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Big Picture

▷ AI and CP are difficult, choosing the “right” approach is even more difficult
▷ explore the space of possibilities automatically and efficiently, lowering threshold

of adoption
▷ anybody can use state-of-the-art AI and CP
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Performance Differences
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Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus: A Hierarchical
Portfolio of Solvers and Transformations.” In CPAIOR, 2014.
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Performance Improvements

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning

– Competitive with the state of the art

– Comparison on unseen test instances
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4.5-fold speedup

on hardware verification
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500-fold speedup  won category

QF BV in 2007 SMT competition
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

Hutter, Frank, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. “Boosting Verification by
Automatic Tuning of Decision Procedures.” In FMCAD ’07: Proceedings of the Formal Methods in
Computer Aided Design, 27–34. Washington, DC, USA: IEEE Computer Society, 2007.
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Common Theme

Meta-algorithmics to improve performance
▷ no deep understanding of what happens required
▷ adapt existing approaches rather than developing new ones
▷ all of this happens automatically (more or less)
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Algorithm Selection

Given a problem, choose the best algorithm to solve it.

Rice, John R. “The Algorithm Selection Problem.” Advances in Computers 15 (1976): 65–118.
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Automated Parameter Tuning

λ∗ ∈ argmax
λ∈Λ

p(Aλ,D)

Find a parameter setting

that maximizes

the performance

of the algorithm on
the input data.
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Algorithm Portfolios

▷ instead of a single algorithm, use several complementary algorithms
▷ idea from Economics – minimise risk by spreading it out across several securities
▷ same for computational problems – minimise risk of algorithm performing poorly
▷ in practice often constructed from competition winners

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. “An Economics Approach to Hard
Computational Problems.” Science 275, no. 5296 (1997): 51–54. doi:10.1126/science.275.5296.51.
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Algorithms

“algorithm” used in a very loose sense
▷ constraint solvers
▷ search strategies
▷ modelling choices
▷ different types of consistency
▷ …
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Evaluation of Portfolios

▷ single best algorithm
▷ algorithm with the best performance across all instances
▷ lower bound for performance of portfolio – hopefully we are better!

▷ virtual best algorithm
▷ choose the best algorithm for each instance
▷ corresponds to oracle predictor or overhead-free parallel portfolio
▷ upper bound on portfolio performance (assuming robust performance measurements)
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Aside: Why not simply run all algorithms in parallel?
▷ too many!
▷ waste of resources
▷ actually slower…

Haniye Kashgarani and Lars Kotthoff, “Is Algorithm Selection Worth It? Comparing Selecting
Single Algorithms and Parallel Execution,” in AAAI Workshop on Meta-Learning and MetaDL
Challenge, vol. 140, Proceedings of Machine Learning Research (PMLR, 2021), 58–64.
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Building an Algorithm Selection System

▷ most approaches rely on machine learning
▷ train with representative data, i.e. performance of all algorithms in portfolio on a

number of instances
▷ evaluate performance on separate set of instances
▷ potentially large amount of prep work
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Choosing Instances

▷ we want selectors that generalise, i.e. good for more than one instance
▷ split instances into training set (which we configure on) and test set (which we

only evaluate performance on)
▷ need to balance easy/hard instances in both sets
▷ may need hundreds or thousands of instances
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Key Components of an Algorithm Selection System

▷ feature extraction
▷ performance model
▷ prediction-based selector/scheduler

optional:
▷ presolver
▷ secondary/hierarchical models and predictors (e.g. for feature extraction time)
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Features

▷ relate properties of problem instances to performance
▷ relatively cheap to compute
▷ specified by domain expert
▷ syntactic – analyse instance description
▷ probing – run algorithm for short time
▷ dynamic – instance changes while algorithm is running
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Syntactic Features

▷ number of variables, number of clauses/constraints/…
▷ ratios
▷ order of variables/values
▷ clause/constraints–variable graph or variable graph:

▷ node degrees
▷ connectivity
▷ clustering coefficient
▷ …

▷ …
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Probing Features

▷ number of nodes/propagations within small time limit
▷ estimate of search space size
▷ tightness of problem/constraints
▷ …
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Dynamic Features

