ ‘9{{0}’@)

XEN,(v) 38

Our FCNN module

Variable we want to branch

Embedding ¢* : vectorized representation of variable x, after GNN inference

Embedding ¢" : vectorized representation of value v; after GNN inference

O(x,,) : prediction of how good v, is for variable x, (Q-value)

Final inference: O(x,, v3) = FCNN(FCNN(exz) || FCNN(e"3)>

39

Summary of the architecture

Solver state and GNN Encoder (2) NN Decoder (3)
selected variable 8 \ r .

2
8t = (ipt, zt) Extract «—3 FCNN (6)
[CP Encoder](l) GNN layers et =52 Eﬁ

Predicted
Q-Table

features

N X; | +=3 QS X1 =3)
W 1 XY f{l *=i _{ Pq]_‘Q(St’X1=2)
Al 46 /‘1‘ 1 * = A Q(St,xl =1)
Extract 2
iabl i— X —.——' A
L[;/eaartlzrei : m (4){Action-Selection]

X Polic
Goh FCNN(e 1) y

i =g<9{<h§) | O5h% || (@ OshE) 11 (GB 94’;},5)) 0(X;,2) = FCNN(FCNN(eXl) | FCNN(ez)>

CEN,(x) VEN,(x)

k+1 _ k0 1| ok k kyk 7

it = g<6?5hc I OFRE I (@ 97hx)> Branching value for x : argmax _;, O(x,v)
XEN,(v)

nit = g (05l 1l 6nl 1 (€D ohont))
XEN. (v)

GNN step: leveraging the labeled tripartite heterogeneous graph and obtain an embedding for each node

FCNN step: estimating the most promising value thanks to fully-connected neural networks

Final selection: taking the value inside the domain of x with the highest score

40

There is something missing...

Learning phase

Hendrik Blockeel 10/07/2023
KU Leuven VHI 00.10 AULA GASTON EYCKENS

Introduction to Machine Learning

General characteristics

Paradigm: training based on reinforcement learning

Data: require historical or synthetic data to train the model iﬂux

Benefit: there is no need to solve the historical problems a priori o

Training algorithm: deep Q-learning (support for proximal policy optimization -PPO- is on development)
Implementation

Reinforcement learning algorithm: based on ReinforcementLearning.jl package

Neural network architecture: based on Flux.j/ package

Note: some modifications have been done from the initial implementation to fulfill our specific needs

Novelty: on the reinforcement learning environment (and not so much on the training algorithm)

https://fluxml.ai/Flux.jl/stable/

https://juliareinforcementlearning.org/

42

Reinforcement learning environment

Action
Agent Environment
T State
Reward

Reinforcement learning in a nutshell
Goal of the agent: obtain the most reward as possible during an episode
Episode: sequence of states from an initial state to a final state
Action: move the agent in a new state (and update it through the transition)

Reward: score obtained after each action

Environment: formal definition of the set of states, possible actions, transition, and reward function

Solving a problem with RL require to define the environment (modeling step)

43

Reinforcement learning environment

Initial state

Action 4 reward obtained

New state

Final state (episode end)
\ J

Environment
Agent to train: a value-selection heuristic inside a CP solver for a specific problem
Episode: a path from in the tree search without backtracks
Initial state: the root node (unsolved combinatorial problem)
Final state: a leaf node (either a feasible or unfeasible solution)
Action: selecting the value to branch on the current variable (agent choice)
Transition: branching and executing all the related CP solver stuff (fix-point, propagation, etc.)

Reward function: not trivial! Explanation on the next slide :-)
44

Reward function

Main principles

Goal: finding good solutions (and not to prove optimality) _
Intuitive idea: use the final objective cost as reward signal

Difficulty: this information is only often available at the end of an episode (sparse reward issue)

Proposition: rewarding scheme based on the domain reduction of the objective variable at each node
Propagation-based reward

Propagation scope: on the variable corresponding to the objective function (to minimize)

Principle 1: rewarding the propagation of largest values of the domain

Principle 2: penalizing the propagation of lowest values of the domain

..

Do(2°%) (1] (2] (3)(4])(5](6)(7)(8)(9)(H0); | !0 values (initial domain)

__ | 3 highest values pruned at state ¢+ 1

] 1 lowest value pruned at state 7+ 1
obj\ (5 | 2| a : 3-1 2
Dyy 1(33) ‘2J3|4’ Reward at state r+ 1 = =70

Principle 3: penalizing episodes reaching an unfeasible solution

Final reward: accumulated reward from each transition 45

Architecture behind SeaPear]

Constraint Programming Solver

Representation

|

Variable selection
heuristic

Fix point
algorithm

Value selection
heuristic

CP solver

o)

Reward

< RLAgent

algorithm

Main components of SeaPearl
Module 1: a constraint programming solver
Module 2: a generic representation function

Module 3: a learning agent, based on reinforcement learning and graph neural network
46

Architecture behind SeaPear]

Variable sele
heuristi

Value selectic
heuristic

Main compon
Module 1: a const
Module 2: a gener

Module 3: a learnita iasy

DOESITWORK 'S

ming Solver

onstraints

Experimental setup

Experimental protocol

Combinatorial problems: graph coloring, maximum independent set, maximum cut
Instance sizes: graphs from 20 to 100 nodes

Models trained: one per configuration (problem/size pair)

Training phase: 72 hours on Nvidia Tesla V100 32Go GPU for the most difficult cases
Baselines: random selection, impact-based search, and activity-based search
Implementation: everything on SeaPearl (no comparisons yet with other solvers)

Metrics: optimality gap and execution time to reach a specific solution

Question explored: what is the best solutions obtained given a limited budget of explored nodes ?