▷ change of variable domains
▷ number of constraint propagations
▷ number of failures a clause participated in
▷ …
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No Features

▷ use deep learning on problem representation
▷ no need for expert-defined features
▷ competitive in some areas

Andrea Loreggia et al., ‘Deep Learning for Algorithm Portfolios’, in Thirtieth AAAI Conference on
Artificial Intelligence, AAAI 2016 (AAAI Press, 2016), 1280–86,
http://dl.acm.org/citation.cfm?id=3015812.3016001.

Maxime Gasse et al., ‘Exact Combinatorial Optimization with Graph Convolutional Neural
Networks’, in 33rd International Conference on Neural Information Processing Systems (Curran
Associates Inc., 2019).
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What Features do we need in Practice?

▷ trade-off between complex features and complex models
▷ in practice, very simple features (e.g. problem size) can perform well
▷ often only need a handful of features in practice
▷ in the end, whatever works best
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Models for Entire Portfolios

▷ predict the best algorithm in the portfolio
▷ alternatively: cluster and assign best algorithms to clusters

optional (but important):
▷ attach a “weight” during learning (e.g. the difference between best and worst

solver) to bias model towards the “important” instances
▷ special loss metric

Gent, Ian P., Christopher A. Jefferson, Lars Kotthoff, Ian Miguel, Neil Moore, Peter Nightingale,
and Karen E. Petrie. “Learning When to Use Lazy Learning in Constraint Solving.” In 19th European
Conference on Artificial Intelligence, 873–78, 2010.

Kadioglu, Serdar, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. “ISAC – Instance-Specific
Algorithm Configuration.” In 19th European Conference on Artificial Intelligence, 751–56, 2010.
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Models for Individual Algorithms

▷ predict the performance for each algorithm separately
▷ combine the predictions to choose the best one
▷ for example: predict the runtime for each algorithm, choose the one with the

lowest runtime

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla: Portfolio-Based
Algorithm Selection for SAT.” J. Artif. Intell. Res. (JAIR) 32 (2008): 565–606.
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Hybrid Models

▷ get the best of both worlds
▷ for example: consider pairs of algorithms to take relations into account
▷ for each pair of algorithms, learn model that predicts which one is faster

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra-MIP: Automated
Algorithm Configuration and Selection for Mixed Integer Programming.” In RCRA Workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the
International Joint Conference on Artificial Intelligence (IJCAI), 16–30, 2011.

Kotthoff, Lars. “Hybrid Regression-Classification Models for Algorithm Selection.” In 20th
European Conference on Artificial Intelligence, 480–85, 2012.
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Types of Performance Models

Regression Models

A1

A2
A3

A1: 1.2
A2: 4.5
A3: 3.9

Classification Model

A1
A3 A1

A2 A1

Pairwise Classification Models

A1 vs. A2

A1
A2 A1

A1

A1 vs. A3

A1
A1 A3

A3 …
A1: 1 vote
A2: 0 votes
A3: 2 votes

Pairwise Regression Models

A1 - A2

0

A1 - A3

0
…

A1: -1.3
A2: 0.4
A3: 1.7

Instance 1
Instance 2
Instance 3

...

Instance 1: Algorithm 2
Instance 2: Algorithm 1
Instance 3: Algorithm 3

...
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Types of Predictions/Algorithm Selectors
▷ best algorithm
▷ n best algorithms ranked
▷ allocation of resources to n algorithms
▷ change the currently running algorithm?

Kotthoff, Lars. “Ranking Algorithms by Performance.” In LION 8, 2014.

Kadioglu, Serdar, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
“Algorithm Selection and Scheduling.” In 17th International Conference on Principles and Practice of
Constraint Programming, 454–69, 2011.

Stergiou, Kostas. “Heuristics for Dynamically Adapting Propagation in Constraint Satisfaction
Problems.” AI Commun. 22, no. 3 (2009): 125–41.

Kashgarani, Haniye, and Lars Kotthoff. “Automatic Parallel Portfolio Selection.” 2023.
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Time of Prediction

▷ before problem is being solved
▷ select algorithm(s) once
▷ no recourse if predictions are bad

▷ while problem is being solved
▷ continuously monitor problem features and/or performance
▷ can remedy bad initial choice or react to changing problem
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Example System – SATzilla

▷ portfolio of 7 SAT solvers, trained on 4811 problem instances
▷ syntactic (33) and probing features (15)
▷ ridge regression to predict log runtime for each solver, choose the solver with the

best predicted performance
▷ later version uses random forests to predict better algorithm for each pair,

aggregation through simple voting scheme
▷ pre-solving, feature computation time prediction, hierarchical model, selection of

algorithms to include in portfolio based on overall performance
▷ won several competitions

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla: Portfolio-Based
Algorithm Selection for SAT.” J. Artif. Intell. Res. (JAIR) 32 (2008): 565–606.

27



Example System – Learn2Branch

▷ branching variable selection in SCIP MIP solver
▷ Graph Neural Network on graph representation of problem to learn branching

policy

Maxime Gasse et al., ‘Exact Combinatorial Optimization with Graph Convolutional Neural
Networks’, in 33rd International Conference on Neural Information Processing Systems (Curran
Associates Inc., 2019).
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Solver Features

▷ automatically analyze source code of solvers, extract e.g. number of lines of code,
cyclomatic complexity, connectivity of Abstract Syntax Tree

▷ use together with problem instance features to make performance predictions
▷ only single model for all algorithms needed

Damir Pulatov et al., “Opening the Black Box: Automated Software Analysis for Algorithm
Selection,” First Conference on Automated Machine Learning (2022).
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Benchmark library – ASlib

▷ https://github.com/coseal/aslib_data
▷ SAT, CSP, QBF, ASP, MAXSAT, OR
▷ includes data used frequently in the literature that you should evaluate your

approach on
▷ http://aslib.net

Bischl, Bernd, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger H. Hoos, et al. “ASlib: A Benchmark Library for Algorithm Selection.” Artificial
Intelligence Journal (AIJ), no. 237 (2016): 41–58.
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Automated Parameter Tuning

λ∗ ∈ argmax
λ∈Λ

p(Aλ,D)

Find a parameter setting

that maximizes

the performance

of the algorithm on
the input data.
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Parameters?

▷ anything you can change that makes sense to change
▷ e.g. search heuristic, variable ordering, type of global constraint decomposition
▷ not random seed, whether to enable debugging, etc.
▷ some will affect performance, others will have no effect at all
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Examples

▷ Spear SAT solver, 26 parameters
▷ CPLEX MIP solver, 76 parameters
▷ WEKA machine learning package, 3 feature search methods, 8 feature evaluators,

39 classifiers (of which 12 can be combined with other classifiers)…
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Algorithm Configuration

Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on Tutorial”, AAAI 2016
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Parameter Spaces

▷ numeric – 1, 2, 3…
▷ ordinal – a, b, c…
▷ categoric – ACP, KUL, UWyo…
▷ conditional dependencies – e.g. if A is 1, B can’t be 2, C is only active if A is >2

→ not every tool suitable for every type of parameter
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General Approach

▷ evaluate algorithm as black box function
▷ observe effect of parameters without knowing the inner workings
▷ decide where to evaluate next
▷ balance diversification/exploration and intensification/exploitation
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When are we done?

▷ most approaches incomplete
▷ cannot prove optimality, not guaranteed to find optimal solution (with finite time)
▷ performance highly dependent on configuration space

→ How do we know when to stop?
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Time Budget

How much time/how many function evaluations?
▷ too much → wasted resources
▷ too little → suboptimal result
▷ use statistical tests
▷ evaluate on parts of the instance set
▷ for runtime: adaptive capping
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Grid and Random Search

Bergstra, James, and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization.” J.
Mach. Learn. Res. 13, no. 1 (February 2012): 281–305.
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Local Search

▷ start with random configuration
▷ change a single parameter (local search step)
▷ if better, keep the change, else revert
▷ repeat
▷ optional (but important): restart with new random configurations

Hutter, Frank, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. “ParamILS: An
Automatic Algorithm Configuration Framework.” J. Artif. Int. Res. 36, no. 1 (2009): 267–306.
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Initialisation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Perturbation)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

(Local Search)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Local Search Example

Going Beyond Local Optima: Iterated Local Search

?