Learned Activity-Based Impact-Based Random
1** dive ILDS DFS DFS DFS
Size OPT | Gap | Gap Node Time | Gap Node Time | Gap Node Time [Gap Node Time | Budget
20 5.05| 0.06 0 27 <1 0 378 < 1 0 3711 <1 0 378 < 1| 107
COL 40 7.90 0.08 (0 104 < | 0 I.664 < | 0 1732 < (0 1735 < | 10"
80 8.75H 0.06 () 120 I 0 7,051 2 0 7,057 2 0 7,211 2 W
30 990 0.08 0 88 <1 0 215 <1 0 207 <1 0 293 < | 10?
MIS 50 15.00 0.09 (0 539 l 0 53807 l 0 7474 | 0 8,942 | 101
100 21.70 (.20 0.02 28,392 253 | 0.09 35,536 71 0.10 38,154 81010 41,774 9 10°
20 46.70 0.15 0.03 3,714 o1 0.04 4,635 | 0.03 5959 2 0.04 4877 | 10*
MAXCUT ol 222.00 0.16 0.09 38,744 130 | 0.17 44,664 14 0.17 47,970 171 0,17 53,110 19 10?

48

Performances of the approach

Learned Activity-Based Impact-Based Random
1** dive ILDS DFS DFS DFS
Size | OPT | Gap | Gap Node Time | Gap Node Time | Gap Node Time | Gap Node Time [Budget
200 5.05] 0.06 0 27 < |1 0 378 < |1 0 3711 <1 0 378 < 1| 107
COL 40 7.90 [0.08 0 104 <1 0 1664 <1 0 1732 < | 0 1735 < | 10"
80| K875 0.06 0 120 | 0 7,05 2 0 7,057 2 0 7211 20 100
30 1 9.90 [0.08 0 88 <1 0 215 <1 0 207 <1 0 203 <1 10
MIS 50 1 15.00 [0.09 0 539 l 0 5807 l 0 7474 | 0 8,942 | 101
100 | 21.70 (.20 0.02 28,392 253 | 0.09 35,536 71 0.10 38,154 S| 0.10 41,774 9 10°
MAXCUT 20 | 46.70 0.15 0.03 3,714 o1 0.04 4,635 | 0.03 5959 21 0.04 4877 | 10*
50 1222.00 | 0.16 | 0.09 38,744 | 130]([0.17 44,664 | 14][[0.17 47,970 1711007 53,110 19 10°

n S ow

Number of explored nodes to obtain a given gap (capped at 100,000)

Optimality gap obtained with a single dive (no backtrack)

Average value of the optimal cost

Configurations tested (20 instances per scenario)

Observation 1: a gap of 0.16 is obtained in a single dive while it 44,664 nodes for baselines to have 0.17
Observation 2: we are able to obtain good solutions in less explored nodes compared to baselines

Observation 3: the execution time of calling the NN is important
49

/oom on the hardest scenarios - performance profiles

0
1.0] 1.0 I T
%
g 0.8 #——"J_'__l 0.8 _‘—r‘
o
NQ0.6 0.6
o)
- r"r
%5 0.4 0.4 r rF
= — RL Agent - ILDS - 1000 — RL Agent - ILDS - 1000
o - RL Agent - ILDS - 100 - RL Agent - ILDS - 100
— 0.2 rl ~— Random - DFS - 1000 0.2 =~ Random - DFS - 1000
(@) = |mpact - DFS - 1000 s |mpact - DFS - 1000
8— I'[—— Activity - DFS - 1000 —— Activity - DFS - 1000
& 0.0 0.0
L % o EeePn I e (D6 B Wy DI % SVR0n v S 1P Tes B |) 8 RN i Rt Kb JEieetn N jRunien BN Tepan K Rl KA -
Within this factor of the best score Within this factor of the best score
Maximum-cut with 50 nodes Maximum independent set with 100 nodes

Baselines: each curve corresponds to a method

Metric: optimality gap

Performance profiles: each tick gives the proportion of instances able to achieve a given optimality gap
Interpretation: the upper is the curve, the better is the method

Observation: results obtained by the learned approach is robust among all the instances tested

Conclusion of the experiments: it seems that we are able to learn interesting branching decisions!
50

Second conclusion

Explanation: | believe it is a promising research direction, but not mature yet to get competitive results
Getting quickly competitive results: currently better to use problem-specific heuristics
Take-home message: see this work as first building blocks to unlock new avenues in the mid-term

Personal note: | have the same opinion for many works using ML for combinatorial optimization :-)

Next slides: | will propose and discuss few challenges and related research questions

51

Research idea: reducing the inference time

Learned Random 100 —
1** dive ILDS DFS 0 Parsimonious calls
Size OPT | Gap | Gap Node Time | Gap Node Time % 80 [_
20 505 0.06 0 27 <1| 0 3m® <I g | [Nonleamed baseline
COL 40 790 0.08 0 04 <1 0 1735 <1 5 :
80 875 | 0.06 0 120 | 0 7211 2 & 401 [:
30 990 0.08 0 88 < | 0 203 <1 €
MIS 50 15.00 | 0.09 0 539 | 0 8,942 | 2 200 [
100 2170 [020 |0.02 28392 253 | 0.10 41,774 9 ool
20 46.70 0.15 0.03 3,714 5 0.04 4877 | 0 500 1000 1500 2000
MAXCUT o0 222,00 | 0.16 | 0.09 [38,744 1301 0.17 [53,110 19 Execution time (sec)

Learned heuristic: 130 seconds to explore 38,744 nodes (298 nodes/second)
Random selection: 19 seconds to explore 53,110 nodes (2795 nodes/second)

Ratio: roughly an exploration rate 10 times slower!

Explanation: calling the model (GNN 4+ FCNN) is much more costly than simple branching heuristics

Idea 1: caching Q-values and use them in similar states
Idea 2: reducing the inference time of the model (transfer learning, network pruning, etc.)

Idea 3: calling the model only in few nodes of the search tree (gave good results in another project)

Improving Variable Orderings of Approximate Decisions Diagrams using Reinforcement Learning [Cappart, Rousseau et al., 1JOC-2022] 50

Research idea: rethinking the representation

4 h

Encoding function
X1€{1,2}, X2€{1,2}, X:;E{1,2,3} | &

o1 =X <Xy

o Ch = X5 < X5

\003 = AlDif ferent(X,, X, X:&)J

Challenge 1: scalability

Difficulty: the size of the representation is growing fast

Consequence: the training phase is harder and more costly

Idea: curriculum learning from small instances
Challenge 2: expressivity

Difficulty: we may miss important relationships in the model

Exemple: inequalities with different constant values

ﬂ'r‘ipartite Heterogeneous Grapm

Vi Vi Vy

|
!
!
!
!
!
!
!
!
!
!
!

-

5 vertices: 18 nodes (graph coloring)

20 vertices: 117 nodes
100 vertices: 1477 nodes
200 vertices: 4002 nodes

c,:x<y+3
C,:x<y+6
@:Xﬁf

Consequence: we either lose information on the constant, or that the constraint is similar

Idea: expend the representation with new information (as in an abstract syntactic tree)

53

Research idea: learning a double heuristic

WHY ONLY LEARN
Input featurized Variable-selection
e graph heuristic DQN
\ 0 /0 LEARNER
EXPLORER
: : LEARNER
Output featurized = — E—— (il
graph
A HEURISTIC Value-selection heuristic
FOR VALUES

Motivation: selecting the variable to branch on is also challenging
Idea: expend the architecture to learn a variable-selection heuristic at the same time
Possible option 1: adopting a methodology similar to cooperative multi-agent reinforcement learning

Possible option 2: allowing the agents to share information (a good value selection depends on the variable)

And many other ideas can also be leveraged and tested !
54

Conclusion

\ /

~ QOur research hypothesis

Constraint programming can be used as a hosting technology for building an hybrid Al

Reasoning Learning

@ CP = model + propagation + search 4+ learning

Adaptation Intuition

Solver: https://github.com/corail-research/SeaPearl.jl
Zoo of models: https://github.com/corail-research /SeaPearl.jl

Paper: https://arxiv.org/abs/2102.09193 (updated version to appear at CP23)

Other related projects: https://corail-research.github.io/publications/

=

SeaPearl jl Contact: quentin.cappart@polymtl.ca

 — —

Combining reinforcement learning and constraint programming for combinatorial optimization [Cappart et al., AAAI 2021]
Seapearl: A constraint programming solver guided by reinforcement learning [Chalumeau, Cappart et al., CPAIOR 2021]

Learning a generic value-selection heuristic inside a constraint programming solver [Marty, Cappart et al., CP 2023]

55

Contributors

POLYTECHNIQUE
MONTREAL

UNIVERSITE
7 D'INGENIERIE

C%RAIL

Combinatorial Optimization and

Reasoning in

Artificial Intelligence

Laboratory

We are always open for new contributions :-)

Main Contributors: Quentin Cappart, Louis-Martin Rousseau, Tom Marty, Léo Boisvert

Current and past contributors: Max Bourgeat, Axel Navarro, Tristan Francois, Louis Gautier, Pierre Tessier, Félix Chalumeau, llan Coulon,

Ziad El Assal, Malik Attalah, Tom Sanders, Marco Novaes 56

Learning a value-selection heuristic
inside a
constraint programming solver

ACP Summer School 2023 - Leuven

POLYTECHNIQUE
MONTREAL

Combinatorial Optimizatio

C&RAILE

Quentin Cappart

Artf IItIlg
Laboratory