Selection (using Acceptance Criterion)

Animation credit: Holger Hoos
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 33graphics by Holger Hoos
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Model-Based Optimization

▷ evaluate small number of initial (random) configurations
▷ build surrogate model of parameter-performance surface based on this
▷ use model to predict where to evaluate next
▷ repeat, stop when resources exhausted or desired solution quality achieved
▷ allows targeted exploration of promising configurations
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Model-Based Optimization

Surrogate Model

Parameter Configuration
Parameter 1: 7.5
Parameter 2: 0
Parameter 3: -3

Expensive-to-Evaluate Process
to be Optimized

Parameter Space
Parameter 1: [5..100]
Parameter 2: [0..10]
Parameter 3: [−10..10]

Parameter 1: 5
Parameter 2: 2.1
Parameter 3: -0.3

evaluate

observe

propose
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Model-Based Optimization Example
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Model-Based Optimization Example
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Model-Based Optimization Example
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Model-Based Optimization Example
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Model-Based Optimization Example
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“MlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,”
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Model-Based Optimization Example
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“MlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,”
March 9, 2017. http://arxiv.org/abs/1703.03373. 57
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Model-Based Optimization Example
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Bischl, Bernd, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang.
“MlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,”
March 9, 2017. http://arxiv.org/abs/1703.03373. 58
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Model-Based Optimization Example
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March 9, 2017. http://arxiv.org/abs/1703.03373. 59
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Model-Based Optimization Example
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Bischl, Bernd, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang.
“MlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions,”
March 9, 2017. http://arxiv.org/abs/1703.03373. 60
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Practical Considerations

▷ poorly-specified parameter spaces
▷ incorrect results with some configurations
▷ crashes
▷ instances to configure on?
▷ do not configure random seeds!
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Overtuning

▷ similar to overfitting in machine learning
▷ performance improves on training instances, but not on test instances
▷ configuration is too “tailored”, e.g. specific to instances that have a solution
▷ can be leveraged with algorithm selection to create complementary portfolios

Xu, Lin, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra: Automatically Configuring Algorithms
for Portfolio-Based Selection.” In Twenty-Fourth Conference of the Association for the Advancement of
Artificial Intelligence (AAAI-10), 210–16, 2010.
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Summary
Algorithm Selection choose the best algorithm for solving a problem
Algorithm Configuration choose the best parameter configuration for solving a

problem with an algorithm
▷ mature research areas
▷ can combine configuration and selection
▷ effective tools are available
▷ COnfiguration and SElection of ALgorithms group COSEAL

http://www.coseal.net – annual meetings, 2024 in Dresden
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Resources

▷ SMAC – https://github.com/automl/SMAC3
▷ autofolio – https://github.com/automl/AutoFolio
▷ Pascal Kerschke et al., ‘Automated Algorithm Selection: Survey and

Perspectives’, Evolutionary Computation 27, no. 1 (2019): 3–45,
https://doi.org/10.1162/evco_a_00242.

▷ Katharina Eggensperger, Marius Lindauer, and Frank Hutter, ‘Pitfalls and Best
Practices in Algorithm Configuration’, Journal of Artificial Intelligence Research
64 (2019), https://doi.org/10.1613/jair.1.11420.
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Questions?
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Automated Tuning Exercises

https://tinyurl.com/acp23-tuning
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Now go for it…

▷ try more evaluations
▷ try a different constraint problem
▷ expand the parameter space and/or try a different solver
▷ handle noisy runtime evaluations
▷ consider the uncertainty of predictions when deciding where to evaluate next
▷ use the BayesOpt package
▷ …
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